
Chapter Four

Utility
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Preferences - A Reminder

• x     y: x is preferred strictly to y.



• x  y: x and y are equally preferred.

• x     y: x is preferred at least as much 
as is y

~
as is y.

2



Preferences - A Reminder

• Completeness:  For any two bundles x
d it i l ibl t t t ithand y it is always possible to state either 

that 
x      y

or that 
y      x.

~

~
• Or both
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Preferences - A Reminder

• Reflexivity:  Any bundle x is always at 
l t f d it lf ileast as preferred as itself; i.e.

x      x.~
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Preferences - A Reminder

• Transitivity:  If
i t l t f d dx is at least as preferred as y, and

y is at least as preferred as z, then
x is at least as preferred as z; i.e.

x      y and y      z          x      z.~ ~ ~~
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Utility Functions

• A preference relation that is complete, 
reflexive transitive and continuous can bereflexive, transitive and continuous can be 
represented by a continuous utility 
function. 

• Intuition: all bundles can be ranked.

• Continuity means that small changes to a 
consumption bundle cause only small 
changes to the preference level.
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Utility Functions

• A utility function U(x) represents a 
f l ti if d l ifpreference relation      if and only if:

x’     x” U(x’) > U(x”)

x’     x” U(x’) < U(x”)

~





x’  x” U(x’) = U(x”).



7

Utility Functions

• Utility is an ordinal (i.e. ordering) concept.

• Again what did that mean?

• E.g. if U(x) = 6 and U(y) = 2 then bundle x is 
strictly preferred to  bundle y.  

• But x is not preferred three times as much as is 
y!

8



Utility Functions & Indiff. Curves
• Consider the bundles (4,1), (2,3) and (2,2).

• Suppose (2,3)      (4,1)  (2,2).

• Assign to these bundles any numbers that 
preserve the preference ordering;
e.g. U(2,3) = 6 > U(4,1) = U(2,2) = 4.



• Call these numbers utility levels.
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Utility Functions & Indiff. 
Curves

• An indifference curve contains  equally 
preferred bundles.

• Equal preference  same utility level.

• Therefore, all bundles in an indifference 
curve have the same utility level.
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Utility Functions & Indiff. 
Curves

• So the bundles (4,1) and (2,2) are in the 
indiff. curve with utility level U indiff. curve with utility level U 

• But the bundle (2,3) is in the indiff. 
curve with utility level U  6.

• On an indifference curve diagram, this 
preference information looks as  follows:
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Utility Functions & Indiff. 
Curves

(2 3) (2 2) (4 1)x2



(2,3)      (2,2)  (4,1)2



U  6
U  4

x1
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Utility Functions & Indiff. 
Curves

• Comparing more bundles will create a larger collection of 
all indifference curves and a better  description of the p
consumer’s preferences.

• Technically U(x) = constant gives different combinations 
of x and creates an indifference curve. 

• So it is just a level set, that indicates different levels of 
utility.

• Varying the constant, we end up with infinitely many 
indifference curves as in the next slide.
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Utility Functions & Indiff. 
Curves

x22

U  6
U  4
U  2

x1
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Utility Functions & Indiff. Curves
• Comparing all possible consumption bundles 

gives the complete collection of the consumer’s 
i diff h ith it i dindifference curves, each with its assigned 
utility level.

• This complete collection of indifference curves 
completely represents the consumer’s 
preferencespreferences. 

• We can think of infinitely many indifference 
curves as the next picture shows
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Utility Functions & Indiff. 
Curves

xx2

x1
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Utility Functions & Indiff. 
Curves

x2

x1
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Utility Functions & Indiff. 
Curves

x2

x1
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Utility Functions & Indiff. 
Curves

x1
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Utility Functions & Indiff. 
Curves

x1
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Utility Functions & Indiff. 
Curves

x1
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Utility Functions & Indiff. 
Curves

x1
22



Utility Functions & Indiff. 
Curves

x1
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Utility Functions & Indiff. 
Curves

• The collection of all indifference curves for 
a given preference relation is ana given preference relation is an 
indifference map.

• Which we get by just varying the constant 
as u(x) = constant. 

• And finding all different combinations of 
the goods resulting that yields the constant
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Utility Functions

• There is no unique utility function 
representation of a preference relationrepresentation of a preference relation, 
recall it is ordinal!

• Suppose U(x1,x2) = x1x2 represents a 
preference relation.

• Again consider the bundles (4,1),
(2,3) and (2,2).
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Utility Functions

• U(x1,x2) = x1x2, so

• U(2,3) = 6 > U(4,1) = U(2,2) = 4;

• that is, (2,3)     (4,1)  (2,2).


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Utility Functions
• U(x1,x2) = x1x2 (2,3)     (4,1)  (2,2).

• Define V = U2. (positive monotonic 



(p
transformation)

• Then V(x1,x2) = x1
2x2

2 and 
V(2,3) = 36 > V(4,1) = V(2,2) = 16
so again (2,3)     (4,1)  (2,2).



• V preserves the same order as U and so 
represents the same preferences.

27

Utility Functions

• U(x1,x2) = x1x2 (2,3)     (4,1)  (2,2).

D fi W 2U 10



• Define W = 2U + 10.

• Then W(x1,x2) = 2x1x2+10 so 
W(2,3) = 22 >  W(4,1) = W(2,2) = 18.  
Again,
(2,3) (4,1)  (2,2).



(2,3)     (4,1) (2,2).

• W preserves the same order as U and V 
and so represents the same preferences.


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Utility Functions

• If 
– U is a utility function that represents a 

preference relation     and 

– f is a strictly increasing function,

• then V = f(U) is also a utility function

~

then V  f(U) is also a utility function
representing     . ~
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Goods, Bads and Neutrals
• A good is a commodity unit which 

increases utility (gives a more preferred y (g p
bundle).

• A bad is a commodity unit which 
decreases utility (gives a less preferred 
bundle).

A l i di i hi h• A neutral is a commodity unit which 
does not change utility (gives an equally 
preferred bundle).
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Goods, Bads and Neutrals

Utility

Utilit

This course focus

Units of
water are
goods

Units of
water are
bads

Utility
function

Waterx’
Around x’ units, a little extra water is a neutral.
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Some Other Utility Functions 
and Their Indifference Curves

• Instead of U(x1,x2) = x1x2 consider

V(x1,x2) = x1 + x2.

What do the indifference curves for this 
“perfect substitution” utility function look 
like? Say V(x1,x2) = constant then solving 
for x2. yields x2 = constant - x1, which is a 
straight line with slope 1. 
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Perfect Substitution Indifference 
Curves

x2

x1 + x2 = 5

5

9

13
x1  x2  5

x1 + x2 = 9

x1 + x2 = 13

V( ) = +

5 9 13 x1

All are linear and parallel.

V(x1,x2) = x1 + x2.
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Some Other Utility Functions 
and Their Indifference Curves

• Instead of U(x1,x2) = x1x2 or 
V( ) idV(x1,x2) = x1 + x2, consider

W(x1,x2) = min{x1,x2}.

What do the indifference curves for this 
“perfect complementarity” utility function 
look like?
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Perfect Complementarity 
Indifference Curves

x2

45o

min{x1,x2} = 8

3
5

8

min{x1,x2} = 5

W(x1,x2) = min{x1,x2}

x13 5 8

3 min{x1,x2} = 3

All are right-angled with vertices on a ray
from the origin.
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Some Other Utility Functions 
and Their Indifference Curves

• A utility function of the form

U(x1,x2) = f(x1) + x2

is linear in just x2 and is called quasi-
linear.

• E.g.     U(x1,x2) =  2x1
1/2 + x2.
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Quasi-linear Indifference Curves
x2 Each curve is a vertically shifted 

copy of the others.

x1 37

Some Other Utility Functions 
and Their Indifference Curves

• Any utility function of the form

U(x1,x2) = x1
a x2

b

with a > 0 and b > 0 is called a Cobb-
Douglas utility function.

• E.g.    U(x1,x2) = x1
1/2 x2

1/2 (a = b = 1/2)
V(x1,x2) = x1 x2

3           (a = 1, b = 3)
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Cobb-Douglas Indifference 
Curvesx2

All curves are hyperbolicAll curves are hyperbolic,
asymptoting to, but never
touching any axis.

x1
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Typical Utility functions in this 
course

• We ususally work with strictly concave functions 
in this course Intuition (show on the board!)in this course. Intuition (show on the board!)

• Cobb-Douglas with restrictions on the 
parameter, (show on the board)!

• What does this mean for the quasi-linear case 
U(x1,x2) = f(x1) + x2 ,which we also will use a lot
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Marginal Utilities

• Marginal means “incremental”.

• The marginal utility of commodity i is the 
rate-of-change of total utility as the 
quantity of commodity i consumed 
changes; i.e.

U
MU

U
xi

i



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Marginal Utilities

• E.g. if U(x1,x2) = x1
1/2 x2

2 then:

2
2

2/1
11 2

1
xx

x

U
MU 




1 2x
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Marginal Utilities

• E.g. if U(x1,x2) = x1
1/2 x2

2 then

2/12 xx
U

MU


21
2

2 2 xx
x

MU 

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Marginal Utilities and Marginal 
Rates-of-Substitution

• The equation for an indifference curve in the two 
goods case was U(x1,x2)  k, a constant.g ( 1, 2) ,

• Recall the slope of the indifference curve was 
MRS from last lecture. 

• That was a slight change of the mix but still being 
on the same indifference curve

• Totally differentiating this identity gives
forcing being on the same indifference curve

02
2

1
1

 dx
x

U
dx

x

U
dU






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Marginal Utilities and Marginal 
Rates-of-Substitution

 U
d

U
d 0

 x
dx

x
dx

1
1

2
2 0 







U
dx

U
dx2 1 

rearranged is

 x x2
2

1
1
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Marginal Utilities and Marginal 
Rates-of-Substitution

 U UAnd 





U
x

dx
U
x

dx
2

2
1

1 

rearranged is

And

d x
d

U x
U

2 1 
 
 

/
/

.
d x U x1 2 /

This is the MRS. Note the negative sign.
Why? Intuition?
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Marg. Utilities & Marg. Rates-of-
Substitution; An example

• Suppose U(x1,x2) = x1x2.  Then






U
x

x x

U
x

x x

1
2 2

2
1 1

1

1

 

 

( )( )

( )( )
 x2

MRS
d x
d x

U x
U x

x
x

    2

1

1

2

2

1

 
 

/
/

.so
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Marg. Utilities & Marg. Rates-of-
Substitution; An example

MRS
x

  2
x U(x1,x2) = x1x2; x1

MRS(1,8) = - 8/1 = -8
MRS(6,6) = - 6/6 = -1.

x2

8

6

( 1, 2) 1 2;

x11 6
U = 8

U = 36
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Marg. Rates-of-Substitution for 
Quasi-linear Utility Functions

• A quasi-linear utility function is of the form  
U( ) f( )U(x1,x2) = f(x1) + x2.




U
x

f x
1

1 ( ) 


U
x2

1

d x U x2 1 /
so MRS

d x
d x

U x
U x

f x     2

1

1

2
1

 
 

/
/

( ).
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Marg. Rates-of-Substitution for 
Quasi-linear Utility Functions

• MRS = - f (x1)  does not depend upon x2

th l f i diff f


so the slope of indifference curves for a 
quasi-linear utility function is constant 
along any line for which x1 is constant. 

• What does that make the indifference• What does that make the indifference 
map for a quasi-linear utility function look 
like?
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Marg. Rates-of-Substitution for 
Quasi-linear Utility Functions

x2
Each curve is a vertically 

f f
MRS =

f( ’) shifted copy of the others.

MRS is a 
constant
along any line 
for which x is

- f(x1’)

MRS = -f(x1”)

x1

for which x1 is
constant.

x1’ x1” 51

Monotonic Transformations & 
Marginal Rates-of-Substitution 

• Recall, applying a monotonic 
t f ti t tilit f titransformation to a utility function 
representing a preference relation simply 
creates another utility function 
representing the same preference relation.

• What happens to marginal rates-of-What happens to marginal rates of
substitution when a monotonic 
transformation is applied?
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Monotonic Transformations & 
Marginal Rates-of-Substitution

• For U(x1,x2) = x1x2 the MRS = - x2/x1.( 1, 2) 1 2 2 1

• Create V = U2; i.e. V(x1,x2) = x1
2x2

2.  
What is the MRS for V?

MRS
V x
V x

x x

x x

x
x

     
 
 

/
/

1

2

1 2
2

1
2

2

2

1

2

2

which is the same as the MRS for U.

x x2 1 2 12
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Monotonic Transformations & 
Marginal Rates-of-Substitution

• More generally, if V = f(U) where f is a 
t i tl i i f ti thstrictly increasing function, then

MRS
V x
V x

f U U x
f U U x

     


 
 

 
 

/
/

( ) /
' ( ) /

1

2

1

2

.
/ 1xU 

 .
/ 2xU 

So MRS is unchanged by a positive monotonic transformation. 
Thus, we conclude that MU are changed by 
monotonic transformations, but MRS not.
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