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What is persistent homology?

Persistent homology is the homology of a Bltration.

• A Bltration is a certain diagram K ∶ R→ Top.

• A topological space Kt for each t ∈ R
• An inclusion map Ks ↪ Kt for each s ≤ t ∈ R

• R is the poset category of (R, ≤)
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Homology inference using persistent homology

Pδ = Bδ(P): δ-neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

LetΩ ⊂ Rd. Let P ⊂ Ω be such that

• Ω ⊆ Pδ for some δ > 0 and

• both H∗(Ω ↪ Ωδ) and H∗(Ωδ ↪ Ω2δ) are isomorphisms.

Then

H∗(Ω) ≅ imH∗(Pδ ↪ P2δ).
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The pipeline of topological data analysis

point cloud

P ⊂ Rd

function

f ∶ Rd → R

topological spaces

K ∶ R→ Top

vector spaces

M ∶ R→ Vect

intervals

R→Mch

distance

sublevel sets
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Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

If two functions f , g ∶ K → R have distance ∥f − g∥∞ ≤ δ
then there exists a δ-matching of their barcodes.

• matching A→∣ B: bijection of subsets A′ ⊆ A, B′ ⊆ B
• δ-matching of barcodes:

• matched intervals have endpoints within distance ≤ δ
• unmatched intervals have length ≤ 2δ
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Stability for functions in the big picture

Data point cloud

Geometry function
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Interleavings of sublevel sets

Let

• Ft = f −1(−∞, t],
• Gt = g−1(−∞, t].

If ∥f − g∥∞ ≤ δ then Ft ⊆ Gt+δ and Gt ⊆ Ft+δ .

So the sublevel sets are δ-interleaved:
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Interleavings of sublevel sets

Let

• Ft = f −1(−∞, t],
• Gt = g−1(−∞, t].

If ∥f − g∥∞ ≤ δ then Ft ⊆ Gt+δ and Gt ⊆ Ft+δ .

So the sublevel sets are δ-interleaved:

H∗(Ft) H∗(Ft+2δ)

H∗(Gt+δ) H∗(Gt+3δ)

Homology is a functor: homology groups are interleaved too.
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Persistence modules

A persistence module M is a diagram (functor) R→ Vect:

• a vector space Mt for each t ∈ R (in this talk: dimMt <∞)

• a linear map Ms →Mt for each s ≤ t (transition maps)

• respecting identity: (Mt →Mt) = idMt

and composition: (Ms →Mt) ○ (Mr →Ms) = (Mr →Mt)

Amorphism f ∶ M → N is a natural transformation:

• a linear map ft ∶ Mt → Nt for each t ∈ R
• morphism and transition maps commute:

Ms Mt

Ns Nt

fs ft

12 / 28
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Interval PersistenceModules

Let K be a Beld. For an arbitrary interval I ⊆ R,

deBne the interval persistence module C(I) by

C(I)t =
⎧⎪⎪⎨⎪⎪⎩

K if t ∈ I,
0 otherwise;

C(I)s → C(I)t =
⎧⎪⎪⎨⎪⎪⎩

idK if s, t ∈ I,
0 otherwise.
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The structure of persistence modules

Theorem (Crawley-Boewey 2012)

Let M be a persistence modulewith dimMt <∞ for all t.

Then M is interval-decomposable:

there exists a unique collection of intervals B(M) such that

M ≅ ⊕
I∈B(M)

C(I).

B(M) is called the barcode of M.

• Motivates use of homology with Beld coe?cients
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Interleavings of persistence modules

DeBnition

Two persistence modules M and N are δ-interleaved

if there are morphisms

f ∶ M → N(δ), g ∶ N →M(δ)

such that this diagrams commutes for all t:

Mt Mt+2δ

Nt+δ Nt+3δ

ft ft+2δ

gt+δ

• deBne M(δ) by M(δ)t = Mt+δ

(shift barcode to the left by δ)

B(M)
B(M(δ))

δ
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Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012)

If two persistence modules are δ-interleaved,

then there exists a δ-matching of their barcodes.

δ

2δ

• converse statement also holds (isometry theorem)

• indirect proof, 80 page paper (Chazal et al. 2012)
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Our approach

Our proof takes a di>erent approach:

• direct proof (no interpolation, matching immediately

from interleaving)

• shows how morphism induces amatching

• stability follows from properties of a single morphism,

not just from a pair of morphisms

• relies on partial functoriality of the induced matching

17 / 28



Our approach

Our proof takes a di>erent approach:

• direct proof (no interpolation, matching immediately

from interleaving)

• shows how morphism induces amatching

• stability follows from properties of a single morphism,

not just from a pair of morphisms

• relies on partial functoriality of the induced matching

17 / 28



Our approach

Our proof takes a di>erent approach:

• direct proof (no interpolation, matching immediately

from interleaving)

• shows how morphism induces amatching

• stability follows from properties of a single morphism,

not just from a pair of morphisms

• relies on partial functoriality of the induced matching

17 / 28



Our approach

Our proof takes a di>erent approach:

• direct proof (no interpolation, matching immediately

from interleaving)

• shows how morphism induces amatching

• stability follows from properties of a single morphism,

not just from a pair of morphisms

• relies on partial functoriality of the induced matching

17 / 28



The matching category

Amatching σ ∶ S→∣ T is a bijection S′ → T′, where S′ ⊆ S, T′ ⊆ T.

Composition of matchings σ ∶ S→∣ T and τ ∶ T →∣ U :

Matchings form a categoryMch
• objects: sets

• morphisms: matchings
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Barcodes as matching diagrams

We can regard a barcode B as a functor R→Mch:

• For each real number t, let Bt be those intervals of B that

contain t, and

• for each s ≤ t, deBne the matching Bs →∣ Bt

to be the identity on Bs ∩ Bt .

0.1 0.2 0.4 0.8
δ
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Barcode matchings as natural transformations

We can regard certain matchings of barcodes σ ∶ A→∣ B
as natural transformations of functors R→Mch.

• consider restrictions σt ∶ At →∣ Bt of σ to At × Bt :

As At

Bs Bt

σs σt

• requirement on the matching σ :

if I ∈ A is matched to J ∈ B, then I overlaps J to the right.

I
J
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Barcode matchings as interleavings

We can regard a δ-matching of barcodes σ ∶ A→∣ B
as a δ-interleaving of functors R→Mch:

At At+2δ

Bt+δ Bt+3δ

• each matching At →∣ Bt+δ is the restriction of σ

21 / 28



Stability via functoriality?

Ft Ft+2δ

Gt+δ Gt+3δ
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Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)

There exists no functorVectR →Mch sending each persistence

module to its barcode.

Proposition

There exists no functorVect→Mch sending each vector space of

dimension d to a set of cardinality d.

• Such a functor would necessarily send a linear map of

rank r to amatching of cardinality r.

• In particular, there is no natural choice of basis for vector

spaces
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Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)

For a persistence submodule K ⊆ M:

• B(K) is obtained from B(M) by
moving left endpoints to the right,

B(M)
B(K)

• B(M/K) is obtained from B(M) by
moving right endpoints to the left.

B(M)
B(M/K)

This yields canonical matchings between the barcodes:

match bars with the same right endpoint (resp. left endpoint)

• If multiple bars have same endpoint:

match in order of decreasing length

24 / 28



Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)

For a persistence submodule K ⊆ M:

• B(K) is obtained from B(M) by
moving left endpoints to the right,

B(M)
B(K)

• B(M/K) is obtained from B(M) by
moving right endpoints to the left.

B(M)
B(M/K)

This yields canonical matchings between the barcodes:

match bars with the same right endpoint (resp. left endpoint)

• If multiple bars have same endpoint:

match in order of decreasing length

24 / 28



Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)

For a persistence submodule K ⊆ M:

• B(K) is obtained from B(M) by
moving left endpoints to the right,

B(M)
B(K)

• B(M/K) is obtained from B(M) by
moving right endpoints to the left.

B(M)
B(M/K)

This yields canonical matchings between the barcodes:

match bars with the same right endpoint (resp. left endpoint)

• If multiple bars have same endpoint:

match in order of decreasing length

24 / 28



Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)

For a persistence submodule K ⊆ M:

• B(K) is obtained from B(M) by
moving left endpoints to the right,

B(M)
B(K)

• B(M/K) is obtained from B(M) by
moving right endpoints to the left.

B(M)
B(M/K)

This yields canonical matchings between the barcodes:

match bars with the same right endpoint (resp. left endpoint)

• If multiple bars have same endpoint:

match in order of decreasing length

24 / 28



Induced matchings

For any morphism f ∶ M → N between persistence modules:

• decompose into M ↠ im f ↪ N

• im f ≅ M/ker f is a quotient of M B(M)
B(im f )

• im f is a submodule of N
• Composing the canonical matchings yields

amatching B(f ) ∶ B(M)→∣ B(N) induced by f

This matching is functorial for injections:

B(K ↪M) = B(L↪M) ○ B(K ↪ L)

B(M)

B(K)
B(L)

Similar for surjections.
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The induced matching theorem

DeBne Mє by shrinking bars of B(M) from the right by є.

Lemma

Let f ∶ M → N be amorphism such that is є-trivial

(all bars of are shorter than є).

Then is a of im f .

є

B(M)

B(M є)

M N

Mє

im f

єN

f
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The induced matching theorem

DeBne єN by shrinking bars of B(N) from the left by є.

Lemma

Let f ∶ M → N be amorphism such that coker f is є-trivial

(all bars of B(coker f ) are shorter than є).

Then єN is a submodule of im f .

B(im f )

є

B(N)

B(єN)

M

N

Mє

im f єN
26 / 28



The induced matching theorem

B(M)
B(im f )

B(N)

M N

Mє

im f

єN

f

26 / 28



The induced matching theorem

є

є

B(M)
B(im f )

B(N)

M N

Mє im f єN

f

26 / 28



The induced matching theorem

є

є

B(M)

B(N)

M N

Mє

im f

єN

f

26 / 28



The induced matching theorem

Theorem (B, Lesnick 2013)

Let f ∶ M → N be amorphismwith ker f and coker f є-trivial.

Then each interval of length ≥ є is matched by B(f ).

If B(f ) matches [b, d) ∈ B(M) to [b′, d′) ∈ B(N), then

b′ ≤ b ≤ b′ + є and d − є ≤ d′ ≤ d.

є
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The induced matching theorem

Let f ∶ M → N(δ) be an interleaving morphism.

Then ker f and coker f are 2δ-trivial.

Corollary (Algebraic stability via induced matchings)

A δ-interleaving between persistence modules induces

a δ-matching of their persistence barcodes.

2δ

2δ

B(M)

B(N(δ))

M N

Mє

im f

єN

f
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Stability via induced matchings

B(M)

B(N)

Thanks for your attention!
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