

Induced matchings and the algebraic stability of persistence barcodes

Ulrich Bauer

TUM

Apr 7, 2015

GETCO 2015, Aalborg

Joint work with Michael Lesnick (IMA)

0.1

0.2

0.4

δ

0.8

Persistent homology is the homology of a filtration.

• A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.

- A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.
 - A topological space K_t for each $t \in \mathbb{R}$

- A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.
 - A topological space K_t for each $t \in \mathbb{R}$
 - An inclusion map $K_s \hookrightarrow K_t$ for each $s \le t \in \mathbb{R}$

- A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.
 - A topological space K_t for each $t \in \mathbb{R}$
 - An inclusion map $K_s \hookrightarrow K_t$ for each $s \le t \in \mathbb{R}$
- **R** is the poset category of (\mathbb{R}, \leq)

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$$


```
point cloud
          distance
     function
         sublevel sets
topological spaces
         homology
  vector spaces
         barcode
     intervals
```


Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) If two functions $f, g: K \to \mathbb{R}$ have distance $||f - g||_{\infty} \le \delta$ then there exists a δ -matching of their barcodes.

• matching $A \rightarrow B$: bijection of subsets $A' \subseteq A$, $B' \subseteq B$

- matching $A \rightarrow B$: bijection of subsets $A' \subseteq A$, $B' \subseteq B$
- δ -matching of barcodes:

- matching $A \rightarrow B$: bijection of subsets $A' \subseteq A$, $B' \subseteq B$
- δ -matching of barcodes:
 - matched intervals have endpoints within distance $\leq \delta$

- *matching* $A \rightarrow B$: bijection of subsets $A' \subseteq A$, $B' \subseteq B$
- δ -matching of barcodes:
 - matched intervals have endpoints within distance $\leq \delta$
 - unmatched intervals have length $\leq 2\delta$

Interleavings of sublevel sets

Let

- $F_t = f^{-1}(-\infty, t]$,
- $G_t = g^{-1}(-\infty, t].$

Interleavings of sublevel sets

Let

- $F_t = f^{-1}(-\infty, t],$
- $G_t = g^{-1}(-\infty, t].$
- If $||f g||_{\infty} \le \delta$ then $F_t \subseteq G_{t+\delta}$ and $G_t \subseteq F_{t+\delta}$.
Interleavings of sublevel sets

Let

- $F_t = f^{-1}(-\infty, t],$
- $G_t = g^{-1}(-\infty, t].$

If $||f - g||_{\infty} \le \delta$ then $F_t \subseteq G_{t+\delta}$ and $G_t \subseteq F_{t+\delta}$.

So the sublevel sets are δ -interleaved:

Interleavings of sublevel sets

Let

- $F_t = f^{-1}(-\infty, t],$
- $G_t = g^{-1}(-\infty, t].$

If $||f - g||_{\infty} \le \delta$ then $F_t \subseteq G_{t+\delta}$ and $G_t \subseteq F_{t+\delta}$.

So the sublevel sets are δ -interleaved:

Homology is a functor: homology groups are interleaved too.

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

• a vector space M_t for each $t \in \mathbb{R}$

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

• a vector space M_t for each $t \in \mathbb{R}$ (in this talk: dim $M_t < \infty$)

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

- a vector space M_t for each $t \in \mathbb{R}$ (in this talk: dim $M_t < \infty$)
- a linear map $M_s \rightarrow M_t$ for each $s \le t$ (transition maps)

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

- a vector space M_t for each $t \in \mathbb{R}$ (in this talk: dim $M_t < \infty$)
- a linear map $M_s \rightarrow M_t$ for each $s \le t$ (transition maps)
- respecting identity: (M_t → M_t) = id_{Mt} and composition: (M_s → M_t) ∘ (M_r → M_s) = (M_r → M_t)

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

- a vector space M_t for each $t \in \mathbb{R}$ (in this talk: dim $M_t < \infty$)
- a linear map $M_s \rightarrow M_t$ for each $s \le t$ (transition maps)
- respecting identity: (M_t → M_t) = id_{Mt} and composition: (M_s → M_t) ∘ (M_r → M_s) = (M_r → M_t)

A morphism $f : M \rightarrow N$ is a natural transformation:

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

- a vector space M_t for each $t \in \mathbb{R}$ (in this talk: dim $M_t < \infty$)
- a linear map $M_s \rightarrow M_t$ for each $s \le t$ (transition maps)
- respecting identity: (M_t → M_t) = id_{Mt} and composition: (M_s → M_t) ∘ (M_r → M_s) = (M_r → M_t)

A morphism $f : M \rightarrow N$ is a natural transformation:

• a linear map $f_t : M_t \to N_t$ for each $t \in \mathbb{R}$

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow \mathbf{Vect}$:

- a vector space M_t for each $t \in \mathbb{R}$ (in this talk: dim $M_t < \infty$)
- a linear map $M_s \rightarrow M_t$ for each $s \le t$ (transition maps)
- respecting identity: (M_t → M_t) = id_{Mt} and composition: (M_s → M_t) ∘ (M_r → M_s) = (M_r → M_t)

A morphism $f : M \rightarrow N$ is a natural transformation:

- a linear map $f_t : M_t \to N_t$ for each $t \in \mathbb{R}$
- morphism and transition maps commute:

$$M_s \longrightarrow M_t$$

 $f_s \downarrow \qquad \qquad \downarrow f_t$
 $N_s \longrightarrow N_t$

Interval Persistence Modules

Let \mathbb{K} be a field. For an arbitrary interval $I \subseteq \mathbb{R}$, define the *interval persistence module* C(I) by

$$C(I)_t = \begin{cases} \mathbb{K} & \text{if } t \in I, \\ 0 & \text{otherwise;} \end{cases}$$

Interval Persistence Modules

Let \mathbb{K} be a field. For an arbitrary interval $I \subseteq \mathbb{R}$, define the *interval persistence module* C(I) by

$$C(I)_{t} = \begin{cases} \mathbb{K} & \text{if } t \in I, \\ 0 & \text{otherwise}; \end{cases}$$
$$C(I)_{s} \to C(I)_{t} = \begin{cases} \text{id}_{\mathbb{K}} & \text{if } s, t \in I, \\ 0 & \text{otherwise}. \end{cases}$$

Theorem (Crawley-Boewey 2012)

Let *M* be a persistence module with dim $M_t < \infty$ for all *t*.

Theorem (Crawley-Boewey 2012)

Let *M* be a persistence module with dim $M_t < \infty$ for all *t*. Then *M* is interval-decomposable:

Theorem (Crawley-Boewey 2012)

Let *M* be a persistence module with dim $M_t < \infty$ for all *t*. Then *M* is interval-decomposable: there exists a unique collection of intervals B(M)

Theorem (Crawley-Boewey 2012)

Let *M* be a persistence module with dim $M_t < \infty$ for all *t*. Then *M* is interval-decomposable: there exists a unique collection of intervals B(M) such that

 $M\cong \bigoplus_{I\in B(M)} C(I).$

Theorem (Crawley-Boewey 2012)

Let *M* be a persistence module with dim $M_t < \infty$ for all *t*. Then *M* is interval-decomposable: there exists a unique collection of intervals B(M) such that

$$M\cong\bigoplus_{I\in B(M)}C(I).$$

B(M) is called the *barcode* of M.

Theorem (Crawley-Boewey 2012)

Let *M* be a persistence module with dim $M_t < \infty$ for all *t*. Then *M* is interval-decomposable: there exists a unique collection of intervals B(M) such that

$$M \cong \bigoplus_{I \in B(M)} C(I).$$

B(M) is called the *barcode* of M.

Motivates use of homology with field coefficients

Definition

Two persistence modules M and N are δ -interleaved

Definition

Two persistence modules M and N are δ -interleaved if there are morphisms

$$f: M \to N(\delta), \qquad g: N \to M(\delta)$$

Definition

Two persistence modules M and N are δ -interleaved if there are morphisms

$$f: M \to N(\delta), \qquad g: N \to M(\delta)$$

such that this diagrams commutes for all *t*:

Definition

Two persistence modules M and N are δ -interleaved if there are morphisms

$$f: M \to N(\delta), \qquad g: N \to M(\delta)$$

such that this diagrams commutes for all *t*:

• define $M(\delta)$ by $M(\delta)_t = M_{t+\delta}$

Definition

Two persistence modules M and N are δ -interleaved if there are morphisms

$$f: M \to N(\delta), \qquad g: N \to M(\delta)$$

such that this diagrams commutes for all *t*:

 define M(δ) by M(δ)_t = M_{t+δ} (shift barcode to the left by δ)

Theorem (Chazal et al. 2009, 2012)

If two persistence modules are δ -interleaved, then there exists a δ -matching of their barcodes.

Theorem (Chazal et al. 2009, 2012)

If two persistence modules are δ -interleaved, then there exists a δ -matching of their barcodes.

Theorem (Chazal et al. 2009, 2012)

If two persistence modules are δ -interleaved, then there exists a δ -matching of their barcodes.

converse statement also holds (isometry theorem)

Theorem (Chazal et al. 2009, 2012)

If two persistence modules are δ -interleaved, then there exists a δ -matching of their barcodes.

- converse statement also holds (isometry theorem)
- indirect proof, 80 page paper (Chazal et al. 2012)

direct proof (no interpolation, matching immediately from interleaving)

- direct proof (no interpolation, matching immediately from interleaving)
- shows how morphism induces a matching

- direct proof (no interpolation, matching immediately from interleaving)
- shows how morphism induces a matching
- stability follows from properties of a single morphism, not just from a pair of morphisms

- direct proof (no interpolation, matching immediately from interleaving)
- shows how morphism induces a matching
- stability follows from properties of a single morphism, not just from a pair of morphisms
- relies on partial functoriality of the induced matching

The matching category

A matching $\sigma : S \rightarrow T$ is a bijection $S' \rightarrow T'$, where $S' \subseteq S$, $T' \subseteq T$.

The matching category

A matching $\sigma : S \rightarrow T$ is a bijection $S' \rightarrow T'$, where $S' \subseteq S$, $T' \subseteq T$.

Composition of matchings $\sigma : S \twoheadrightarrow T$ and $\tau : T \twoheadrightarrow U$:

The matching category

A matching $\sigma : S \rightarrow T$ is a bijection $S' \rightarrow T'$, where $S' \subseteq S$, $T' \subseteq T$.

Composition of matchings $\sigma : S \Rightarrow T$ and $\tau : T \Rightarrow U$:

Matchings form a category Mch

- objects: sets
- morphisms: matchings

Barcodes as matching diagrams

We can regard a barcode *B* as a functor $\mathbf{R} \rightarrow \mathbf{Mch}$:

Barcodes as matching diagrams

We can regard a barcode *B* as a functor $\mathbf{R} \rightarrow \mathbf{Mch}$:

• For each real number *t*, let *B*_t be those intervals of *B* that contain *t*, and

Barcodes as matching diagrams

We can regard a barcode *B* as a functor $\mathbf{R} \rightarrow \mathbf{Mch}$:

- For each real number *t*, let *B*_t be those intervals of *B* that contain *t*, and
- for each $s \le t$, define the matching $B_s \Rightarrow B_t$ to be the identity on $B_s \cap B_t$.

Barcode matchings as natural transformations

We can regard certain matchings of barcodes $\sigma : A \Rightarrow B$ as natural transformations of functors $\mathbf{R} \Rightarrow \mathbf{Mch}$.

• consider restrictions $\sigma_t : A_t \rightarrow B_t$ of σ to $A_t \times B_t$:

Barcode matchings as natural transformations

We can regard certain matchings of barcodes $\sigma : A \rightarrow B$ as natural transformations of functors $\mathbf{R} \rightarrow \mathbf{Mch}$.

• consider restrictions $\sigma_t : A_t \rightarrow B_t$ of σ to $A_t \times B_t$:

requirement on the matching *σ*:
 if *I* ∈ *A* is matched to *J* ∈ *B*, then *I* overlaps *J* to the right.

Barcode matchings as interleavings

We can regard a δ -matching of barcodes $\sigma : A \rightarrow B$ as a δ -interleaving of functors $\mathbf{R} \rightarrow \mathbf{Mch}$:

• each matching $A_t \twoheadrightarrow B_{t+\delta}$ is the restriction of σ

$$B(H_*(F_t)) \rightarrow B(H_*(F_{t+2\delta}))$$

$$A = A = A = A$$

$$B(H_*(G_{t+\delta})) \rightarrow B(H_*(G_{t+3\delta}))$$

 $B(H_*(F_t)) \rightarrow B(H_*(F_{t+2\delta}))$ $B(H_*(G_{t+\delta})) \rightarrow B(H_*(G_{t+3\delta}))$

Theorem (B, Lesnick 2014)

There exists no functor $\mathbf{Vect}^R \to \mathbf{Mch}$ sending each persistence module to its barcode.

Theorem (B, Lesnick 2014)

There exists no functor $\mathbf{Vect}^{R} \to \mathbf{Mch}$ sending each persistence module to its barcode.

Proposition

There exists no functor $\mathbf{Vect} \rightarrow \mathbf{Mch}$ sending each vector space of dimension d to a set of cardinality d.

Theorem (B, Lesnick 2014)

There exists no functor $\mathbf{Vect}^{R} \rightarrow \mathbf{Mch}$ sending each persistence module to its barcode.

Proposition

There exists no functor $\mathbf{Vect} \rightarrow \mathbf{Mch}$ sending each vector space of dimension d to a set of cardinality d.

• Such a functor would necessarily send a linear map of rank *r* to a matching of cardinality *r*.

Theorem (B, Lesnick 2014)

There exists no functor $\mathbf{Vect}^{R} \rightarrow \mathbf{Mch}$ sending each persistence module to its barcode.

Proposition

There exists no functor $\mathbf{Vect} \rightarrow \mathbf{Mch}$ sending each vector space of dimension d to a set of cardinality d.

- Such a functor would necessarily send a linear map of rank *r* to a matching of cardinality *r*.
- In particular, there is no natural choice of basis for vector spaces

Proposition (B, Lesnick 2013)

For a persistence submodule $K \subseteq M$:

 B(K) is obtained from B(M) by moving left endpoints to the right,

Proposition (B, Lesnick 2013)

For a persistence submodule $K \subseteq M$:

- B(K) is obtained from B(M) by moving left endpoints to the right,
- *B*(*M*/*K*) is obtained from *B*(*M*) by moving right endpoints to the left.

Proposition (B, Lesnick 2013)

For a persistence submodule $K \subseteq M$:

- B(K) is obtained from B(M) by moving left endpoints to the right,
- *B*(*M*/*K*) is obtained from *B*(*M*) by moving right endpoints to the left.

This yields canonical matchings between the barcodes: match bars with the same right endpoint (resp. left endpoint)

Proposition (B, Lesnick 2013)

For a persistence submodule $K \subseteq M$:

- B(K) is obtained from B(M) by moving left endpoints to the right,
- *B*(*M*/*K*) is obtained from *B*(*M*) by moving right endpoints to the left.

This yields canonical matchings between the barcodes: match bars with the same right endpoint (resp. left endpoint)

• If multiple bars have same endpoint: match in order of decreasing length

For any morphism $f: M \rightarrow N$ between persistence modules:

• decompose into $M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- im f is a submodule of N

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- $\operatorname{im} f$ is a submodule of N
- Composing the canonical matchings yields a matching $B(f) : B(M) \rightarrow B(N)$ induced by f

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- $\operatorname{im} f$ is a submodule of N
- Composing the canonical matchings yields a matching B(f) : B(M) → B(N) induced by f

This matching is functorial for injections: $B(K \hookrightarrow M) = B(L \hookrightarrow M) \circ B(K \hookrightarrow L)$

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- $\operatorname{im} f$ is a submodule of N
- Composing the canonical matchings yields a matching B(f) : B(M) → B(N) induced by f

This matching is functorial for injections: $B(K \hookrightarrow M) = B(L \hookrightarrow M) \circ B(K \hookrightarrow L)$

Similar for surjections.

Define M^{ϵ} by shrinking bars of B(M) from the right by ϵ .

Define M^{ϵ} by shrinking bars of B(M) from the right by ϵ .

Lemma

Let $f : M \to N$ be a morphism such that ker f is ϵ -trivial (all bars of $B(\ker f)$ are shorter than ϵ).

Then M^{ϵ} is a quotient module of $\operatorname{im} f$.

Define ${}^{e}\!N$ by shrinking bars of B(N) from the left by ϵ .

Lemma

Let $f : M \to N$ be a morphism such that coker f is ϵ -trivial (all bars of $B(\operatorname{coker} f)$ are shorter than ϵ).

Then ${}^{\epsilon}\!N$ is a submodule of $\operatorname{im} f$.

Theorem (B, Lesnick 2013)

Let $f: M \to N$ be a morphism with ker f and coker $f \epsilon$ -trivial.

Theorem (B, Lesnick 2013)

Let $f : M \to N$ be a morphism with ker f and coker $f \epsilon$ -trivial. Then each interval of length $\geq \epsilon$ is matched by B(f).

Theorem (B, Lesnick 2013)

Let $f : M \to N$ be a morphism with ker f and coker $f \epsilon$ -trivial. Then each interval of length $\ge \epsilon$ is matched by B(f). If B(f) matches $[b, d) \in B(M)$ to $[b', d') \in B(N)$, then $b' \le b \le b' + \epsilon$ and $d - \epsilon \le d' \le d$.

Let $f: M \to N(\delta)$ be an interleaving morphism. Then ker f and coker f are 2δ -trivial.

Let $f: M \to N(\delta)$ be an interleaving morphism. Then ker f and coker f are 2δ -trivial.

Corollary (Algebraic stability via induced matchings)

A δ -interleaving between persistence modules induces a δ -matching of their persistence barcodes.

Stability via induced matchings

Stability via induced matchings

Stability via induced matchings

Thanks for your attention!