Induced matchings and the algebraic stability of persistence barcodes

Ulrich Bauer

TUM
Apr 7, 2015

GETCO 2015, Aalborg
Joint work with Michael Lesnick (IMA)

What is persistent homology?

What is persistent homology?

What is persistent homology?

Persistent homology is the homology of a filtration.

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.
- A topological space K_{t} for each $t \in \mathbb{R}$

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.
- A topological space K_{t} for each $t \in \mathbb{R}$
- An inclusion map $K_{s} \rightarrow K_{t}$ for each $s \leq t \in \mathbb{R}$

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.
- A topological space K_{t} for each $t \in \mathbb{R}$
- An inclusion map $K_{s} \leftrightarrow K_{t}$ for each $s \leq t \in \mathbb{R}$
- \mathbf{R} is the poset category of (\mathbb{R}, \leq)

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

The pipeline of topological data analysis

The pipeline of topological data analysis

The pipeline of topological data analysis

point cloud
\downarrow distance
function
\downarrow sublevel sets
topological spaces

intervals

The pipeline of topological data analysis

The pipeline of topological data analysis

point cloud	
distance	
\downarrow	
function	
sublevel sets	
\downarrow	
topological spaces	$K: \mathbf{R} \rightarrow$ Top
homology	
\downarrow	
vector spaces	
barcode	
\downarrow	
intervals	

The pipeline of topological data analysis

The pipeline of topological data analysis

The pipeline of topological data analysis

The pipeline of topological data analysis

point cloud
\downarrow distance
function
sublevel sets
topological spaces

$\downarrow_{\text {homology }}$	
vector spaces	$M: \mathbf{R} \rightarrow \mathbf{V e c t}$
$\downarrow_{\text {barcode }}$	$\downarrow B(M)$
intervals	\downarrow

The pipeline of topological data analysis

point cloud
\downarrow distance
function
sublevel sets
topological spaces

$\downarrow_{\text {homology }}$	
vector spaces	$M: \mathbf{R} \rightarrow \mathbf{V e c t}$
$\downarrow_{\text {barcode }}$	\downarrow^{\downarrow}
intervals	$\mathbf{R} \rightarrow \mathbf{M c h}$

The pipeline of topological data analysis

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
If two functions $f, g: K \rightarrow \mathbb{R}$ have distance $\|f-g\|_{\infty} \leq \delta$ then there exists a δ-matching of their barcodes.

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) If two functions $f, g: K \rightarrow \mathbb{R}$ have distance $\|f-g\|_{\infty} \leq \delta$ then there exists a δ-matching of their barcodes.

- matching $A \rightarrow B$: bijection of subsets $A^{\prime} \subseteq A, B^{\prime} \subseteq B$

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) If two functions $f, g: K \rightarrow \mathbb{R}$ have distance $\|f-g\|_{\infty} \leq \delta$ then there exists a δ-matching of their barcodes.

- matching $A \rightarrow B$: bijection of subsets $A^{\prime} \subseteq A, B^{\prime} \subseteq B$
- δ-matching of barcodes:

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) If two functions $f, g: K \rightarrow \mathbb{R}$ have distance $\|f-g\|_{\infty} \leq \delta$ then there exists a δ-matching of their barcodes.

- matching $A \rightarrow B$: bijection of subsets $A^{\prime} \subseteq A, B^{\prime} \subseteq B$
- δ-matching of barcodes:
- matched intervals have endpoints within distance $\leq \delta$

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
If two functions $f, g: K \rightarrow \mathbb{R}$ have distance $\|f-g\|_{\infty} \leq \delta$ then there exists a δ-matching of their barcodes.

- matching $A \rightarrow B$: bijection of subsets $A^{\prime} \subseteq A, B^{\prime} \subseteq B$
- δ-matching of barcodes:
- matched intervals have endpoints within distance $\leq \delta$
- unmatched intervals have length $\leq 2 \delta$

Stability for functions in the big picture

Interleavings of sublevel sets

Let

- $F_{t}=f^{-1}(-\infty, t]$,
- $G_{t}=g^{-1}(-\infty, t]$.

Interleavings of sublevel sets

Let

- $F_{t}=f^{-1}(-\infty, t]$,
- $G_{t}=g^{-1}(-\infty, t]$.

If $\|f-g\|_{\infty} \leq \delta$ then $F_{t} \subseteq G_{t+\delta}$ and $G_{t} \subseteq F_{t+\delta}$.

Interleavings of sublevel sets

Let

- $F_{t}=f^{-1}(-\infty, t]$,
- $G_{t}=g^{-1}(-\infty, t]$.

If $\|f-g\|_{\infty} \leq \delta$ then $F_{t} \subseteq G_{t+\delta}$ and $G_{t} \subseteq F_{t+\delta}$.
So the sublevel sets are δ-interleaved:

Interleavings of sublevel sets

Let

- $F_{t}=f^{-1}(-\infty, t]$,
- $G_{t}=g^{-1}(-\infty, t]$.

If $\|f-g\|_{\infty} \leq \delta$ then $F_{t} \subseteq G_{t+\delta}$ and $G_{t} \subseteq F_{t+\delta}$.
So the sublevel sets are δ-interleaved:

Homology is a functor: homology groups are interleaved too.

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

- a vector space M_{t} for each $t \in \mathbb{R}$

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

- a vector space M_{t} for each $t \in \mathbb{R}$ (in this talk: $\left.\operatorname{dim} M_{t}<\infty\right)$

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

- a vector space M_{t} for each $t \in \mathbb{R}$ (in this talk: $\operatorname{dim} M_{t}<\infty$)
- a linear $\operatorname{map} M_{s} \rightarrow M_{t}$ for each $s \leq t$ (transition maps)

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

- a vector space M_{t} for each $t \in \mathbb{R}$ (in this talk: $\operatorname{dim} M_{t}<\infty$)
- a linear map $M_{s} \rightarrow M_{t}$ for each $s \leq t$ (transition maps)
- respecting identity: $\left(M_{t} \rightarrow M_{t}\right)=\operatorname{id}_{M_{t}}$ and composition: $\left(M_{s} \rightarrow M_{t}\right) \circ\left(M_{r} \rightarrow M_{s}\right)=\left(M_{r} \rightarrow M_{t}\right)$

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

- a vector space M_{t} for each $t \in \mathbb{R}$ (in this talk: $\left.\operatorname{dim} M_{t}<\infty\right)$
- a linear map $M_{s} \rightarrow M_{t}$ for each $s \leq t$ (transition maps)
- respecting identity: $\left(M_{t} \rightarrow M_{t}\right)=\operatorname{id}_{M_{t}}$ and composition: $\left(M_{s} \rightarrow M_{t}\right) \circ\left(M_{r} \rightarrow M_{s}\right)=\left(M_{r} \rightarrow M_{t}\right)$

A morphism $f: M \rightarrow N$ is a natural transformation:

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

- a vector space M_{t} for each $t \in \mathbb{R}$ (in this talk: $\left.\operatorname{dim} M_{t}<\infty\right)$
- a linear map $M_{s} \rightarrow M_{t}$ for each $s \leq t$ (transition maps)
- respecting identity: $\left(M_{t} \rightarrow M_{t}\right)=\operatorname{id}_{M_{t}}$ and composition: $\left(M_{s} \rightarrow M_{t}\right) \circ\left(M_{r} \rightarrow M_{s}\right)=\left(M_{r} \rightarrow M_{t}\right)$

A morphism $f: M \rightarrow N$ is a natural transformation:

- a linear map $f_{t}: M_{t} \rightarrow N_{t}$ for each $t \in \mathbb{R}$

Persistence modules

A persistence module M is a diagram (functor) $\mathbf{R} \rightarrow$ Vect:

- a vector space M_{t} for each $t \in \mathbb{R}$ (in this talk: $\operatorname{dim} M_{t}<\infty$)
- a linear $\operatorname{map} M_{s} \rightarrow M_{t}$ for each $s \leq t$ (transition maps)
- respecting identity: $\left(M_{t} \rightarrow M_{t}\right)=\operatorname{id}_{M_{t}}$ and composition: $\left(M_{s} \rightarrow M_{t}\right) \circ\left(M_{r} \rightarrow M_{s}\right)=\left(M_{r} \rightarrow M_{t}\right)$

A morphism $f: M \rightarrow N$ is a natural transformation:

- a linear map $f_{t}: M_{t} \rightarrow N_{t}$ for each $t \in \mathbb{R}$
- morphism and transition maps commute:

Interval Persistence Modules

Let \mathbb{K} be a field. For an arbitrary interval $I \subseteq \mathbb{R}$, define the interval persistence module $C(I)$ by

$$
C(I)_{t}= \begin{cases}\mathbb{K} & \text { if } t \in I \\ 0 & \text { otherwise }\end{cases}
$$

Interval Persistence Modules

Let \mathbb{K} be a field. For an arbitrary interval $I \subseteq \mathbb{R}$, define the interval persistence module $C(I)$ by

$$
\begin{aligned}
C(I)_{t} & = \begin{cases}\mathbb{K} & \text { if } t \in I \\
0 & \text { otherwise }\end{cases} \\
C(I)_{s} \rightarrow C(I)_{t} & = \begin{cases}\mathrm{id}_{\mathbb{K}} & \text { if } s, t \in I \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The structure of persistence modules

Theorem (Crawley-Boewey 2012)
Let M be a persistence module with $\operatorname{dim} M_{t}<\infty$ for all t.

The structure of persistence modules

Theorem (Crawley-Boewey 2012)
Let M be a persistence module with $\operatorname{dim} M_{t}<\infty$ for all t. Then M is interval-decomposable:

The structure of persistence modules

Theorem (Crawley-Boewey 2012)
Let M be a persistence module with $\operatorname{dim} M_{t}<\infty$ for all t.
Then M is interval-decomposable:
there exists a unique collection of intervals $B(M)$

The structure of persistence modules

Theorem (Crawley-Boewey 2012)
Let M be a persistence module with $\operatorname{dim} M_{t}<\infty$ for all t.
Then M is interval-decomposable:
there exists a unique collection of intervals $B(M)$ such that

$$
M \cong \bigoplus_{I \in B(M)} C(I)
$$

The structure of persistence modules

Theorem (Crawley-Boewey 2012)

Let M be a persistence module with $\operatorname{dim} M_{t}<\infty$ for all t.
Then M is interval-decomposable:
there exists a unique collection of intervals $B(M)$ such that

$$
M \cong \bigoplus_{I \in B(M)} C(I) .
$$

$B(M)$ is called the barcode of M.

The structure of persistence modules

Theorem (Crawley-Boewey 2012)

Let M be a persistence module with $\operatorname{dim} M_{t}<\infty$ for all t.
Then M is interval-decomposable:
there exists a unique collection of intervals $B(M)$ such that

$$
M \cong \bigoplus_{I \in B(M)} C(I) .
$$

$B(M)$ is called the barcode of M.

- Motivates use of homology with field coefficients

Interleavings of persistence modules

Definition

Two persistence modules M and N are δ-interleaved

Interleavings of persistence modules

Definition

Two persistence modules M and N are δ-interleaved
if there are morphisms

$$
f: M \rightarrow N(\delta), \quad g: N \rightarrow M(\delta)
$$

Interleavings of persistence modules

Definition

Two persistence modules M and N are δ-interleaved
if there are morphisms

$$
f: M \rightarrow N(\delta), \quad g: N \rightarrow M(\delta)
$$

such that this diagrams commutes for all t :

Interleavings of persistence modules

Definition

Two persistence modules M and N are δ-interleaved
if there are morphisms

$$
f: M \rightarrow N(\delta), \quad g: N \rightarrow M(\delta)
$$

such that this diagrams commutes for all t :

- define $M(\delta)$ by $M(\delta)_{t}=M_{t+\delta}$

Interleavings of persistence modules

Definition

Two persistence modules M and N are δ-interleaved
if there are morphisms

$$
f: M \rightarrow N(\delta), \quad g: N \rightarrow M(\delta)
$$

such that this diagrams commutes for all t :

- define $M(\delta)$ by $M(\delta)_{t}=M_{t+\delta}$ (shift barcode to the left by δ)

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012)
If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes.

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012)
If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes.

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012)
If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes.

- converse statement also holds (isometry theorem)

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012)
If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes.

- converse statement also holds (isometry theorem)
- indirect proof, 80 page paper (Chazal et al. 2012)

Our approach

Our proof takes a different approach:

- direct proof (no interpolation, matching immediately from interleaving)

Our approach

Our proof takes a different approach:

- direct proof (no interpolation, matching immediately from interleaving)
- shows how morphism induces a matching

Our approach

Our proof takes a different approach:

- direct proof (no interpolation, matching immediately from interleaving)
- shows how morphism induces a matching
- stability follows from properties of a single morphism, not just from a pair of morphisms

Our approach

Our proof takes a different approach:

- direct proof (no interpolation, matching immediately from interleaving)
- shows how morphism induces a matching
- stability follows from properties of a single morphism, not just from a pair of morphisms
- relies on partial functoriality of the induced matching

The matching category

A matching $\sigma: S \rightarrow T$ is a bijection $S^{\prime} \rightarrow T^{\prime}$, where $S^{\prime} \subseteq S, T^{\prime} \subseteq T$.

The matching category

A matching $\sigma: S \rightarrow T$ is a bijection $S^{\prime} \rightarrow T^{\prime}$, where $S^{\prime} \subseteq S, T^{\prime} \subseteq T$.

Composition of matchings $\sigma: S \rightarrow T$ and $\tau: T \rightarrow U$:

The matching category

A matching $\sigma: S \rightarrow T$ is a bijection $S^{\prime} \rightarrow T^{\prime}$, where $S^{\prime} \subseteq S, T^{\prime} \subseteq T$.

Composition of matchings $\sigma: S \rightarrow T$ and $\tau: T \rightarrow U$:

Matchings form a category Mch

- objects: sets
- morphisms: matchings

Barcodes as matching diagrams

We can regard a barcode B as a functor $\mathbf{R} \rightarrow$ Mch:

Barcodes as matching diagrams

We can regard a barcode B as a functor $\mathbf{R} \rightarrow$ Mch:

- For each real number t, let B_{t} be those intervals of B that contain t, and

Barcodes as matching diagrams

We can regard a barcode B as a functor $\mathbf{R} \rightarrow$ Mch:

- For each real number t, let B_{t} be those intervals of B that contain t, and
- for each $s \leq t$, define the matching $B_{s} \rightarrow B_{t}$ to be the identity on $B_{s} \cap B_{t}$.

Barcode matchings as natural transformations

We can regard certain matchings of barcodes $\sigma: A \rightarrow B$ as natural transformations of functors $\mathbf{R} \rightarrow \mathbf{M c h}$.

- consider restrictions $\sigma_{t}: A_{t} \rightarrow B_{t}$ of σ to $A_{t} \times B_{t}$:

$$
\begin{array}{ccc}
A_{s} & \longrightarrow & A_{t} \\
\sigma_{s} \downarrow \\
& & f^{\sigma_{t}} \\
B_{s} & \longrightarrow B_{t}
\end{array}
$$

Barcode matchings as natural transformations

We can regard certain matchings of barcodes $\sigma: A \rightarrow B$ as natural transformations of functors $\mathbf{R} \rightarrow \mathbf{M c h}$.

- consider restrictions $\sigma_{t}: A_{t} \rightarrow B_{t}$ of σ to $A_{t} \times B_{t}$:

- requirement on the matching σ : if $I \in A$ is matched to $J \in B$, then I overlaps J to the right.

Barcode matchings as interleavings

We can regard a δ-matching of barcodes $\sigma: A \rightarrow B$ as a δ-interleaving of functors $\mathbf{R} \rightarrow \mathbf{M c h}$:

- each matching $A_{t} \rightarrow B_{t+\delta}$ is the restriction of σ

Stability via functoriality?

$$
F_{t} \xrightarrow{y_{G_{t+\delta}} \longrightarrow F_{t+2 \delta}}
$$

Stability via functoriality?

$$
\begin{aligned}
H_{*}\left(F_{t}\right) & H_{*}\left(F_{t+2 \delta}\right) \\
H_{*}\left(G_{t+\delta}\right) & \longrightarrow H_{*}\left(G_{t+3 \delta}\right)
\end{aligned}
$$

Stability via functoriality?

$$
B\left(H_{*}\left(F_{t}\right)\right) \rightarrow B\left(H_{*}\left(F_{t+2 \delta}\right)\right)
$$

Stability via functoriality?

$$
\begin{gathered}
B\left(H_{*}\left(F_{t}\right)\right) \rightarrow B\left(H_{*}\left(F_{t+2 \delta}\right)\right) \\
\searrow \\
\\
B\left(H_{*}\left(G_{t+\delta}\right)\right) \\
\nearrow
\end{gathered}
$$

Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)
There exists no functor Vect ${ }^{\mathrm{R}} \rightarrow$ Mch sending each persistence module to its barcode.

Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)
There exists no functor Vect ${ }^{\mathrm{R}} \rightarrow$ Mch sending each persistence module to its barcode.

Proposition

There exists no functor Vect \rightarrow Mch sending each vector space of dimension d to a set of cardinality d.

Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)

There exists no functor $\operatorname{Vect}^{\mathrm{R}} \rightarrow$ Mch sending each persistence module to its barcode.

Proposition

There exists no functor Vect \rightarrow Mch sending each vector space of dimension d to a set of cardinality d.

- Such a functor would necessarily send a linear map of rank r to a matching of cardinality r.

Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)

There exists no functor Vect ${ }^{\mathrm{R}} \rightarrow$ Mch sending each persistence module to its barcode.

Proposition

There exists no functor Vect \rightarrow Mch sending each vector space of dimension d to a set of cardinality d.

- Such a functor would necessarily send a linear map of rank r to a matching of cardinality r.
- In particular, there is no natural choice of basis for vector spaces

Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)
For a persistence submodule $K \subseteq M$:

- $B(K)$ is obtained from $B(M)$ by moving left endpoints to the right,

Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)

For a persistence submodule $K \subseteq M$:

- $B(K)$ is obtained from $B(M)$ by moving left endpoints to the right,
- $B(M / K)$ is obtained from $B(M)$ by moving right endpoints to the left.

Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)

For a persistence submodule $K \subseteq M$:

- $B(K)$ is obtained from $B(M)$ by moving left endpoints to the right,
- $B(M / K)$ is obtained from $B(M)$ by moving right endpoints to the left.

This yields canonical matchings between the barcodes: match bars with the same right endpoint (resp. left endpoint)

Structure of submodules and quotient modules

Proposition (B, Lesnick 2013)

For a persistence submodule $K \subseteq M$:

- $B(K)$ is obtained from $B(M)$ by moving left endpoints to the right,
- $B(M / K)$ is obtained from $B(M)$ by

This yields canonical matchings between the barcodes:
match bars with the same right endpoint (resp. left endpoint)

- If multiple bars have same endpoint: match in order of decreasing length

Induced matchings

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \rightarrow \operatorname{im} f \hookrightarrow N$

Induced matchings

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \rightarrow \operatorname{im} f \rightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M

Induced matchings

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \rightarrow \operatorname{im} f \rightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- $\operatorname{im} f$ is a submodule of N

Induced matchings

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \rightarrow \operatorname{im} f \rightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- $\operatorname{im} f$ is a submodule of N

- Composing the canonical matchings yields a matching $B(f): B(M) \rightarrow B(N)$ induced by f

Induced matchings

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \rightarrow \operatorname{im} f \rightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- $\operatorname{im} f$ is a submodule of N

- Composing the canonical matchings yields a matching $B(f): B(M) \rightarrow B(N)$ induced by f

This matching is functorial for injections:

Induced matchings

For any morphism $f: M \rightarrow N$ between persistence modules:

- decompose into $M \rightarrow \operatorname{im} f \rightarrow N$
- $\operatorname{im} f \cong M / \operatorname{ker} f$ is a quotient of M
- $\operatorname{im} f$ is a submodule of N

- Composing the canonical matchings yields a matching $B(f): B(M) \rightarrow B(N)$ induced by f

This matching is functorial for injections:

$B(K \rightarrow M)=B(L \hookrightarrow M) \circ B(K \rightarrow L)$
Similar for surjections.

The induced matching theorem

Define M^{ϵ} by shrinking bars of $B(M)$ from the right by ϵ.

The induced matching theorem

Define M^{ϵ} by shrinking bars of $B(M)$ from the right by ϵ.

Lemma

Let $f: M \rightarrow N$ be a morphism such that $\operatorname{ker} f$ is ϵ-trivial (all bars of $B(\operatorname{ker} f)$ are shorter than ϵ).
Then M^{ε} is a quotient module of $\operatorname{im} f$.

The induced matching theorem

Define ${ }^{\top} N$ by shrinking bars of $B(N)$ from the left by ϵ.

Lemma

Let $f: M \rightarrow N$ be a morphism such that coker f is ϵ-trivial (all bars of $B(\operatorname{coker} f)$ are shorter than ϵ).
Then ${ }^{\mathrm{e}} \mathrm{N}$ is a submodule of $\operatorname{im} f$.

The induced matching theorem

The induced matching theorem

The induced matching theorem

The induced matching theorem

Theorem (B, Lesnick 2013)
Let $f: M \rightarrow N$ be a morphism with $\operatorname{ker} f$ and coker f-trivial.

The induced matching theorem

Theorem (B, Lesnick 2013)
Let $f: M \rightarrow N$ be a morphism with $\operatorname{ker} f$ and coker f-trivial. Then each interval of length $\geq \epsilon$ is matched by $B(f)$.

The induced matching theorem

Theorem (B, Lesnick 2013)
Let $f: M \rightarrow N$ be a morphism with $\operatorname{ker} f$ and coker $f \epsilon$-trivial.
Then each interval of length $\geq \epsilon$ is matched by $B(f)$. If $B(f)$ matches $[b, d) \in B(M)$ to $\left[b^{\prime}, d^{\prime}\right) \in B(N)$, then
$b^{\prime} \leq b \leq b^{\prime}+\epsilon$ and $d-\epsilon \leq d^{\prime} \leq d$.

The induced matching theorem

Let $f: M \rightarrow N(\delta)$ be an interleaving morphism.
Then $\operatorname{ker} f$ and coker f are 2δ-trivial.

The induced matching theorem

Let $f: M \rightarrow N(\delta)$ be an interleaving morphism.
Then $\operatorname{ker} f$ and coker f are 2δ-trivial.

Corollary (Algebraic stability via induced matchings)

A δ-interleaving between persistence modules induces
a δ-matching of their persistence barcodes.

Stability via induced matchings

Stability via induced matchings

Stability via induced matchings

Stability via induced matchings

Stability via induced matchings

Stability via induced matchings

Stability via induced matchings

Stability via induced matchings

Thanks for your attention!

