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Context

D-spaces
Directed Homotopy Theory I, Cah. Top. Géom. Diff. Cat., Marco Grandis (2003)

– A Hausdorff space X together with a collection dX of paths on it such that
- any constant path belongs to dX ,
- the collection dX is stable under concatenation, and
- if γ ∈ dX , domγ = [0, r] and θ : [0, r′]→ [0, r] is continuous and increasing, then γ ◦ θ ∈ dX

– The elements of dX are called the d-paths while the collection dX is called a direction on X . The
collection of all directions over X is a complete lattice.

– A d-map from (X, dX ) to (Y, dY ) is a continuous map f : X → Y s.t. f ◦ dX ⊆ dY
– The category of d-spaces is denoted by dTop
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Context

D-spaces
Examples

– Any subspace of Rn with increasing paths.
– The d-complex plane C (i.e. the d-paths are t 7→ ρ(t)eiθ (t) with ρ > 0 and θ, ρ nondecreasing)
– The d-Riemann sphere Σ (i.e. the d-paths are t 7→ ρ(t)eiθ (t) with ρ ∈ R+ ∪ {+∞} and θ, ρ

nondecreasing)
– The d-circle S1 as a d-subspace of C (or Σ).
– The direction of a product of d-spaces is given by paths whose projections are d-paths.
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Context

The fundamental category
of a d-space (X ,dX )

A d-homotopy (resp. anti-d-homotopy) from a dipath γ to a dipath δ is a d-map h of some rectangle
[a, b] × [c, d] (resp. [a, b] × [c, d]op) such that Uh is a homotopy from Uγ to Uδ.

An elementary homotopy is a finite concatenation of d-homotopies and anti-d-homotopies.

Then γ and δ are d-homotopic when there exists an elementary homotopy between γ ◦ θ and δ ◦ θ′ for
some reparametrizations θ : [a, b]→ dom (γ) and θ′ : [a, b]→ dom (δ). We write γ ∼ δ.

The relation ∼ defines a congruence over PX , the path category of X , and the fundamental category of X ,
denoted by −→π1X , is the quotient PX/ ∼. This construction extends to a functor

−→π1 : dTop→ Cat
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Compactifications of d-spaces

Compactification

– A compactification of a topological space X is an embedding k : X ↪→ K such that K is Hausdorff
compact and k(X ) is dense in K .

– Some examples:
- ]0, 1[n↪→ [0, 1]n and ]0, 1[n↪→ Sn+1

- The Stone-Čech compactification for Tychonoff spaces given by β, the left adjoint to
CHaus ↪→ Top (e.g. βR has 22

ℵ0 elements).
- The Alexandroff compactification for locally compact Hausdorff spaces adds one point∞ and

its neighborhoods are the complement of the compact subspaces (e.g. Rn ∪ {∞} � Sn+1).
- The Freudenthal compactification for σ-locally compact, locally connected, Hausdorff spaces

with finitely many connected components, which adds a new point for each end of the space
(e.g. R ∪ {ends} � R ∪ {−∞, +∞} � [0, 1] and Rn ∪ {ends} � Sn+1).
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Compactifications of d-spaces

Compactifying d-spaces
A problem

Suppose X and K are d-spaces such that
– k : UX ↪→ UK is a compactification
– The direction dK of K is the least one that makes the preceding inclusion a d-map

(i.e. that contains k ◦ dX )
Problem: No path starting or ending at a point of K \ X is a d-path (e.g. ]0, 1[↪→ [0, 1]).
Consequence: −→π1K � −→π1X t −→π1 (K \ X ) the second one being discrete.
A solution: A d-space is said to be complete when

– for all d-maps δ : R→ X , if both following limits exist then δ extends to a d-map
δ : R ∪ {-∞, +∞} → X .

lim
t→−∞

δ (t) and lim
t→+∞

δ (t)

dTopc ⊆ dTop the full subcategory whose objects are complete.
A compactification of a complete d-space X is a d-space K s.t. UK is compactification of UX and dK is the
least complete direction on UK that contains dX .
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Compactifications of d-spaces

Examples
of d-compactifications

– (R × S1) ∪ {ends} � the d-Riemann sphere � C ∪ {∞}

– (R × S1) ∪ {∞} is the d-Riemann sphere with north and south poles identified ... make a picture !
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Directions from vector fields

Direction
from a single vector field

Given a vector field f over a manifoldM and a point x ∈ M, there is a unique maximal integral curve γ that
goes through x at time 0 i.e.

γ(0) = x and ∀t ∈ dom (γ),
dγ
dt

(t) = f (γ(t))

In particular the traces of the maximal integral curves form a partition ofM.

Then consider the direction dM onM generated by the proper integral curves

{
δ �� δ = γ |[a,b] for some maximal intergal curve γ and some compact interval [a, b] ⊆ dom (γ)

}

Then −→π1 (M, dM) is isomorphic with a disjoint union of copies of {0}, (R, 6) and −→π1S1.
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Directions from vector fields

Direction
from several vector fields

Given an n-uple of vector fields f1, . . . , fk over a manifoldM, consider for all points x ∈ M, the set

Fx :=
{ k∑

i=1
λi · fi (x) �� λi > 0 for i = 1, . . . , k

}

as the forward cone ofM at x.

A curve γ is said to be forward (with respect to f1, . . . , fk ) when its derivative at time t belongs to Fγ (t) for
all t ∈ domγ:

∂γ

∂t
(t) ∈ Fγ (t)

The d-space generated by the vector fields f1, . . . , fk on the manifoldM is the least direction onM that
contains all the forward curves, it is denoted by dMf with f being understood as the set {f1, . . . , fk }.

Example: Rn with the constant vector fields fk (x) = (. . . , 0, 1, 0, . . .)

E. Haucourt (École Polytechnique) Compactifications of d-spaces and vector fields 9 / 16



Directions from vector fields

Direction
from several vector fields

Given an n-uple of vector fields f1, . . . , fk over a manifoldM, consider for all points x ∈ M, the set

Fx :=
{ k∑

i=1
λi · fi (x) �� λi > 0 for i = 1, . . . , k

}

as the forward cone ofM at x.

A curve γ is said to be forward (with respect to f1, . . . , fk ) when its derivative at time t belongs to Fγ (t) for
all t ∈ domγ:

∂γ

∂t
(t) ∈ Fγ (t)

The d-space generated by the vector fields f1, . . . , fk on the manifoldM is the least direction onM that
contains all the forward curves, it is denoted by dMf with f being understood as the set {f1, . . . , fk }.

Example: Rn with the constant vector fields fk (x) = (. . . , 0, 1, 0, . . .)

E. Haucourt (École Polytechnique) Compactifications of d-spaces and vector fields 9 / 16



Directions from vector fields

Direction
from several vector fields

Given an n-uple of vector fields f1, . . . , fk over a manifoldM, consider for all points x ∈ M, the set

Fx :=
{ k∑

i=1
λi · fi (x) �� λi > 0 for i = 1, . . . , k

}

as the forward cone ofM at x.

A curve γ is said to be forward (with respect to f1, . . . , fk ) when its derivative at time t belongs to Fγ (t) for
all t ∈ domγ:

∂γ

∂t
(t) ∈ Fγ (t)

The d-space generated by the vector fields f1, . . . , fk on the manifoldM is the least direction onM that
contains all the forward curves, it is denoted by dMf with f being understood as the set {f1, . . . , fk }.

Example: Rn with the constant vector fields fk (x) = (. . . , 0, 1, 0, . . .)

E. Haucourt (École Polytechnique) Compactifications of d-spaces and vector fields 9 / 16



Directions from vector fields

Direction
from several vector fields

Given an n-uple of vector fields f1, . . . , fk over a manifoldM, consider for all points x ∈ M, the set

Fx :=
{ k∑

i=1
λi · fi (x) �� λi > 0 for i = 1, . . . , k

}

as the forward cone ofM at x.

A curve γ is said to be forward (with respect to f1, . . . , fk ) when its derivative at time t belongs to Fγ (t) for
all t ∈ domγ:

∂γ

∂t
(t) ∈ Fγ (t)

The d-space generated by the vector fields f1, . . . , fk on the manifoldM is the least direction onM that
contains all the forward curves, it is denoted by dMf with f being understood as the set {f1, . . . , fk }.

Example: Rn with the constant vector fields fk (x) = (. . . , 0, 1, 0, . . .)

E. Haucourt (École Polytechnique) Compactifications of d-spaces and vector fields 9 / 16



Directions from vector fields

Direction
from several vector fields

Given an n-uple of vector fields f1, . . . , fk over a manifoldM, consider for all points x ∈ M, the set

Fx :=
{ k∑

i=1
λi · fi (x) �� λi > 0 for i = 1, . . . , k

}

as the forward cone ofM at x.

A curve γ is said to be forward (with respect to f1, . . . , fk ) when its derivative at time t belongs to Fγ (t) for
all t ∈ domγ:

∂γ

∂t
(t) ∈ Fγ (t)

The d-space generated by the vector fields f1, . . . , fk on the manifoldM is the least direction onM that
contains all the forward curves, it is denoted by dMf with f being understood as the set {f1, . . . , fk }.

Example: Rn with the constant vector fields fk (x) = (. . . , 0, 1, 0, . . .)

E. Haucourt (École Polytechnique) Compactifications of d-spaces and vector fields 9 / 16



Directions from vector fields

Singular points are disconnected

Problem: If f1 (x) = · · · = fn (x) = 0 at some point x, then x is isolated in −→π1 (M, dM).

Examples:
– the vector fields f (t) = 1 and g(t) = t induce the d-spaces dRf and dRg and −→π1 (dRf ) � (R, 6) and
−→π1 (dRg) � (R- \ {0}, 6) t {0} t (R+ \ {0}, 6)

– if Σ is equipped with the vector fields f1 (z) = z and f2 (z) = z · e
iπ
2 then

−→π1C �
(
−→π1S1 × (R, 6)

)
t {0} t {∞}

As before we consider the complete direction generated by the forward curves.
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Directions from vector fields

Direction from an n-uple of vector fields
vs n-join of the directions for each vector field

The collection of (complete) directions form a complete lattice and one easily sees that

dMf1 ∨ · · · ∨ dMfn ⊆ dMf

problem: The example of Rn with the constant vector fields fk (x) = (. . . , 0, 1, 0, . . .) proves that the
converse inclusion does not hold.

One can fix it by considering the d-spaces X such that for all paths γ,
if for all open subsets U, all [a, b] ⊆ γ−1 (U) there exists a d-path δ from γ(a) to γ(b) such that img(δ) ⊆ U,
then γ is a d-path.
Such a d-space is said to be filled.

Conjecture: If dMf is defined as the least complete filled d-space containing the forward curves, then

dMf1 ∨ · · · ∨ dMfn = dMf
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Parallelizable manifolds

Pospace atlases
Fajstrup, Goubault, and Raußen (1998)

A pospace is a topological space X together with a closed parital order on it (Nachbin (1948)).
The underlying space UX of a pospace X is Hausdorff.

A pospace atlas on a Hausdorff space X is a family U of pospace such that:
– the collection {UW | W ∈ U } is an open covering of UX , and
– for all W0, W1 ∈ U and all x ∈ W0 ∩W1, there exists W2 ∈ U such that x ∈ W2 ⊆ W0 ∩W1 and

vW0 |UW2
= vW2 = vW1 |UW2

The pospace atlases U and U ′ are equivalent when their union is still a pospace atlas.

A local pospace is an equivalence class of pospace atlases.
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Parallelizable manifolds

Local pospaces
Fajstrup, Goubault, and Raußen (1998)

Every equivalence class has a greatest element (namely the greatest pospace atlas).

A pospace atlas morphism from U to U ′ is a mapping f s.t. for all x and all W ′ ∈ U ′ containing f (x) there
exists W ∈ U containing x s.t. f (W ) ⊆ W ′.

If U0 ∼ U1 and U ′0 ∼ U
′
1 and f is a pospace atlas morphism from U0 to U ′0, then it is also a pospace

atlas morphism from U1 to U ′1.

The category of local pospaces is denoted by LpoTop.

There is an inclusion LpoTop ↪→ dTopcf in the category of complete filled d-spaces.
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Parallelizable manifolds

Fundamental category of local pospaces
Let X be a local pospace

– A local pospace has no vortex (i.e. each point has a neighborhood without d-loop)
– Given a d-loop α at x, α is d-homotopic with the constant path x iff α is the constant path x.
– Conjecture: Given a nonconstant d-loop α ∈ −→π1X (x, x), one has {αn | n ∈ N} � (N, +, 0)
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Parallelizable manifolds

Parallelizable manifolds

A parallelization of a manifoldM of dimension n is an n-uple of vector fields (f1, . . . , fn) s.t. for all x ∈ M,
(f1 (x), . . . , fn (x)) is a vector basis of the tangent space ofM at x namely TxM.

Conjecture: There exits an open covering U ofM such that
– for all W ∈ U , the relation x vW y defined by the existence of a forward curve δ from x to y with

img(δ) ⊆ W defines a pospace on W
– These pospaces induce a local pospace

This local pospace induces dMf .

A manifoldM is said to be parallelizable when it admits a parallelization.
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Parallelizable manifolds

Parallelizable manifolds

All the linear groups of the tangent spaces TxM, for x ∈ M, are gathered in a single manifold called the
frame manifold GLM.

Then GLM "transitively acts" on the parallelizations ofM in the following sense: if g is a section of GLM
then g · (f1, . . . , fn) is another parallelization ofM and all of them can be obtained that way.

Conjecture: Up to isomorphism, the local pospace structure induced by a parallelization of a manifoldM
(and therefore −→π1Mf ), does not depend on the specific parallelization.
In that case we can define "the" fundamental category of a parallelizable manifold.

Example: Every Lie group is parallelizable.
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