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n-cells

The n-cell �n is the poset

�n = P(n),

the set of subsets of the totally ordered set n = {1, 2, , . . . , n}.

There is a unique poset isomorphism

P(n)
∼=−→ 1×n,

where 1 is the 2-element poset 0 ≤ 1. Here,

A 7→ (ε1, . . . , εn)

where εi = 1 if and only if i ∈ A. We use the ordering of n.
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The box category

Suppose that A ⊂ B ⊂ n. The interval [A,B] ⊂ P(n) is defined by

[A,B] = {C | A ⊂ C ⊂ B}.

There are canonical poset maps

P(m) ∼= P(B − A)
∼=−→ [A,B] ⊂ P(n).

where m = |B − A|. These compositions are the coface maps
d : �m ⊂ �n.

There are also co-degeneracy map s : �n → �r , which are again
determined by subsets A ⊂ n, where |A| = r , and such that
s(B) = B ∩ A.

The cofaces and codegeneracies are the generators for the box
category � consisting of the posets �n, n ≥ 0, subject to the
standard cosimplicial identities.
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Cubical sets and complexes

A cubical set is a functor X : �op → Sets.

Typically �n 7→ Xn, and Xn is the set of n-cells of X .

The collection of all such functors and natural transformations
between them is the category cSet of cubical sets.

1) The standard n-cell �n is the functor hom( ,�n) represented
by �n = P(n).

2) A finite cubical complex is a subcomplex K ⊂ �n. It is
completely determined by cells

�r ⊂ K ⊂ �n

where the composites are cofaces. A cell is maximal if r is
maximal wrt these constraints.

Finite cubical complexes are higher dimensional automata.
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Triangulation

There is a triangulation functor

| · | : cSet→ sSet

|�n| := B(1×n) ∼= (∆1)×n.

B(C ) is the nerve of a category C : B(C )n is the set

a0 → a1 → · · · → an

of strings of arrows of length n in C .

Example: |�2| : (0, 1) // (1, 1)

(0, 0)

OO

//

;;

(1, 0)

OO

The triangulation functor has a right adjoint,

S : sSet→ cSet

called the singular functor.
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The path category

The nerve functor B : cat→ sSet has a left adjoint

P : sSet→ cat,

called the path category functor.

The path category P(X ) for X is the category generated by the
1-skeleton sk1(X ) (a graph), subject to some relations:

1) s0(x) is the identity morphism for all vertices x ∈ X0,

2) the triangle

σ0
d2(σ) //

d1(σ) !!

σ1

d0(σ)

��
σ2

commutes for all 2-simplices σ : ∆2 → X of X .
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Execution paths

Suppose that K ⊂ �n is an HDA, with states (vertices) x , y . Then

P(|K |)(x , y)

is the set of execution paths from x to y . We want to compute
these.

P(K ) := P(|K |) is the path category of the complex K .

It can be defined directly for K : it is generated by the graph
sk1(K ), subject to the relations given by s0(x) = 1x for vertices x ,
and by forcing the commutativity of

σ∅ //

�� ##

σ{1}

��
σ{2} // σ{1,2}

for each 2-cell σ : �2 ⊂ K of K .
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Preliminary facts

Lemma 1.

1) sk2(X ) ⊂ X induces P(sk2(X )) ∼= P(X ).

2) ε : P(BC )→ C is an isomorphism for all small categories C .
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The path 2-category

L = finite simplicial complex. “P(L) is the path component
category of a 2-category P2(L).”

P2(L) consists of categories P2(L)(x , y), one for each pair of
vertices x , y ∈ L.
The objects (1-cells) are paths of non-deg. 1-simplices

x = x0 → x1 → · · · → xn = y

of L. The morphisms of P2(L)(x , y) are composites of the pictures

x0 // . . . // xi−1

!!

//

��

xi+1
// . . . // xn

xi

==

where the displayed triangle bounds a non-deg. 2-simplex.
Compositions are functors

P2(L)(x , y)× P2(L)(y , z)→ P2(L)(x , z)

defined by concatenation of paths.
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Theorem 2.

P2(L) is a “resolution” of the path category P(L) in the sense that
there is an isomorphism

π0P2(L) ∼= P(L).

π0P2(L) is the path component category of P2(L). Its objects
are the vertices of L, and

π0P2(L)(x , y) = π0(BP2(L)(x , y)).
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The algorithm

Here’s an algorithm for computing P(L) for L ⊂ ∆N , in outline:

1) Find the 2-skeleton sk2(L) of L (vertices, 1-simplices,
2-simplices).

2) Find all paths (strings of 1-simplices)

ω : v0
σ1−→ v1

σ2−→ . . .
σk−→ vk

in L.

3) Find all morphisms in the category P2(L)(v ,w) for all vertices
v < w in L (ordering in ∆N).

4) Find the path components of all P2(L)(v ,w), by
approximating path components by full connected
subcategories, starting with a fixed path ω.
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An example

Let L ⊂ ∆40 be the subcomplex

1

��

3

��

39

  
0

@@

// 2

@@

// 4 . . . 38

>>

// 40

This is 20 copies of the complex ∂∆2 glued together. There there
are 220 morphisms in P(L)(0, 40).

Moral: The size of the path category P(L) can grow exponentially
with L.

The code for this example runs on a desktop with at least 5 GB of
memory. The listing of paths consumes 2 GB of disk.
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Complexity reduction

Suppose that L ⊂ K ⊂ ∆N defines L as a subcomplex of K .

L is a full subcomplex of K if the following hold:

1) L is path-closed in K , in the sense that, if there is a path

v = v0 → v1 → · · · → vn = v ′

in K between vertices v , v ′ of L, then all vi ∈ L,

2) if all the vertices of a simplex σ ∈ K are in L then the simplex
σ is in L.

Lemma 3.

Suppose that L is a full subcomplex of K . Then the functor
P(L)→ P(K ) is fully faithful.
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Examples

∂∆2
d0

⊂ Λ3
0 and ∂∆2

d3

⊂ Λ3
3 are full subcomplexes.

Suppose that i ≤ j in N. K [i , j ] is the subcomplex of K such
that σ ∈ K [i , j ] if and only if all vertices of σ are in the
interval [i , j ] of vertices v such that i ≤ v ≤ j . K [i , j ] is a full
subcomplex of K .

Suppose that v ≤ w are vertices of K . Let K (v ,w) be the
subcomplex of K consisting of simplices whose vertices appear
on a path from v to w . K (v ,w) is a full subcomplex of K .

One can construct K (v ,w) from K [v ,w ] by deleting sources and
sinks.

Say that a vertex v is a source of K if there are no 1-simplices
u → v in K . The vertex v is a sink if there are no 1-simplices
v → w in K .
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Corners

Suppose that K ⊂ �n is a cubical complex. Say that a vertex x is
a corner of K if it belongs to only one maximal cell.

Lemma 4 (Misamore).

Suppose that x is a corner of K , and let Kx be the subcomplex of
cells which do not have x as a vertex. Then the induced functor

P(Kx)→ P(K )

is fully faithful.

There are two steps in the proof [3]:

Suppose that x is a vertex of the cell �r and let �r
x ⊂ �r be

the subcomplex of cells which do not have x as a vertex.
Then P(�r

x)→ P(�n) is fully faithful.
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Suppose that x is a corner of K , and that x is a vertex of a
maximal cell �r ⊂ K . Let Kx ⊂ K be the subcomplex whose
cells do not have x as a vertex. Then the diagram

P(�r
x) //

��

P(Kx)

��
P(�r ) // P(K )

is a pushout, so that P(Kx)→ P(K ) is fully faithful.

This uses an assertion of Fritsch and Latch [1] that fully faithful
functors are closed under pushout.
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Examples

1) The cubical horn (0, 1) // (1, 1)

(0, 0)

OO

(1, 0)

OO
has a sink but no corners.

2) The Swiss flag • //

�#
• // • //

�#
•

• //

OO

∗
OO

∗
OO

// •
OO

• //

OO

�#
∗ ∗ //

�#
•
OO

• //

OO

• //

OO

• //

OO

•
OO

has 6 corners, 1 sink, 1 source.
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Going beyond

The algorithms that we have depend on having an entire HDA in
storage, in a computer system that is powerful enough to analyze
it.

We want local to global methods to study large (aka. “infinite”)
models with patching techniques.
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The time variable

Suppose that K ⊂ �N . There is a poset map

P(N)
t−→ Z≥0 ⊂ Z,

with F 7→ |F |. There are induced simplicial set maps

|K | ⊂ |�N | = BP(N)
t−→ BZ≥0 ⊂ BZ.

In a standard HDA, the state represented by F is reached only
after |F | clock ticks. We thus have a fibring of the triangulated
HDA over a time poset.

The pre-images of the intervals [i , j ] ⊂ Z≥0 give a coarse sense of
locality for |K |.

More generally, one might ask for a lattice homomorphism

φ : P(N)→ Q

with φ is determined by the maps φ(∅)→ φ({i}) for all i ∈ N.

Rick Jardine Path categories and algorithms



Smallest elements and intervals

Suppose that A,B are subsets of n. Say that A consists of
smallest elements outside B if

1) A ∩ B = ∅, and

2) if i ≤ j for some j ∈ A and i /∈ B, then i ∈ A.

Example: A = totally ordered finite set, and [C ,D] ⊂ P(A) an
interval, with ψ : P(D − C )→ P(A) st E 7→ C t E .
ψ is completely determined by a string of subsets

C = A0 ⊂ A1 ⊂ · · · ⊂ Ar−1 ⊂ Ar = D,

Ai+1 = Ai t {xi+1},

and xi+1 is the smallest element of D which is outside Ai . Then

D ∼= C t {x1, . . . , xr}

via a bijection which is ordered on each summand (ie. a shuffle).
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Refinements

B = totally ordered finite set. A refinement R in B is a string

B0 ⊂ B1 ⊂ · · · ⊂ Br

of subsets of B such that Bi+1 − Bi consists of smallest elements
of B which are outside Bi for 0 ≤ i ≤ r − 1.

Every refinement determines a poset morphism

φR : P(r)→ P(B)

such that φR(∅) = B0 and φR({i}) = B0 t (Bi+1 − Bi ), and more
generally

φR(F ) = B0 t (tj∈F φ({j}))

for all subsets F ⊂ r . In particular, φ(r) = Br .

The map φR is a refinement of �r = P(r) in a bigger box P(B).
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Properties

1) Refinements are closed under composition (successive cofaces in
a nerve).

2) Every refinement P(r)→ P(B) is a refinement of a unique face
(interval) of P(B).

A refinement is a generalized time variable.

3) Every refinement R in B and every cell d : P(k)→ P(r)
together determine a unique commutative diagram

P(k)
φR //

d ��

P(k ′)

d ′��
P(r)

φR
// P(B)

where d and d ′ are cells.

4) Every subcomplex K ⊂ �r has a refinement KR ⊂ �|B|.
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There is a canonical diagram of simplicial set maps

|K | //

��

|KR |
��

BP(r) // BP(B)

%%
BZ≥0

Starting knowledge of a system could be an initial HDA K0 ⊂ �n0 ,
but there could be successive refinements

|K0| //

��

|K1| //

��

. . .

BP(n0) // BP(n1) // . . .
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Examples

1) ∅ ⊂ {1, 2} is a refinement of 1 in 2. The corr. poset map
1→ 1×2 is the diagonal 1-simplex

(0, 0)→ (1, 1).

2) The string ∅ ⊂ {1, 2} ⊂ {1, 2, 3, 4} is a refinement of 2 in 4.
The corresponding poset map 1×2 → 1×4 is defined by the picture

(0, 0, 0, 0) //

��

(1, 1, 0, 0)

��
(0, 0, 1, 1) // (1, 1, 1, 1)

This picture also defines the subdivision sd(�2) of �2 in �4.
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