Path categories and algorithms

Rick Jardine

GETCO 2015

April 8, 2015

Rick Jardine Path categories and algorithms

< ∃ →

A D

 The *n*-**cell** \square^n is the poset

$$\Box^n = \mathcal{P}(\underline{n}),$$

the set of subsets of the totally ordered set $\underline{n} = \{1, 2, ..., n\}$. There is a unique poset isomorphism

$$\mathcal{P}(\underline{n}) \xrightarrow{\cong} \mathbf{1}^{\times n},$$

where ${\bf 1}$ is the 2-element poset 0 \leq 1. Here,

$$A\mapsto (\epsilon_1,\ldots,\epsilon_n)$$

where $\epsilon_i = 1$ if and only if $i \in A$. We use the ordering of \underline{n} .

The box category

Suppose that $A \subset B \subset \underline{n}$. The interval $[A, B] \subset \mathcal{P}(\underline{n})$ is defined by

$$[A,B] = \{C \mid A \subset C \subset B\}.$$

There are canonical poset maps

$$\mathcal{P}(\underline{m}) \cong \mathcal{P}(B-A) \xrightarrow{\cong} [A,B] \subset \mathcal{P}(\underline{n}).$$

where m = |B - A|. These compositions are the coface maps $d : \Box^m \subset \Box^n$.

There are also co-degeneracy map $s : \Box^n \to \Box^r$, which are again determined by subsets $A \subset \underline{n}$, where |A| = r, and such that $s(B) = B \cap A$.

The cofaces and codegeneracies are the generators for the **box** category \Box consisting of the posets \Box^n , $n \ge 0$, subject to the standard cosimplicial identities.

A **cubical set** is a functor $X : \Box^{op} \to Sets$.

Typically $\Box^n \mapsto X_n$, and X_n is the set of *n*-cells of *X*.

The collection of all such functors and natural transformations between them is the category *c***Set** of cubical sets.

1) The **standard** *n*-cell \Box^n is the functor hom $(, \Box^n)$ represented by $\Box^n = \mathcal{P}(\underline{n})$.

2) A finite cubical complex is a subcomplex $K \subset \Box^n$. It is completely determined by cells

 $\Box^r \subset K \subset \Box^n$

where the composites are cofaces. A cell is **maximal** if r is maximal wrt these constraints.

Finite cubical complexes are higher dimensional automata.

There is a triangulation functor

 $| \cdot | : c\mathbf{Set} \to s\mathbf{Set}$ $|\Box^n| := B(\mathbf{1}^{\times n}) \cong (\Delta^1)^{\times n}.$ B(C) is the **nerve** of a category $C: B(C)_n$ is the set

 $a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_n$

of strings of arrows of length n in C.

Example:
$$|\Box^2|$$
: $(0,1) \longrightarrow (1,1)$
 $\uparrow \qquad \uparrow$
 $(0,0) \longrightarrow (1,0)$

The triangulation functor has a right adjoint,

$$S: s\mathbf{Set} \to c\mathbf{Set}$$

called the singular functor.

(4) E > (4) E >

The nerve functor $B : \mathbf{cat} \to s\mathbf{Set}$ has a left adjoint

P: s**Set** \rightarrow **cat**,

called the path category functor.

The path category P(X) for X is the category generated by the 1-skeleton $sk_1(X)$ (a graph), subject to some relations:

1) $s_0(x)$ is the identity morphism for all vertices $x \in X_0$,

2) the triangle

commutes for all 2-simplices $\sigma: \Delta^2 \to X$ of X.

Suppose that $K \subset \Box^n$ is an HDA, with states (vertices) x, y. Then P(|K|)(x, y)

is the set of execution paths from x to y. We want to compute these.

P(K) := P(|K|) is the path category of the complex K.

It can be defined directly for K: it is generated by the graph $sk_1(K)$, subject to the relations given by $s_0(x) = 1_x$ for vertices x, and by forcing the commutativity of

for each 2-cell $\sigma : \Box^2 \subset K$ of K.

Lemma 1.

1) $\operatorname{sk}_2(X) \subset X$ induces $P(\operatorname{sk}_2(X)) \cong P(X)$.

2) $\epsilon: P(BC) \rightarrow C$ is an isomorphism for all small categories C.

The path 2-category

L = finite simplicial complex. "P(L) is the path component category of a 2-category $P_2(L)$."

 $P_2(L)$ consists of categories $P_2(L)(x, y)$, one for each pair of vertices $x, y \in L$.

The objects (1-cells) are paths of non-deg. 1-simplices

$$x = x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_n = y$$

of L. The morphisms of $P_2(L)(x, y)$ are composites of the pictures

where the displayed triangle bounds a non-deg. 2-simplex. Compositions are functors

$$P_2(L)(x,y) \times P_2(L)(y,z) \rightarrow P_2(L)(x,z)$$

defined by concatenation of paths.

Theorem 2.

 $P_2(L)$ is a "resolution" of the path category P(L) in the sense that there is an isomorphism

 $\pi_0 P_2(L) \cong P(L).$

 $\pi_0 P_2(L)$ is the **path component category** of $P_2(L)$. Its objects are the vertices of *L*, and

$$\pi_0 P_2(L)(x, y) = \pi_0(BP_2(L)(x, y)).$$

The algorithm

Here's an algorithm for computing P(L) for $L \subset \Delta^N$, in outline:

- Find the 2-skeleton sk₂(L) of L (vertices, 1-simplices, 2-simplices).
- 2) Find all paths (strings of 1-simplices)

$$\omega: v_0 \xrightarrow{\sigma_1} v_1 \xrightarrow{\sigma_2} \ldots \xrightarrow{\sigma_k} v_k$$

in *L*.

- 3) Find all morphisms in the category $P_2(L)(v, w)$ for all vertices v < w in L (ordering in Δ^N).
- Find the path components of all P₂(L)(v, w), by approximating path components by full connected subcategories, starting with a fixed path ω.

Let $L \subset \Delta^{40}$ be the subcomplex

This is 20 copies of the complex $\partial \Delta^2$ glued together. There there are 2^{20} morphisms in P(L)(0, 40).

Moral: The size of the path category P(L) can grow exponentially with L.

The code for this example runs on a desktop with at least 5 GB of memory. The listing of paths consumes 2 GB of disk.

Suppose that $L \subset K \subset \Delta^N$ defines L as a subcomplex of K.

L is a **full subcomplex** of *K* if the following hold:

1) L is path-closed in K, in the sense that, if there is a path

$$v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n = v'$$

in K between vertices v, v' of L, then all $v_i \in L$,

2) if all the vertices of a simplex $\sigma \in K$ are in L then the simplex σ is in L.

Lemma 3.

Suppose that L is a full subcomplex of K. Then the functor $P(L) \rightarrow P(K)$ is fully faithful.

Examples

- $\partial \Delta^2 \stackrel{d^0}{\subset} \Lambda^3_0$ and $\partial \Delta^2 \stackrel{d^3}{\subset} \Lambda^3_3$ are full subcomplexes.
- Suppose that i ≤ j in N. K[i, j] is the subcomplex of K such that σ ∈ K[i, j] if and only if all vertices of σ are in the interval [i, j] of vertices v such that i ≤ v ≤ j. K[i, j] is a full subcomplex of K.
- Suppose that v ≤ w are vertices of K. Let K(v, w) be the subcomplex of K consisting of simplices whose vertices appear on a path from v to w. K(v, w) is a full subcomplex of K.

One can construct K(v, w) from K[v, w] by deleting sources and sinks.

Say that a vertex v is a **source** of K if there are no 1-simplices $u \rightarrow v$ in K. The vertex v is a **sink** if there are no 1-simplices $v \rightarrow w$ in K.

Corners

Suppose that $K \subset \Box^n$ is a cubical complex. Say that a vertex x is a **corner** of K if it belongs to only one maximal cell.

Lemma 4 (Misamore).

Suppose that x is a corner of K, and let K_x be the subcomplex of cells which do not have x as a vertex. Then the induced functor

$$P(K_x) \rightarrow P(K)$$

is fully faithful.

There are two steps in the proof [3]:

Suppose that x is a vertex of the cell □^r and let □^r_x ⊂ □^r be the subcomplex of cells which do not have x as a vertex. Then P(□^r_x) → P(□ⁿ) is fully faithful.

Suppose that x is a corner of K, and that x is a vertex of a maximal cell □^r ⊂ K. Let K_x ⊂ K be the subcomplex whose cells do not have x as a vertex. Then the diagram

is a pushout, so that $P(K_x) \rightarrow P(K)$ is fully faithful.

This uses an assertion of Fritsch and Latch [1] that fully faithful functors are closed under pushout.

2) The Swiss flag

has 6 corners, 1 sink, 1 source.

The algorithms that we have depend on having an entire HDA in storage, in a computer system that is powerful enough to analyze it.

We want local to global methods to study large (aka. "infinite") models with patching techniques.

The time variable

Suppose that $K \subset \Box^N$. There is a poset map

$$\mathcal{P}(\underline{N}) \xrightarrow{t} \mathbb{Z}_{\geq 0} \subset \mathbb{Z},$$

with $F \mapsto |F|$. There are induced simplicial set maps

$$|\mathcal{K}| \subset |\Box^{\mathcal{N}}| = B\mathcal{P}(\underline{N}) \xrightarrow{t} B\mathbb{Z}_{\geq 0} \subset B\mathbb{Z}.$$

In a standard HDA, the state represented by F is reached only after |F| clock ticks. We thus have a fibring of the triangulated HDA over a time poset.

The pre-images of the intervals $[i, j] \subset \mathbb{Z}_{\geq 0}$ give a coarse sense of locality for |K|.

More generally, one might ask for a lattice homomorphism

$$\phi: \mathcal{P}(\underline{N}) \to Q$$

with ϕ is determined by the maps $\phi(\emptyset) \to \phi(\{i\})$ for all $i \in \underline{N}$.

Smallest elements and intervals

Suppose that A, B are subsets of \underline{n} . Say that A consists of **smallest elements** outside B if

1)
$$A \cap B = \emptyset$$
, and

2) if $i \leq j$ for some $j \in A$ and $i \notin B$, then $i \in A$.

Example: $A = \text{totally ordered finite set, and } [C, D] \subset \mathcal{P}(A) \text{ an interval, with } \psi : \mathcal{P}(D - C) \rightarrow \mathcal{P}(A) \text{ st } E \mapsto C \sqcup E.$ ψ is completely determined by a string of subsets

$$C = A_0 \subset A_1 \subset \cdots \subset A_{r-1} \subset A_r = D,$$

$$A_{i+1}=A_i\sqcup\{x_{i+1}\},$$

and x_{i+1} is the smallest element of D which is outside A_i . Then

$$D \cong C \sqcup \{x_1, \ldots, x_r\}$$

via a bijection which is ordered on each summand (ie. a shuffle).

B = totally ordered finite set. A **refinement** R in B is a string

$$B_0 \subset B_1 \subset \cdots \subset B_r$$

of subsets of *B* such that $B_{i+1} - B_i$ consists of smallest elements of *B* which are outside B_i for $0 \le i \le r - 1$.

Every refinement determines a poset morphism

$$\phi_R: \mathcal{P}(\underline{r}) \to \mathcal{P}(B)$$

such that $\phi_R(\emptyset) = B_0$ and $\phi_R(\{i\}) = B_0 \sqcup (B_{i+1} - B_i)$, and more generally

$$\phi_R(F) = B_0 \sqcup (\sqcup_{j \in F} \phi(\{j\}))$$

for all subsets $F \subset \underline{r}$. In particular, $\phi(\underline{r}) = B_r$.

The map ϕ_R is a refinement of $\Box^r = \mathcal{P}(\underline{r})$ in a bigger box $\mathcal{P}(B)$.

1) Refinements are closed under composition (successive cofaces in a nerve).

2) Every refinement $\mathcal{P}(\underline{r}) \to \mathcal{P}(B)$ is a refinement of a unique face (interval) of $\mathcal{P}(B)$.

A refinement is a generalized time variable.

3) Every refinement R in B and every cell $d : \mathcal{P}(\underline{k}) \to \mathcal{P}(\underline{r})$ together determine a unique commutative diagram

$$\begin{array}{c} \mathcal{P}(\underline{k}) \xrightarrow{\phi_R} \mathcal{P}(\underline{k}') \\ {}^{d} \downarrow & \downarrow^{d'} \\ \mathcal{P}(\underline{r}) \xrightarrow{\phi_R} \mathcal{P}(B) \end{array}$$

where d and d' are cells.

4) Every subcomplex $K \subset \Box^r$ has a refinement $K_R \subset \Box^{|B|}$.

There is a canonical diagram of simplicial set maps

Starting knowledge of a system could be an initial HDA $K_0 \subset \Box^{n_0}$, but there could be successive refinements

Examples

1) $\emptyset \subset \{1,2\}$ is a refinement of <u>1</u> in <u>2</u>. The corr. poset map $1 \to 1^{\times 2}$ is the diagonal 1-simplex

$$(0,0) \to (1,1).$$

2) The string $\emptyset \subset \{1,2\} \subset \{1,2,3,4\}$ is a refinement of $\underline{2}$ in $\underline{4}$. The corresponding poset map $\mathbf{1}^{\times 2} \to \mathbf{1}^{\times 4}$ is defined by the picture

This picture also defines the subdivision $sd(\square^2)$ of \square^2 in \square^4 .

References

Rudolf Fritsch and Dana May Latch. Homotopy inverses for nerve. Math. Z., 177(2):147–179, 1981.

J. F. Jardine.

Path categories and resolutions.

Homology Homotopy Appl., 12(2):231-244, 2010.

Michael D. Misamore.

Computing path categories of finite directed cubical complexes.

Applicable Algebra in Engineering, Communication and Computing, pages 1–14, 2014.