Reduction of higher-dimensional automata

Thomas Kahl

University of Minho

GETCO 2015 Aalborg, April 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

Higher-dimensional automata [Pratt, van Glabbeek]

A higher-dimensional automaton over a monoid M (M-HDA) is a tuple $\mathcal{A} = (P, I, F, \lambda)$ where

• *P* is a precubical set, i.e., a graded set with *boundary operators*

$$d_i^k: P_n \to P_{n-1} \quad (n > 0, \ k = 0, 1, \ i = 1, \dots, n)$$

satisfying the relations $d_i^k \circ d_j^l = d_{j-1}^l \circ d_i^k$ (k, l = 0, 1, i < j). $I \subseteq P_0$ is a set of *initial states*,

- $F \subseteq P_0$ is a set of *final states*,
- $\lambda: P_1 \to M$ is a map, called the *labeling function*, such that

$$\lambda(d_i^0 x) = \lambda(d_i^1 x)$$

A D F 4 目 F 4 目 F 4 目 9 Q Q

for all $x \in P_2$ and $i \in \{1, 2\}$.

Higher-dimensional automata [Pratt, van Glabbeek]

Figure: Cubes represent independence of actions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Consider the concurrent system where two identical processes P_0 and P_1 modify two shared boolean variables x and y, initially zero, by executing the program given by the following *program graph*:

In the first and third instructions, the assignment action is only executable when the guard condition, indicated before the colon, holds.

A simple concurrent system

Figure: Transition system representing the reachable part of the system

(a)

ъ

A simple concurrent system

Figure: HDA model of the reachable part of the system

(a)

ъ

Paths

Let k and l be integers such that $k \leq l$. The *precubical interval* [k, l] is the precubical set

$$k \xrightarrow{k+1} \cdots \xrightarrow{l-1} \stackrel{l}{\bullet} \xrightarrow{l}$$

A *path of length* k in a precubical set P is a morphism of precubical sets $\omega : [0, k] \to P$.

The set of paths in P is denoted by $P^{\mathbb{I}}$.

Remark

A path of length $k \ge 1$ can be identified with a sequence (x_1, \ldots, x_k) of elements of P_1 such that $d_1^0 x_{j+1} = d_1^1 x_j$ $(1 \le j < k)$.

Labels of paths

The extended labeling function of an an M-HDA $\mathcal{A} = (P, I, F, \lambda)$ is the map

$$\overline{\lambda} \colon P^{\mathbb{I}} \to M$$

defined by

$$\overline{\lambda}(x_1,\ldots,x_k) = \lambda(x_1)\cdots\lambda(x_k).$$

If ω is a path of length 0, then we set

$$\overline{\lambda}(\omega) = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

Two paths ω and ν in a precubical set P are said to be *elementarily dihomotopic* if there exist paths $\alpha, \beta \in P^{\mathbb{I}}$ and an element $z \in P_2$ such that

$$d_1^0 d_1^0 z = \alpha(\text{length}(\alpha)), d_1^1 d_1^1 z = \beta(0), \\ d_1(\omega, \nu) = \{ \alpha \cdot (d_1^0 z, d_2^1 z) \cdot \beta, \alpha \cdot (d_2^0 z, d_1^1 z) \cdot \beta \}.$$

Dihomotopy is the equivalence relation generated by elementary dihomotopy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dihomotopy [Goubault]

Dihomotopic paths

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The trace category of an HDA [Bubenik]

The *fundamental category* (or *path category* [Jardine]) of a precubical set P is the category $\vec{\pi}_1(P)$ whose objects are the vertices of P and whose morphisms are the dihomotopy classes of paths in P.

A vertex v of a precubical set P is said to be *maximal (minimal)* if there is no element $x \in P_1$ such that $d_1^0 x = v$ ($d_1^1 x = v$). The sets of maximal and minimal elements of P are denoted by M(P) and m(P)respectively.

The *trace category* of an *M*-HDA $\mathcal{A} = (P, I, F, \lambda), TC(\mathcal{A})$, is the full subcategory of $\vec{\pi}_1(P)$ generated by $I \cup F \cup m(P) \cup M(P)$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Bad collapse

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Invariance of the trace category under elementary collapses

Let $\mathcal{A} = (P, I, F, \lambda)$ be an *M*-HDA, and let *x* be an *n*-cube with free face $d_i^1 x$. Suppose that *x* is *regular* (or *non-self-linked* [Fajstrup, Raussen, Goubault]), i.e., that the characteristic map

 $x_{\sharp} \colon \llbracket 0,1 \rrbracket^{\otimes n} \to P$

is injective. Consider the precubical subset $Q = P \setminus \{x, d_i^1 x\}$ of P and the *M*-HDA $\mathcal{B} = (Q, I, F, \lambda|_{Q_1})$.

Proposition

If $n \geq 4$, then the inclusion induces an isomorphism $TC(\mathcal{B}) \cong TC(\mathcal{A})$.

Invariance of the trace category under elementary collapses

Theorem

Suppose that n = 3 and that every path from $I \cup F \cup M(P) \cup m(P)$ to $d_1^0 d_1^0 d_i^1 x$ factors up to dihomotopy through the edge leading from $d_1^0 d_1^0 d_1^0 x$ to $d_1^0 d_1^0 d_i^1 x$. Then the inclusion induces an isomorphism $TC(\mathcal{B}) \cong TC(\mathcal{A})$.

Theorem

Suppose that n = 2 and that

- 1 for at least two edges $y \in P_1$, $d_1^0 y = d_1^0 d_i^1 x$;
- 2 every path $\omega \in Q^{\mathbb{I}}$ from $I \cup F \cup M(P) \cup m(P) \cup \{d_1^1 d_1^1 x\}$ to $d_1^0 d_i^1 x$ factors uniquely up to dihomotopy through $d_{3-i}^0 x$.

Then the inclusion induces an isomorphism $TC(\mathcal{B}) \cong TC(\mathcal{A})$.

Two HDAs

Figure: Two HDAs A and B over the free monoid on $\{a, b, c\}$

Tensor product

Given two precubical sets P and Q, the *tensor product* $P \otimes Q$ is the precubical set defined by

$$(P \otimes Q)_n = \prod_{p+q=n} P_p \times Q_q.$$

and

$$d_i^k(x,y) = \begin{cases} (d_i^k x, y), & 1 \le i \le \deg(x), \\ (x, d_{i-\deg(x)}^k y), & \deg(x) + 1 \le i \le \deg(x) + \deg(y). \end{cases}$$

Remark

$$|\llbracket 0, k_1 \rrbracket \otimes \cdots \otimes \llbracket 0, k_n \rrbracket| = [0, k_1] \times \cdots \times [0, k_n].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

Weak morphisms

A weak morphism from a precubical set Q to a precubical set P is a continuous map $f: |Q| \to |P|$ such that the following two conditions hold:

- 1 f sends vertices to vertices;
- 2 for all integers n, k₁,..., k_n ≥ 1 and every morphism of precubical sets ξ: [[0, k₁]] ⊗ ··· ⊗ [[0, k_n]] → Q, there exist integers l₁,..., l_n ≥ 1, a morphism of precubical sets

$$\chi\colon \llbracket 0, l_1 \rrbracket \otimes \cdots \otimes \llbracket 0, l_n \rrbracket \to P,$$

and a homeomorphism

$$\begin{aligned} \phi \colon |\llbracket 0, k_1 \rrbracket \otimes \cdots \otimes \llbracket 0, k_n \rrbracket| &= [0, k_1] \times \cdots \times [0, k_n] \\ \to \quad |\llbracket 0, l_1 \rrbracket \otimes \cdots \otimes \llbracket 0, l_n \rrbracket| &= [0, l_1] \times \cdots \times [0, l_n] \end{aligned}$$

such that $f \circ |\xi| = |\chi| \circ \phi$ and ϕ is a dihomeomorphism, i.e., ϕ and ϕ^{-1} preserve the natural partial order of \mathbb{R}^n .

Weak morphisms

Let $f: |Q| \to |P|$ be a weak morphism of precubical sets, and let $\omega: [\![0,k]\!] \to Q \ (k \ge 0)$ be a path. We denote by $f^{\mathbb{I}}(\omega)$ the unique path $\nu: [\![0,l]\!] \to P$ for which there exists a dihomeomorphism $\phi: |[\![0,k]\!]| = [\![0,k]\!] = [\![0,k]\!] \to |[\![0,l]\!]| = [\![0,l]\!]$ such that $f \circ |\omega| = |\nu| \circ \phi$.

A weak morphism from an *M*-HDA $\mathcal{B} = (Q, J, G, \mu)$ to an *M*-HDA $\mathcal{A} = (P, I, F, \lambda)$ is a weak morphism $f : |Q| \to |P|$ such that $f(J) \subseteq I$, $f(G) \subseteq F$ and $\overline{\lambda} \circ f^{\mathbb{I}} = \overline{\mu}$.

Proposition

Weak morphisms preserve dihomotopy. Consequently, if f is a weak morphism from an M-HDA $\mathcal{B} = (Q, J, G, \mu)$ to an M-HDA $\mathcal{A} = (P, I, F, \lambda)$ such that $f(m(Q)) \subseteq m(P)$ and $f(M(Q)) \subseteq M(P)$, then f induces a functor $f_*: TC(\mathcal{B}) \to TC(\mathcal{A})$.

Homeomorphic abstraction

Consider two *M*-HDAs $\mathcal{A} = (P, I, F, \lambda)$ and $\mathcal{B} = (Q, J, G, \mu)$. We say that \mathcal{B} is a *homeomorphic abstraction* of \mathcal{A} , or that \mathcal{A} is a *homeomorphic refinement* of \mathcal{B} , if there exists a weak morphism f from \mathcal{B} to \mathcal{A} that is a homeomorphism and satisfies f(J) = I and f(G) = F. We use the notation $\mathcal{B} \xrightarrow{\approx} \mathcal{A}$ to indicate that \mathcal{B} is a homeomorphic abstraction of \mathcal{A} .

Remarks

- The relation $\stackrel{\approx}{\rightarrow}$ is a preorder on the class of *M*-HDAs.
- Homeomorphic abstraction is a labeled version of *T*-homotopy equivalence [Gaucher, Goubault].

Homeomorphic abstraction

・ロト・西ト・ヨト・ヨー シック

Invariance of the trace category

Definition

An *M*-HDA is said to be *weakly regular* if for every element x of degree 2, $d_1^0 x \neq d_2^0 x$ and $d_1^1 x \neq d_2^1 x$.

Theorem

Suppose that $\mathcal{B} \xrightarrow{\approx} \mathcal{A}$. If \mathcal{A} is weakly regular, then $TC(\mathcal{B}) \cong TC(\mathcal{A})$.

A D F 4 目 F 4 目 F 4 目 9 Q Q

The homology graph

Let P be a precubical set. We say that a homology class $\alpha \in H_*(|P|)$ points to a homology class $\beta \in H_*(|P|)$ and write $\alpha \nearrow \beta$ if there exist precubical subsets $X, Y \subseteq P$ such that $\alpha \in \lim H_*(|X| \hookrightarrow |P|), \beta \in \lim H_*(|Y| \hookrightarrow |P|)$, and for all $x \in X_0$ and $y \in Y_0$ there exists a path in P from x to y.

The homology graph of P is the directed graph whose vertices are the homology classes of |P| and whose edges are given by the relation \nearrow .

Ordered vs. unordered holes

(a) The homology class representing the upper hole points to the homology class representing the lower hole

(b) The homology graph has no edges between non-zero classes of H_1

Invariance of the homology graph

Theorem

Let $f: |Q| \to |P|$ be a weak morphism of precubical sets that is a homeomorphism. Then $f_*: H_*(|Q|) \to H_*(|P|)$ is a graph isomorphism.

Definition

Let C and C' be precubical subsets of P. We say that C is *deformable* into C' if there exists a precubical subset $\hat{C} \subseteq P$ such that $C \subseteq \hat{C} \supseteq$ C' and the inclusion $|C'| \hookrightarrow |\hat{C}|$ is a homotopy equivalence.

Theorem

Let P be a precubical set, and let $x \in P_{\geq 1}$ be regular with free face $d_i^1 x$. Consider the precubical set $Q = P \setminus \{x, d_i^1 x\}$, and suppose that every precubical subset C of P is deformable into a precubical subset C' of Q such that from every vertex v in C', there exists a path in Q to a vertex in C from which $d_1^0 \cdots d_1^0 d_i^1 x$ is only reachable if $d_1^0 \cdots d_1^0 x$ is reachable in Q from v. Then $H_*(|Q| \hookrightarrow |P|)$ is a graph isomorphism.

Topological abstraction

Consider two *M*-HDAs $\mathcal{A} = (P, I, F, \lambda)$ and $\mathcal{B} = (Q, J, G, \mu)$. We write $\mathcal{B} \xrightarrow{\sim} \mathcal{A}$ and say that \mathcal{B} is a *topological abstraction* of \mathcal{A} , or that \mathcal{A} is a *topological refinement* of \mathcal{B} , if there exists a weak morphism f from \mathcal{B} to \mathcal{A} such that

$$f(J) = I, f(G) = F, f(M(Q)) = M(P), f(m(Q)) = m(P),$$

くしゃ (雪をくます)(日) (1)

- **2** f is a homotopy equivalence,
- 3 the functor $f_*: TC(\mathcal{B}) \to TC(\mathcal{A})$ is an isomorphism,
- 4 the map $f_* \colon H_*(|Q|) \to H_*(|P|)$ is a graph isomorphism.

Theorem

Suppose that $\mathcal{B} \xrightarrow{\approx} \mathcal{A}$. If \mathcal{A} is weakly regular, then $\mathcal{B} \xrightarrow{\sim} \mathcal{A}$.

Elementary collapses

Theorem

Let $\mathcal{A} = (P, I, F, \lambda)$ be a weakly regular M-HDA, and let $x \in P_{\geq 2}$ be a regular cube with free face $d_i^1 x$. Suppose that there is precisely one edge ending in $d_1^0 \cdots d_1^0 d_i^1 x$. If $n \leq 3$, it is also required that $d_1^0 \cdots d_1^0 d_i^1 x \notin I \cup F$. If n = 2, it is finally required that at least two edges begin in $d_1^0 d_i^1 x$. Then $Q = P \setminus \{x, d_i^1 x\}$ is a precubical subset of P such that $I \cup F \subseteq Q$, m(Q) = m(P), M(Q) = M(P), and $(Q, I, F, \lambda|_{Q_1}) \xrightarrow{\sim} \mathcal{A}$.

Further collapsing operations

(b) Collapsing an edge

(日)

æ

Topological abstraction: example

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで