Oriented Syzygies for Monoids

Philippe Malbos

Institut Camille Jordan, Université Claude Bernard Lyon 1

Joint works with
Stéphane Gaussent, Yves Guiraud, Nohra Hage, Samuel Mimram

GETCO 2015
Tuesday, April 7, 2015, Aalborg

Motivation

- Given a category (or a monoid) C

Motivation

- Given a category (or a monoid) C
\triangleright presented by generators and relations

Motivation

- Given a category (or a monoid) C
\triangleright presented by generators and relations
\triangleright we would like build a (small !) cofibrant approximation of C in the category of ($\infty, 1$)-categories,

Motivation

- Given a category (or a monoid) C
\triangleright presented by generators and relations
\triangleright we would like build a (small !) cofibrant approximation of C in the category of ($\infty, 1$)-categories,
- that is, a free $(\infty, 1)$-category homotopically equivalent to \mathbf{C}.

Motivation

- Given a category (or a monoid) C
\triangleright presented by generators and relations
\triangleright we would like build a (small !) cofibrant approximation of C in the category of ($\infty, 1$)-categories,
- that is, a free $(\infty, 1)$-category homotopically equivalent to \mathbf{C}.
- Polygraphic resolutions constructed from a rewriting system that presents \mathbf{C}, (Guiraud-M., 2012).
- Given a category (or a monoid) C
\triangleright presented by generators and relations
\triangleright we would like build a (small !) cofibrant approximation of C in the category of ($\infty, 1$)-categories,
- that is, a free ($\infty, 1$)-category homotopically equivalent to \mathbf{C}.
- Polygraphic resolutions constructed from a rewriting system that presents \mathbf{C}, (Guiraud-M., 2012).
\triangleright Applications: computation of homological invariants
- Baues-Wirsching (co)homology of category C.

Motivation

- Given a category (or a monoid) C
\triangleright presented by generators and relations
\triangleright we would like build a (small !) cofibrant approximation of C in the category of ($\infty, 1$)-categories,
- that is, a free $(\infty, 1)$-category homotopically equivalent to \mathbf{C}.
- Polygraphic resolutions constructed from a rewriting system that presents \mathbf{C}, (Guiraud-M., 2012).
\triangleright Applications: computation of homological invariants
- Baues-Wirsching (co)homology of category C.
- In low dimensions : coherent presentations

Motivation

- Given a category (or a monoid) C
\triangleright presented by generators and relations
\triangleright we would like build a (small !) cofibrant approximation of C in the category of ($\infty, 1$)-categories,
- that is, a free ($\infty, 1$)-category homotopically equivalent to \mathbf{C}.
- Polygraphic resolutions constructed from a rewriting system that presents \mathbf{C}, (Guiraud-M., 2012).
\triangleright Applications: computation of homological invariants
- Baues-Wirsching (co)homology of category C.
- In low dimensions : coherent presentations
\triangleright generators, oriented relations, oriented syzygies.

Motivation

- Given a category (or a monoid) C
\triangleright presented by generators and relations
\triangleright we would like build a (small !) cofibrant approximation of C in the category of ($\infty, 1$)-categories,
- that is, a free ($\infty, 1$)-category homotopically equivalent to \mathbf{C}.
- Polygraphic resolutions constructed from a rewriting system that presents \mathbf{C}, (Guiraud-M., 2012).
\triangleright Applications: computation of homological invariants
- Baues-Wirsching (co)homology of category C.
- In low dimensions : coherent presentations
\triangleright generators, oriented relations, oriented syzygies.
\triangleright Applications:
- Explicit description of actions of a monoid on categories (representation theory),
- Coherence theorems for monoids.

Motivation

- A Coxeter system (\mathbf{W}, S) is a data made of a group \mathbf{W} with a presentation by a (finite) set S of involutions, $s^{2}=1$, satisfying braid relations

$$
\text { tstst } \ldots=\text { ststs } \ldots
$$

Motivation

- A Coxeter system (\mathbf{W}, S) is a data made of a group \mathbf{W} with a presentation by a (finite) set S of involutions, $s^{2}=1$, satisfying braid relations

$$
\text { tstst } \ldots=\text { ststs } \ldots
$$

- Forgetting the involutive character of generators, one gets the Artin's presentation

$$
\operatorname{Art}(\mathbf{W})=\langle S| \text { tstst } \ldots=\text { ststs } \ldots\rangle
$$

of the Artin monoid $\mathbf{B}^{+}(\mathbf{W})$.

- A Coxeter system (\mathbf{W}, S) is a data made of a group \mathbf{W} with a presentation by a (finite) set S of involutions, $s^{2}=1$, satisfying braid relations

$$
\text { tstst } \ldots=\text { ststs } \ldots
$$

- Forgetting the involutive character of generators, one gets the Artin's presentation

$$
\operatorname{Art}(\mathbf{W})=\langle S| \text { tstst } \ldots=\text { ststs } \ldots\rangle
$$

of the Artin monoid $\mathbf{B}^{+}(\mathbf{W})$.

Objective.
\triangleright Push further Artin's presentation and study the relations amongst the braid relations. (Brieskorn-Saito, 1972, Deligne, 1972, Deligne, 1997, Tits, 1981, Michel, 1999).

Motivation

Set $\mathbf{W}=\mathbf{S}_{4}$ the group of permutations of $\{1,2,3,4\}$, with $S=\{r, s, t\}$ where

$$
r=r|\quad| \quad s=|\quad r| \quad|\quad|
$$

Motivation

Set $\mathbf{W}=\mathbf{S}_{4}$ the group of permutations of $\{1,2,3,4\}$, with $S=\{r, s, t\}$ where

$$
r=r|\quad| \quad s=|\quad r| \quad|\quad|
$$

- The associated Artin monoid $\mathbf{B}^{+}\left(\mathbf{S}_{4}\right)$ is the monoid of braids on 4 strands:

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\langle r, s, t \quad \mid r s r=s r s, \quad r t=t r, \quad t s t=s t s\rangle
$$

Motivation

- Set $\mathbf{W}=\mathbf{S}_{4}$ the group of permutations of $\{1,2,3,4\}$, with $S=\{r, s, t\}$ where

$s=1$

$t=1 \mid \gg$
- The associated Artin monoid $\mathbf{B}^{+}\left(\mathbf{S}_{4}\right)$ is the monoid of braids on 4 strands:

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\langle r, s, t \quad \mid \quad r s r=s r s, \quad r t=t r, \quad t s t=s t s\rangle
$$

- The relations amongst the braid relations on 4 strands are generated by the following Zamolodchikov relation (Deligne, 1997).

Motivation

- Plactic monoid of rank n

$$
\mathbf{P}_{n}=\left\langle 1, \ldots, n \left\lvert\, \begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right.\right\rangle
$$

- Plactic monoid of rank n

$$
\mathbf{P}_{n}=\left\langle 1, \ldots, n \left\lvert\, \begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right.\right\rangle
$$

\triangleright algebraic combinatoric, representation theory.

Motivation

- Plactic monoid of rank n

$$
\mathbf{P}_{n}=\left\langle 1, \ldots, n \left\lvert\, \begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right.\right\rangle
$$

\triangleright algebraic combinatoric, representation theory.

- Coherent presentation for \mathbf{P}_{2}

$$
\mathbf{P}_{2}=\langle 1,2 \mid 211=121,221=212\rangle
$$

Motivation

- Plactic monoid of rank n

$$
\mathbf{P}_{n}=\left\langle 1, \ldots, n \quad \left\lvert\, \begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right.\right\rangle
$$

\triangleright algebraic combinatoric, representation theory.

- Coherent presentation for \mathbf{P}_{2}

$$
\mathbf{P}_{2}=\langle 1,2 \mid 211=121,221=212\rangle
$$

\triangleright Relations amongst the relations generated by

Motivation

- Plactic monoid of rank n

$$
\mathbf{P}_{n}=\left\langle 1, \ldots, n \quad \left\lvert\, \begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right.\right\rangle
$$

\triangleright algebraic combinatoric, representation theory.

- Coherent presentation for \mathbf{P}_{2}

$$
\mathbf{P}_{2}=\langle 1,2 \mid 211=121,221=212\rangle
$$

\triangleright Relations amongst the relations generated by

- For $n \geqslant 3$, combinatorial 'explosion' with the Knuth's presentation.

Motivation

- Plactic monoid of rank n

$$
\mathbf{P}_{n}=\left\langle 1, \ldots, n \quad \left\lvert\, \begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right.\right\rangle
$$

\triangleright algebraic combinatoric, representation theory.

- Coherent presentation for \mathbf{P}_{2}

$$
\mathbf{P}_{2}=\langle 1,2 \mid 211=121,221=212\rangle
$$

\triangleright Relations amongst the relations generated by

- For $n \geqslant 3$, combinatorial 'explosion' with the Knuth's presentation.

Objective.
\triangleright Compute finite coherent presentation for \mathbf{P}_{n}.

Motivation

- The Knuth-Bendix procedure does not terminate for
$\triangleright \mathbf{B}_{3}^{+}=\langle s, t \mid s t s=t s t\rangle$ on the two generators s and t, (Kapur-Narendran, 1985)

Motivation

- The Knuth-Bendix procedure does not terminate for
$\triangleright \mathbf{B}_{3}^{+}=\langle s, t \mid s t s=t s t\rangle$ on the two generators s and t, (Kapur-Narendran, 1985)
$\triangleright \mathbf{P}_{4}$ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).

Motivation

- The Knuth-Bendix procedure does not terminate for
$\triangleright \mathbf{B}_{3}^{+}=\langle s, t \mid s t s=t s t\rangle$ on the two generators s and t, (Kapur-Narendran, 1985)
$\triangleright \mathbf{P}_{4}$ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).
- Computations of coherent presentation for monoids B_{n}^{+}of \mathbf{P}_{n} need new generators.

Motivation

- The Knuth-Bendix procedure does not terminate for
$\triangleright \mathbf{B}_{3}^{+}=\langle s, t \mid s t s=t s t\rangle$ on the two generators s and t, (Kapur-Narendran, 1985)
$\triangleright \mathbf{P}_{4}$ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).
- Computations of coherent presentation for monoids \mathbf{B}_{n}^{+}of \mathbf{P}_{n} need new generators.
- Homotopical completion-reduction procedure adds
\triangleright generators,
\triangleright oriented relations,
\triangleright oriented syzygies

Motivation

- The Knuth-Bendix procedure does not terminate for
$\triangleright \mathbf{B}_{3}^{+}=\langle s, t \mid s t s=t s t\rangle$ on the two generators s and t, (Kapur-Narendran, 1985)
$\triangleright \mathbf{P}_{4}$ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).
- Computations of coherent presentation for monoids \mathbf{B}_{n}^{+}of \mathbf{P}_{n} need new generators.
- Homotopical completion-reduction procedure adds
\triangleright generators,
\triangleright oriented relations,
\triangleright oriented syzygies
and a way to homotopically reduce them.

I. Coherent presentations of categories

- Polygraphs as higher-dimensional rewriting systems
- Coherent presentations as cofibrant approximations
II. Homotopical completion-reduction procedure
- Tietze transformations
- Rewriting properties of polygraphs
- Completion-reduction procedure

III. Applications to Artin and plactic monoids

References

- Hage-M., Coherent presentations of plactic monoids, 2015.
- Gaussent-Guiraud-M., Coherent presentations of Artin monoids, 2015.
- Guiraud-M.-Mimram, A homotopical completion procedure with applications to coherence of monoids, 2013.

Part I. Coherent presentations of categories

Polygraphs

Polygraphs

- A 1-polygraph is an directed graph $\left(\Sigma_{0}, \Sigma_{1}\right)$

$$
\Sigma_{0} \stackrel{s_{0}}{\leftrightarrows} \Sigma_{1}
$$

Polygraphs

- A 1-polygraph is an directed graph $\left(\Sigma_{0}, \Sigma_{1}\right)$

\rightarrow A 2-polygraph is a triple $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ where
$\triangleright\left(\Sigma_{0}, \Sigma_{1}\right)$ is a 1-polygraph,
$\triangleright \Sigma_{2}$ is a globular extension of the free 1-category Σ_{1}^{*}.

Polygraphs

\rightarrow A 1-polygraph is an directed graph $\left(\Sigma_{0}, \Sigma_{1}\right)$

\rightarrow A 2-polygraph is a triple $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ where
$\triangleright\left(\Sigma_{0}, \Sigma_{1}\right)$ is a 1-polygraph,
$\triangleright \Sigma_{2}$ is a globular extension of the free 1-category Σ_{1}^{*}.

- A rewriting step is a 2-cell of the free 2-category Σ_{2}^{*} over Σ with shape

where $u \stackrel{\alpha}{\Longrightarrow} v$ is a 2-cell of Σ_{2} and w, w^{\prime} are 1-cells of Σ_{1}^{*}.

Polygraphs

\rightarrow A 1-polygraph is an directed graph $\left(\Sigma_{0}, \Sigma_{1}\right)$

\rightarrow A 2-polygraph is a triple $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ where
$\triangleright\left(\Sigma_{0}, \Sigma_{1}\right)$ is a 1-polygraph,
$\triangleright \Sigma_{2}$ is a globular extension of the free 1-category Σ_{1}^{*}.

- A rewriting step is a 2-cell of the free 2-category Σ_{2}^{*} over Σ with shape

where $u \xlongequal{\alpha} v$ is a 2-cell of Σ_{2} and w, w^{\prime} are 1-cells of Σ_{1}^{*}.

Polygraphs

- A $(3,1)$-polygraph is a pair $\Sigma=\left(\Sigma_{2}, \Sigma_{3}\right)$ made of
\triangleright a 2-polygraph Σ_{2},
\triangleright a globular extension Σ_{3} of the free $(2,1)$-category Σ_{2}^{\top}.

Polygraphs

\rightarrow A $(3,1)$-polygraph is a pair $\Sigma=\left(\Sigma_{2}, \Sigma_{3}\right)$ made of
\triangleright a 2-polygraph Σ_{2},
\triangleright a globular extension Σ_{3} of the free (2,1)-category Σ_{2}^{\top}.

Let C be a category (or a monoid).

- A presentation of C is a 2-polygraph Σ such that

$$
\mathrm{C} \simeq \Sigma_{1}^{*} / \Sigma_{2}
$$

Polygraphs

- A $(3,1)$-polygraph is a pair $\Sigma=\left(\Sigma_{2}, \Sigma_{3}\right)$ made of
\triangleright a 2-polygraph Σ_{2},
\triangleright a globular extension Σ_{3} of the free $(2,1)$-category Σ_{2}^{\top}.

Let C be a category (or a monoid).

- A presentation of C is a 2-polygraph Σ such that

$$
\mathrm{C} \simeq \Sigma_{1}^{*} / \Sigma_{2}
$$

- An extended presentation of C is a (3,1)-polygraph Σ such that

$$
\mathrm{C} \simeq \Sigma_{1}^{*} / \Sigma_{2}
$$

Coherent presentations of categories

- A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_{3} is a homotopy basis.

Coherent presentations of categories

- A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_{3} is a homotopy basis.

In other words:
\triangleright the quotient (2,1)-category $\Sigma_{2}^{\top} / \Sigma_{3}$ is aspherical,

Coherent presentations of categories

- A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_{3} is a homotopy basis.

In other words:
\triangleright the quotient (2,1)-category $\Sigma_{2}^{\top} / \Sigma_{3}$ is aspherical,
\triangleright the congruence generated by Σ_{3} on the (2,1)-category Σ_{2}^{\top} contains every pair of parallel 2-cells.

Coherent presentations of categories

- A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_{3} is a homotopy basis.

In other words:
\triangleright the quotient (2,1)-category $\Sigma_{2}^{\top} / \Sigma_{3}$ is aspherical,
\triangleright the congruence generated by Σ_{3} on the (2,1)-category Σ_{2}^{\top} contains every pair of parallel 2-cells.
$\triangleright 3$-cells of Σ_{3} generate a tiling of Σ_{2}^{\top}.

Coherent presentations of categories

- A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_{3} is a homotopy basis.

In other words:
\triangleright the quotient (2,1)-category $\Sigma_{2}^{\top} / \Sigma_{3}$ is aspherical,
\triangleright the congruence generated by Σ_{3} on the (2,1)-category Σ_{2}^{\top} contains every pair of parallel 2-cells.
$\triangleright 3$-cells of Σ_{3} generate a tiling of Σ_{2}^{\top}.

Theorem. [Gaussent-Guiraud-M., 2015]
Let Σ be an extended presentation of a category C. For the Lack's model structure on 2-categories, the following assertions are equivalent:
i) The (3,1)-polygraph Σ is a coherent presentation of \mathbf{C}.
ii) The (2,1)-category $\Sigma_{2}^{\top} / \Sigma_{3}$ is a cofibrant approximation of \mathbf{C}, that is, a cofibrant 2-category weakly equivalent to \mathbf{C}.

Examples

- Free monoid : no relation, an empty homotopy basis:

$$
\left\langle x_{1}, \ldots, x_{n} \quad\right| \quad \emptyset \quad|\emptyset\rangle
$$

Examples

- Free monoid : no relation, an empty homotopy basis:

$$
\left\langle x_{1}, \ldots, x_{n} \quad\right| \quad \emptyset \quad|\emptyset\rangle
$$

- Free commutative monoid of rank 3:
Δ the full coherent presentation:

$$
\langle r, s, t| \quad s r \stackrel{\gamma_{r s}}{\Longrightarrow} r s, t s \stackrel{\gamma_{s t}}{\Longrightarrow} s t, t r \stackrel{\gamma_{r t}}{\Longrightarrow} r t \quad \left\lvert\, \quad \begin{gathered}
\text { all the }
\end{gathered}\right.
$$

Examples

- Free monoid : no relation, an empty homotopy basis:

$$
\left\langle x_{1}, \ldots, x_{n} \quad\right| \quad \emptyset \quad|\emptyset\rangle
$$

- Free commutative monoid of rank 3:
\triangleright the full coherent presentation:

\triangleright a homotopy basis can be made with only one 3-cell

$$
\langle r, s, t| s r \xrightarrow{\gamma_{r s}} r s, t s \xrightarrow{\gamma_{s t}} s t, t r \xrightarrow{\gamma_{r t}} r t\left|\quad Z_{r, s, t}\right\rangle
$$

Examples

- Free monoid : no relation, an empty homotopy basis:

$$
\left\langle x_{1}, \ldots, x_{n} \quad\right| \quad \emptyset \quad|\emptyset\rangle
$$

- Free commutative monoid of rank 3:
\triangleright the full coherent presentation:

\triangleright a homotopy basis can be made with only one 3-cell

$$
\langle r, s, t| s r \xrightarrow{\gamma_{r s}} r s, t s \xrightarrow{\gamma_{s t}} s t, t r \xrightarrow{\gamma_{r t}} r t\left|\quad Z_{r, s, t}\right\rangle
$$

where the 3-cell $Z_{r, s, t}$ is the permutohedron

Examples

- Artin monoid $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$

$$
s=\leftrightarrow \mid \quad t=1 \rightarrow \gg
$$

Examples

- Artin monoid $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$

$$
\operatorname{Art}\left(\mathbf{S}_{3}\right)=\langle s, t| t s t \stackrel{\gamma s t}{\Longrightarrow} \text { sts }|\emptyset\rangle
$$

Examples

- Artin monoid $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$

$$
\operatorname{Art}_{3}\left(\mathbf{S}_{3}\right)=\langle s, t \quad| \quad t s t \stackrel{\gamma_{s t}}{\Longrightarrow} \text { sts }|\emptyset\rangle
$$

- Artin monoid $\mathbf{B}^{+}\left(\mathbf{S}_{4}\right)$

$$
\operatorname{Art}_{3}\left(\mathbf{S}_{4}\right)=\langle r, s, t| \quad r s r \xlongequal{\gamma_{s t}} s r s, r t \xrightarrow{\gamma_{t r}} t r, t s t \stackrel{\gamma_{s t}}{\Longrightarrow} \text { sts }\left|Z_{r, s, t}\right\rangle
$$

Coherent presentations

Problems.

1. How to compute a coherent presentation?
2. How to transform a coherent presentation ?

Part II. Homotopical completion-reduction procedure

Tietze transformations

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \underset{\rightarrow}{\approx} r_{2}^{\top} / r_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
$>$ add a generator: for u in Σ_{1}^{*},

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a generator: for u in Σ_{1}^{*}, add a generating 1-cell x

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a generator: for u in Σ_{1}^{*}, add a generating 1-cell x and add a generating 2-cell

$$
u \xlongequal{\delta} x
$$

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \underset{\rightarrow}{\approx} r_{2}^{\top} / r_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a generator: for u in Σ_{1}^{*}, add a generating 1-cell x and add a generating 2-cell

$$
u \xlongequal{\delta} x
$$

\rightarrow remove a generator: for a generating 2-cell α in Σ_{2} with x in Σ_{1},

$$
u \xlongequal{\alpha} x
$$

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \underset{\rightarrow}{\approx} r_{2}^{\top} / r_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a generator: for u in Σ_{1}^{*}, add a generating 1-cell x and add a generating 2-cell

$$
u \xlongequal{\delta} x
$$

- remove a generator: for a generating 2-cell α in Σ_{2} with x in Σ_{1}, remove x and α

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a relation: for a 2-cell f in Σ_{2}^{\top},

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a relation: for a 2-cell f in Σ_{2}^{\top}, add a generating 2-cell α_{f}

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a relation: for a 2-cell f in Σ_{2}^{\top}, add a generating 2 -cell α_{f} add a generating 3-cell A_{f}

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \xrightarrow{\approx} r_{2}^{\top} / r_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a relation: for a 2-cell f in Σ_{2}^{\top}, add a generating 2 -cell α_{f} add a generating 3-cell A_{f}

- remove a relation: for a 3 -cell A with α in Σ_{2},

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \xrightarrow{\approx} r_{2}^{\top} / r_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a relation: for a 2 -cell f in Σ_{2}^{\top}, add a generating 2 -cell α_{f} add a generating 3-cell A_{f}

\rightarrow remove a relation: for a 3-cell A with α in Σ_{2}, remove α and A

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \approx \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a 3-cell: for 3-cells B,

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \underset{\rightarrow}{\rightarrow} \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a 3-cell: for 3-cells B, add a generating 3-cell $A: f \Rightarrow g$

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \underset{\rightarrow}{\approx} \Upsilon_{2}^{\top} / \Upsilon_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a 3-cell: for 3-cells B, add a generating 3-cell $A: f \Rightarrow g$

- remove a 3-cell: for a generating 3-cell $A: f \Rightarrow g$

Tietze transformations

- Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

$$
\Sigma_{2}^{\top} / \Sigma_{3} \underset{\rightarrow}{\approx} r_{2}^{\top} / r_{3}
$$

inducing an isomorphism on presented categories: $\Sigma_{1}^{*} \simeq \Upsilon_{1}^{*}$.

- An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3 -functor with source Σ_{3}^{\top} that belongs to one of the following pairs of dual operations:
- add a 3-cell: for 3-cells B, add a generating 3-cell $A: f \Rightarrow g$

- remove a 3-cell: for a generating 3-cell $A: f \Rightarrow g$ remove A

Tietze transformations

Theorem. [Gaussent-Guiraud-M., 2015]
Two (finite) (3,1)-polygraphs Σ and Υ are Tietze equivalent if, and only if, there exists a (finite) Tietze transformation

$$
\mathcal{T}: \Sigma^{\top} \longrightarrow \Upsilon^{\top}
$$

Tietze transformations

Theorem. [Gaussent-Guiraud-M., 2015]
Two (finite) (3,1)-polygraphs Σ and \curlyvee are Tietze equivalent if, and only if, there exists a (finite) Tietze transformation

$$
\mathcal{T}: \Sigma^{\top} \longrightarrow \Upsilon^{\top}
$$

Consequence.

If Σ is a coherent presentation of a category C and if there exists a Tietze transformation

$$
\mathcal{T}: \Sigma^{\top} \longrightarrow \Upsilon^{\top}
$$

then Υ is a coherent presentation of \mathbf{C}.

Rewriting properties of 2-polygraphs

Let $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ be a 2-polygraph.

Rewriting properties of 2-polygraphs

Let $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ be a 2-polygraph.

- Σ terminates if it does not generate any infinite reduction sequence

$$
u_{1} \Longrightarrow u_{2} \Longrightarrow \cdots \not u_{n} \Longrightarrow \cdots
$$

Rewriting properties of 2-polygraphs

Let $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ be a 2-polygraph.

- Σ terminates if it does not generate any infinite reduction sequence

$$
u_{1} \Longrightarrow u_{2} \Longrightarrow \cdots \Longrightarrow u_{n} \Longrightarrow \cdots
$$

A branching of Σ is a pair (f, g) of 2-cells of Σ_{2}^{*} with a common source

Rewriting properties of 2-polygraphs

Let $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ be a 2-polygraph.

- Σ terminates if it does not generate any infinite reduction sequence

$$
u_{1} \Longrightarrow u_{2} \Longrightarrow \cdots \Longrightarrow u_{n} \Longrightarrow \cdots
$$

- A branching of Σ is a pair (f, g) of 2-cells of Σ_{2}^{*} with a common source

- Σ is confluent if all of its branchings are confluent:

Rewriting properties of 2-polygraphs

Let $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}\right)$ be a 2-polygraph.

- Σ terminates if it does not generate any infinite reduction sequence

$$
u_{1} \Longrightarrow u_{2} \Longrightarrow \cdots \Longrightarrow u_{n} \Longrightarrow \cdots
$$

- A branching of Σ is a pair (f, g) of 2-cells of Σ_{2}^{*} with a common source

- Σ is confluent if all of its branchings are confluent:

$\checkmark \Sigma$ is convergent if it terminates and it is confluent.

Rewriting properties of 2-polygraphs

- A branching

is local if f and g are rewriting steps.

Rewriting properties of 2-polygraphs

- A branching

is local if f and g are rewriting steps.
- A critical branching is a local branching of the form

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{3}\right)=\langle s, t \quad \mid \quad t s t \stackrel{\gamma s t}{\Longrightarrow} s t s\rangle
$$

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{3}\right)=\left\langle s, t \quad \mid \quad t s t \stackrel{\gamma_{s t}}{\Longrightarrow} s t s\right\rangle
$$

has only one critical branching:

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{3}\right)=\left\langle s, t \quad \mid \quad t s t \stackrel{\gamma_{s t}}{\Longrightarrow} s t s\right\rangle
$$

has only one critical branching:

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{3}\right)=\left\langle s, t \quad \mid \quad t s t \stackrel{\gamma_{s t}}{\Longrightarrow} s t s\right\rangle
$$

has only one critical branching:

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{3}\right)=\left\langle s, t \quad \mid \quad t s t \stackrel{\gamma_{s t}}{\Longrightarrow} s t s\right\rangle
$$

has only one critical branching:

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\left\langle r, s, t \quad \mid \quad s r \stackrel{\gamma_{r s}}{\Longrightarrow} r s, t s \stackrel{\gamma_{s t}}{\Longrightarrow} s t, t r \stackrel{\gamma_{r t}}{\Longrightarrow} r t\right\rangle
$$

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\left\langle r, s, t \quad \mid \quad s r \stackrel{\gamma_{r s}}{\Longrightarrow} r s, t s \xrightarrow{\gamma_{s t}} s t, t r \stackrel{\gamma_{r t}}{\Longrightarrow} r t\right\rangle
$$

\triangleright It has only one critical branching
$t s r$

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\left\langle r, s, t \quad \mid \quad s r \stackrel{\gamma_{r s}}{\Longrightarrow} r s, t s \stackrel{\gamma_{s t}}{\Longrightarrow} s t, t r \stackrel{\gamma_{r t}}{\Longrightarrow} r t\right\rangle
$$

\triangleright It has only one critical branching

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\left\langle r, s, t \quad \mid \quad s r \stackrel{\gamma_{r s}}{\Longrightarrow} r s, t s \stackrel{\gamma_{s t}}{\Longrightarrow} s t, t r \stackrel{\gamma_{r t}}{\Longrightarrow} r t\right\rangle
$$

\triangleright It has only one critical branching

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\left\langle r, s, t \quad \mid \quad s r \stackrel{\gamma_{r s}}{\Longrightarrow} r s, t s \stackrel{\gamma_{s t}}{\Longrightarrow} s t, t r \stackrel{\gamma_{r t}}{\Longrightarrow} r t\right\rangle
$$

\triangleright It has only one critical branching

Example

- The 2-polygraph

$$
\operatorname{Art}_{2}\left(\mathbf{S}_{4}\right)=\left\langle r, s, t \quad \mid \quad s r \stackrel{\gamma_{r s}}{\Longrightarrow} r s, t s \xrightarrow{\gamma_{s t}} s t, t r \stackrel{\gamma_{r t}}{\Longrightarrow} r t\right\rangle
$$

\triangleright It has only one critical branching

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

- The homotopical completion of Σ is the (3,1)-polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

- The homotopical completion of Σ is the (3,1)-polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations
\triangleright for every critical branching

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

- The homotopical completion of Σ is the (3,1)-polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations
\triangleright for every critical branching

compute f^{\prime} and g^{\prime} reducing to some normal forms.

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

- The homotopical completion of Σ is the (3,1)-polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations
\triangleright for every critical branching

compute f^{\prime} and g^{\prime} reducing to some normal forms.
\triangleright if $\widehat{v}=\widehat{w}$, add a 3-cell $A_{f, g}$

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

- The homotopical completion of Σ is the (3,1)-polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations
\triangleright for every critical branching

compute f^{\prime} and g^{\prime} reducing to some normal forms.
\triangleright if $\widehat{v}=\widehat{w}$, add a 3-cell $A_{f, g}$

\triangleright if $\hat{v}<\widehat{w}$, add the 2-cell $\alpha_{f, g}$ and the 3-cell $A_{f, g}$

Homotopical completion procedure

- Potential adjunction of additional 2-cells $\alpha_{f, g}$ can create new critical branchings,
\triangleright whose confluence must also be examined,
\triangleright possibly generating the adjunction of additional 2-cells and 3-cells
$\triangleright \ldots$

Homotopical completion procedure

- Potential adjunction of additional 2-cells $\alpha_{f, g}$ can create new critical branchings,
\triangleright whose confluence must also be examined,
\triangleright possibly generating the adjunction of additional 2-cells and 3-cells
- ...
- This defines an increasing sequence of (3,1)-polygraphs

$$
\Sigma=\Sigma^{0} \subseteq \Sigma^{1} \subseteq \cdots \subseteq \Sigma^{n} \subseteq \Sigma^{n+1} \subseteq \cdots
$$

- The homotopical completion of Σ is the (3,1)-polygraph

$$
\mathcal{S}(\Sigma)=\bigcup_{n \geqslant 0} \Sigma^{n}
$$

Homotopical completion procedure

- Potential adjunction of additional 2-cells $\alpha_{f, g}$ can create new critical branchings,
\triangleright whose confluence must also be examined,
\triangleright possibly generating the adjunction of additional 2-cells and 3-cells
- ...
- This defines an increasing sequence of (3,1)-polygraphs

$$
\Sigma=\Sigma^{0} \subseteq \Sigma^{1} \subseteq \cdots \subseteq \Sigma^{n} \subseteq \Sigma^{n+1} \subseteq \cdots
$$

- The homotopical completion of Σ is the (3,1)-polygraph

$$
\mathcal{S}(\Sigma)=\bigcup_{n \geqslant 0} \Sigma^{n} .
$$

Theorem. [Gaussent-Guiraud-M., 2015]
For a terminating presentation Σ of a category \mathbf{C}, the homotopical completion $\mathcal{S}(\Sigma)$ of Σ is a coherent convergent presentation of \mathbf{C}.

Homotopical completion procedure

- Potential adjunction of additional 2-cells $\alpha_{f, g}$ can create new critical branchings,
\triangleright whose confluence must also be examined,
\triangleright possibly generating the adjunction of additional 2-cells and 3-cells
- ...
- This defines an increasing sequence of (3,1)-polygraphs

$$
\Sigma=\Sigma^{0} \subseteq \Sigma^{1} \subseteq \cdots \subseteq \Sigma^{n} \subseteq \Sigma^{n+1} \subseteq \cdots
$$

- The homotopical completion of Σ is the (3,1)-polygraph

$$
\mathcal{S}(\Sigma)=\bigcup_{n \geqslant 0} \Sigma^{n} .
$$

Theorem. [Gaussent-Guiraud-M., 2015]
For a terminating presentation Σ of a category \mathbf{C}, the homotopical completion $\mathcal{S}(\Sigma)$ of Σ is a coherent convergent presentation of \mathbf{C}.

Proof.
$\triangleright \mathcal{S}(\Sigma)$ obtained from Σ by successive application of Knuth-Bendix's procedure
\triangleright Squier's coherence theorem.

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.
$\mathcal{S}\left(\sum_{2}^{\mathrm{KN}}\right)=\langle s, t, a \quad| \quad$ ta $\xlongequal{\alpha}$ as, $s t \stackrel{\beta}{\Longrightarrow} a$

Homotopical completion procedure

Example. The Kapur- Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

Homotopical completion procedure

Example. The Kapur- Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

$$
\begin{aligned}
& \mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a \quad| \quad \text { ta } \xlongequal{\alpha} \text { as, } s t \xlongequal{\beta} a, \text { sas } \xlongequal{\gamma} \text { aa } \\
& \begin{array}{c}
\beta a \Rightarrow a a \\
s{ }_{s} \Rightarrow \Rightarrow s a s
\end{array}
\end{aligned}
$$

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

$$
\begin{aligned}
& \mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a \quad| \quad \text { ta } \xlongequal{\alpha} \text { as, } s t \stackrel{\beta}{\Longrightarrow} a, \text { sas } \stackrel{\gamma}{\Longrightarrow} \text { aa }
\end{aligned}
$$

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \stackrel{\alpha}{\Longrightarrow} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

$$
\begin{aligned}
& \mathcal{S}\left(\sum_{2}^{\mathrm{KN}}\right)=\langle s, t, a| \text { ta } \xlongequal{\alpha} \text { as, st } \xlongequal{\beta} \text { a, sas } \xlongequal{\gamma} \text { aa, saa } \xlongequal{\delta} \text { aat } \mid A, B
\end{aligned}
$$

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{3}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

Homotopical completion procedure

Example. The Kapur-Narendran's presentation of $\mathbf{B}^{+}\left(\mathbf{S}_{\mathbf{3}}\right)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$
\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a \quad \mid \quad t a \xlongequal{\alpha} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle
$$

The deglex order generated by $t>s>a$ proves the termination of \sum_{2}^{KN}.

However. The extended presentation $\mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)$ obtained is bigger than necessary.

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,
\triangleright the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
$\triangleright 3$-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,
\triangleright the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,
\triangleright some collapsible 2-cells or 3-cells already present in the initial presentation Σ.

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ with a collapsible part Γ made of
\triangleright 3-spheres induced by some of the generating triple confluences of $\mathcal{S}(\Sigma)$,
\triangleright the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,
\triangleright some collapsible 2-cells or 3-cells already present in the initial presentation Σ.

The homotopical completion-reduction of terminating 2-polygraph Σ is the (3,1)-polygraph

$$
\mathcal{R}(\Sigma)=\pi_{\Gamma}(\mathcal{S}(\Sigma))
$$

Theorem. [Gaussent-Guiraud-M., 2015]
For every terminating presentation Σ of a category \mathbf{C}, the homotopical completion-reduction $\mathcal{R}(\Sigma)$ of Σ is a coherent presentation of \mathbf{C}.

The homotopical completion-reduction procedure

$$
\text { Example. } \left.\quad \Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} \text { as, st } \stackrel{\beta}{\Longrightarrow} a\right\rangle
$$

The homotopical completion-reduction procedure

$$
\begin{aligned}
& \text { Example. } \left.\quad \sum_{2}^{\mathrm{KN}}=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} \text { as, st } \stackrel{\beta}{\Longrightarrow} a\right\rangle \\
& \mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} \text { as, st } \stackrel{\beta}{\Longrightarrow} \text { a, sas } \stackrel{\gamma}{\Longrightarrow} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, C, D\rangle
\end{aligned}
$$

The homotopical completion-reduction procedure
Example. $\quad \Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| \quad t a \stackrel{\alpha}{\Longrightarrow}$ as, st $\left.\stackrel{\beta}{\Longrightarrow} a\right\rangle$

$$
\mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a \quad| \quad t a \stackrel{\alpha}{\Longrightarrow} a s, s t \stackrel{\beta}{\Longrightarrow} a, \text { sas } \stackrel{\gamma}{\Longrightarrow} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, C, D\rangle
$$

$$
\langle s, t, a \quad| \quad t a \stackrel{\alpha}{\Longrightarrow} a s, s t \stackrel{\beta}{\Longrightarrow} a, s a s \stackrel{\gamma}{\Longrightarrow} a a, \text { saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, C, D\rangle
$$

The homotopical completion-reduction procedure

Example. $\quad \Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| \quad t a \stackrel{\alpha}{\Longrightarrow}$ as, $\left.s t \stackrel{\beta}{\Longrightarrow} a\right\rangle$

$$
\begin{gathered}
\mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} \text { as, st } \stackrel{\beta}{\Longrightarrow} a, \text { sas } \stackrel{\gamma}{\Longrightarrow} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, C, D\rangle \\
\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} a s, s t \stackrel{\beta}{\Longrightarrow} a, \text { sas } \xlongequal{\gamma} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, C, D\rangle
\end{gathered}
$$

- There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.

The homotopical completion-reduction procedure

Example.

$$
\left.\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| \quad t a \stackrel{\alpha}{\Longrightarrow} \text { as, } s t \stackrel{\beta}{\Longrightarrow} a\right\rangle
$$

$$
\mathcal{S}\left(\sum_{2}^{\mathrm{KN}}\right)=\langle s, t, a| \quad t a \xlongequal{\alpha} \text { as, st } \stackrel{\beta}{\Longrightarrow} a, s a s \xlongequal{\gamma} \text { aa, saa } \xlongequal{\delta} \text { aat }|A, B, C, D\rangle
$$

$$
\langle s, t, a| \quad t a \xlongequal{\alpha} \text { as }, s t \xlongequal{\beta} a, \text { sas } \xlongequal{\gamma} \text { aa, saa } \xlongequal{\delta} \text { aat } \mid A, B, \notin \mathbb{C} D
$$

- There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.
\triangleright Critical triple branching on sasta proves that C is redundant:

The homotopical completion-reduction procedure

Example.

$$
\begin{array}{ll}
\text { xample. } & \left.\Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} \text { as, st } \stackrel{\beta}{\Longrightarrow} a\right\rangle \\
\mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} \text { as, st } \stackrel{\beta}{\Longrightarrow} a, \text { sas } \stackrel{\gamma}{\Longrightarrow} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, C, D\rangle
\end{array}
$$

$$
\langle s, t, a \quad| \quad t a \stackrel{\alpha}{\Longrightarrow} \text { as }, s t \stackrel{\beta}{\Longrightarrow} a, \text { sas } \stackrel{\gamma}{\Longrightarrow} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, \notin, \not \subset 又\rangle
$$

- There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.
\triangleright Critical triple branching on sasast proves that D is redundant:

$$
D=\operatorname{sasa} \beta^{-1} \star_{1}\left(\left(C t \star_{1} \operatorname{aaa} \beta\right) \star_{2}\left(\operatorname{sa} B \star_{1} \delta a t \star_{1} \text { aa } \alpha t \star_{1} \operatorname{aaa} \beta\right)\right)
$$

The homotopical completion-reduction procedure
Example. $\quad \Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| \quad t a \stackrel{\alpha}{\Longrightarrow}$ as, $\left.s t \stackrel{\beta}{\Longrightarrow} a\right\rangle$
$\mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow}$ as, st $\stackrel{\beta}{\Longrightarrow} a$, sas $\stackrel{\gamma}{\Longrightarrow}$ aa, saa $\stackrel{\delta}{\Longrightarrow}$ aat $|A, B, C, D\rangle$

$$
\langle s, t, a| \quad t a \stackrel{\alpha}{\Longrightarrow} a s, s t \stackrel{\beta}{\Longrightarrow} a, \text { sas } \stackrel{\gamma}{\Longrightarrow} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, \notin, \not \subset 又\rangle
$$

\triangleright The 3-cells A and B are collapsible and the rules γ and δ are redundant.

The homotopical completion-reduction procedure

Example. $\quad \sum_{2}^{\mathrm{KN}}=\langle s, t, a|$ ta $\xlongequal{\alpha}$ as, $\left.s t \stackrel{\beta}{\Longrightarrow} a\right\rangle$

$$
\begin{aligned}
& \mathcal{S}\left(\sum_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \xlongequal{\alpha} \text { as, st } \stackrel{\beta}{\Longrightarrow} a, s a s \xlongequal{\gamma} \text { aa, saa } \xlongequal{\delta} \text { aat }|A, B, C, D\rangle
\end{aligned}
$$

\triangleright The 3-cells A and B are collapsible and the rules γ and δ are redundant.

The homotopical completion-reduction procedure

Example. $\quad \sum_{2}^{\mathrm{KN}}=\langle s, t, a \mid t a \xlongequal{\Longrightarrow} a s, s t \stackrel{\beta}{\Longrightarrow} a\rangle$

$$
\begin{aligned}
& \mathcal{S}\left(\sum_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \xlongequal{\alpha} \text { as, st } \stackrel{\beta}{\Longrightarrow} a, s a s \xlongequal{\gamma} \text { aa, saa } \xlongequal{\delta} \text { at }|A, B, C, D\rangle
\end{aligned}
$$

\triangleright The rule st $\stackrel{\beta}{\Longrightarrow} a$ is collapsible and the generator a is redundant.

The homotopical completion-reduction procedure
Example. $\quad \Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| \quad t a \stackrel{\alpha}{\Longrightarrow}$ as, st $\left.\stackrel{\beta}{\Longrightarrow} a\right\rangle$
$\mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow}$ as, $s t \stackrel{\beta}{\Longrightarrow} a$, sas $\stackrel{\gamma}{\Longrightarrow}$ aa, saa $\stackrel{\delta}{\Longrightarrow}$ aat $|A, B, C, D\rangle$

$$
\begin{aligned}
\mathcal{R}\left(\sum_{2}^{\mathrm{KN}}\right) & =\langle s, t| t s t \stackrel{\alpha}{\Longrightarrow} \text { sts }|\emptyset\rangle \\
& =\operatorname{Art}_{3}\left(\mathrm{~S}_{3}\right) \\
& =\langle\text { 位|, }
\end{aligned}
$$

The homotopical completion-reduction procedure

Example. $\quad \Sigma_{2}^{\mathrm{KN}}=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow}$ as, $\left.s t \stackrel{\beta}{\Longrightarrow} a\right\rangle$

$$
\begin{aligned}
\mathcal{R}\left(\Sigma_{2}^{\mathrm{KN}}\right) & =\langle s, t| t s t \stackrel{\alpha}{\Longrightarrow} \text { sts }|\emptyset\rangle \\
& =\operatorname{Art}_{3}\left(\mathbf{S}_{3}\right)
\end{aligned}
$$

$$
=\langle\leftrightarrow|,|>|
$$

With presentation $\operatorname{Art}_{2}\left(\mathbf{S}_{3}\right)$ two proofs of the same equality in \mathbf{B}_{3}^{+}are equal.

$$
\begin{aligned}
& \mathcal{S}\left(\Sigma_{2}^{\mathrm{KN}}\right)=\langle s, t, a| t a \stackrel{\alpha}{\Longrightarrow} \text { as, st } \stackrel{\beta}{\Longrightarrow} a, \text { sas } \stackrel{\gamma}{\Longrightarrow} \text { aa, saa } \stackrel{\delta}{\Longrightarrow} \text { aat }|A, B, C, D\rangle
\end{aligned}
$$

Part III. Applications: Artin and plactic monoids

Artin monoids: Garside's presentation

- Let W be a Coxeter group

$$
\mathbf{W}=\left\langle S \quad \mid \quad s^{2}=1, \quad\langle t s\rangle^{m_{s t}}=\langle s t\rangle^{m_{s t}}\right\rangle
$$

where $\langle t s\rangle^{m_{s t}}$ stands for the word tsts \ldots with $m_{s t}$ letters.

Artin monoids: Garside's presentation

- Let W be a Coxeter group

$$
\mathbf{W}=\left\langle S \quad \mid \quad s^{2}=1, \quad\langle t s\rangle^{m_{s t}}=\langle s t\rangle^{m_{s t}}\right\rangle
$$

where $\langle t s\rangle^{m_{s t}}$ stands for the word tsts \ldots with $m_{s t}$ letters.
\rightarrow Artin's presentation of the Artin monoid $\mathbf{B}^{+}(\mathbf{W})$

$$
\operatorname{Art}_{2}(\mathbf{W})=\left\langle S \quad \mid \quad\langle t s\rangle^{m_{s t}}=\langle s t\rangle^{m_{s t}}\right\rangle
$$

Artin monoids: Garside's presentation

- Garside's extended presentation of the Artin monoid $\mathrm{B}^{+}(\mathbf{W})$
$\triangleright 1$-cells:

$$
\operatorname{Gar}_{1}(\mathbf{W})=\mathbf{W} \backslash\{1\}
$$

Artin monoids: Garside's presentation

- Garside's extended presentation of the Artin monoid $\mathbf{B}^{+}(\mathbf{W})$
$\triangleright 1$-cells:

$$
\operatorname{Gar}_{1}(\mathbf{W})=\mathbf{W} \backslash\{1\}
$$

\triangleright 2-cells:

$$
\operatorname{Gar}_{2}(\mathbf{W})=\left\{u \mid v \stackrel{\alpha_{u v}}{\Longrightarrow} u v \text { whenever } I(u v)=I(u)+I(v)\right\}
$$

where $u v$ is the product in \mathbf{W} and $u \mid v$ is the product in the free monoid over \mathbf{W}.

Artin monoids: Garside's presentation

- Garside's extended presentation of the Artin monoid $\mathbf{B}^{+}(\mathbf{W})$
$\triangleright 1$-cells:

$$
\operatorname{Gar}_{1}(\mathbf{W})=\mathbf{W} \backslash\{1\}
$$

\triangleright 2-cells:

$$
\operatorname{Gar}_{2}(\mathbf{W})=\left\{u \mid v \stackrel{\alpha_{u} v}{\Longrightarrow} u v \text { whenever } I(u v)=I(u)+I(v)\right\}
$$

where $u v$ is the product in \mathbf{W} and $u \mid v$ is the product in the free monoid over \mathbf{W}.
$\triangleright \operatorname{Gar}_{3}(\mathbf{W})$ made of one 3-cell

for every u, v, w in $\mathbf{W} \backslash\{1\}$ such that the lengths can be added.

Artin monoids: Garside's presentation

- Garside's extended presentation of the Artin monoid $\mathbf{B}^{+}(\mathbf{W})$
$\triangleright 1$-cells:

$$
\operatorname{Gar}_{1}(\mathbf{W})=\mathbf{W} \backslash\{1\}
$$

\triangleright 2-cells:

$$
\operatorname{Gar}_{2}(\mathbf{W})=\left\{u \mid v \stackrel{\alpha_{u} v}{\Longrightarrow} u v \text { whenever } I(u v)=I(u)+I(v)\right\}
$$

where $u v$ is the product in \mathbf{W} and $u \mid v$ is the product in the free monoid over \mathbf{W}.
$\triangleright \operatorname{Gar}_{3}(\mathbf{W})$ made of one 3-cell

for every u, v, w in $\mathbf{W} \backslash\{1\}$ such that the lengths can be added.
Theorem. [Gaussent-Guiraud-M., 2015]
$\mathrm{Gar}_{3}(\mathbf{W})$ is a coherent presentation the Artin monoid $\mathrm{B}^{+}(\mathbf{W})$

Artin monoids: Garside's presentation

- Garside's extended presentation of the Artin monoid $\mathbf{B}^{+}(\mathbf{W})$
$\triangleright 1$-cells:

$$
\operatorname{Gar}_{1}(\mathbf{W})=\mathbf{W} \backslash\{1\}
$$

\triangleright 2-cells:

$$
\operatorname{Gar}_{2}(\mathbf{W})=\left\{u \mid v \stackrel{\alpha_{u v}}{\Longrightarrow} u v \text { whenever } I(u v)=I(u)+I(v)\right\}
$$

where $u v$ is the product in \mathbf{W} and $u \mid v$ is the product in the free monoid over \mathbf{W}.
$\triangleright \operatorname{Gar}_{3}(\mathbf{W})$ made of one 3-cell

for every u, v, w in $\mathbf{W} \backslash\{1\}$ such that the lengths can be added.
Theorem. [Gaussent-Guiraud-M., 2015]
$\mathrm{Gar}_{3}(\mathbf{W})$ is a coherent presentation the Artin monoid $\mathrm{B}^{+}(\mathbf{W})$
Proof.
By homotopical completion-reduction of the 2-polygraph $\operatorname{Gar}_{2}(\mathbf{W})$.

Artin monoids: Artin's coherent presentation

Theorem. [Gaussent-Guiraud-M., 2015]
The Artin monoid $\mathbf{B}^{+}(\mathbf{W})$ admits the coherent presentation $\mathrm{Art}_{3}(\mathbf{W})$ made of
\triangleright Artin's presentation

$$
\operatorname{Art}_{2}(\mathbf{W})=\left\langle S \quad \mid \quad\langle t s\rangle^{m_{s t}}=\langle s t\rangle^{m_{s t}}\right\rangle
$$

\triangleright one 3-cell $Z_{r, s, t}$ for every $t>s>r$ in S such that the subgroup $\mathbf{W}_{\{r, s, t\}}$ is finite.

Artin monoids: Zamolodchikov $Z_{r, s, t}$ according to Coxeter type

Plactic monoids

- Knuth's presentation of the plactic monoid \mathbf{P}_{n}

Plactic monoids

- Knuth's presentation of the plactic monoid \mathbf{P}_{n}
$\triangleright 1$-cells:

$$
\operatorname{Knuth}_{1}(n)=\{1, \ldots, n\}
$$

- Knuth's presentation of the plactic monoid \mathbf{P}_{n}
$\triangleright 1$-cells:

$$
\operatorname{Knuth}_{1}(n)=\{1, \ldots, n\}
$$

\triangleright 2-cells are Knuth relations:

$$
\operatorname{Knuth}_{2}(n)=\left\{\begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right\}
$$

- Knuth's presentation of the plactic monoid \mathbf{P}_{n}
$\triangleright 1$-cells:

$$
\operatorname{Knuth}_{1}(n)=\{1, \ldots, n\}
$$

\triangleright 2-cells are Knuth relations:

$$
\operatorname{Knuth}_{2}(n)=\left\{\begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right\}
$$

- For $n \geqslant 4$, there is no finite completion of $\mathrm{Knuth}_{2}(n)$ on $\mathrm{Knuth}_{1}(n)$.
- Knuth's presentation of the plactic monoid \mathbf{P}_{n}
$\triangleright 1$-cells:

$$
\operatorname{Knuth}_{1}(n)=\{1, \ldots, n\}
$$

\triangleright 2-cells are Knuth relations:

$$
\operatorname{Knuth}_{2}(n)=\left\{\begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right\}
$$

- For $n \geqslant 4$, there is no finite completion of $\operatorname{Knuth}_{2}(n)$ on $\operatorname{Knuth}_{1}(n)$.
- Any 1-cell w in $\operatorname{Knuth}_{1}^{*}(n)$ is equals to its Schensted's tableau $P(w)$:
- Knuth's presentation of the plactic monoid \mathbf{P}_{n}
$\triangleright 1$-cells:

$$
\operatorname{Knuth}_{1}(n)=\{1, \ldots, n\}
$$

\triangleright 2-cells are Knuth relations:

$$
\operatorname{Knuth}_{2}(n)=\left\{\begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right\}
$$

- For $n \geqslant 4$, there is no finite completion of $\operatorname{Knuth}_{2}(n)$ on $\operatorname{Knuth}_{1}(n)$.
- Any 1-cell w in $\operatorname{Knuth}_{1}^{*}(n)$ is equals to its Schensted's tableau $P(w)$:

1	1	1	2	2	2	3	4
2	2	3	3	4	4	6	
4	5	6	6				
6	7						

- Knuth's presentation of the plactic monoid \mathbf{P}_{n}
$\triangleright 1$-cells:

$$
\operatorname{Knuth}_{1}(n)=\{1, \ldots, n\}
$$

\triangleright 2-cells are Knuth relations:

$$
\operatorname{Knuth}_{2}(n)=\left\{\begin{array}{ll}
z x y=x z y & \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \\
y z x=y x z & \text { for all } 1 \leqslant x<y \leqslant z \leqslant n
\end{array}\right\}
$$

- For $n \geqslant 4$, there is no finite completion of $\operatorname{Knuth}_{2}(n)$ on $\operatorname{Knuth}_{1}(n)$.
- Any 1-cell w in $\operatorname{Knuth}_{1}^{*}(n)$ is equals to its Schensted's tableau $P(w)$:

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 2 & 2 & 3 & 4 \\
\hline 2 & 2 & 3 & 3 & 4 & 6 & \\
\cline { 1 - 4 } 4 & 5 & 6 & 6 & & & \\
\cline { 1 - 3 } & 6 & 7 & & & & \\
& & & & & & \\
\cline { 1 - 3 } & & &
\end{array}
$$

- Column presentation (Cain-Gray-Malheiro, 2015)
\triangleright add columns as generators:

$$
c_{u}=x_{p} \ldots x_{2} x_{1} \in \operatorname{Knuth}_{1}^{*}(n) \quad \text { such that } \quad x_{p}>\ldots>x_{2}>x_{1} .
$$

Plactic monoids: column presentation
\rightarrow Column extended presentation of the plactic monoid $\mathbf{P}_{\boldsymbol{n}}$

Plactic monoids: column presentation

- Column extended presentation of the plactic monoid \mathbf{P}_{n}
$\triangleright 1$-cells:

$$
\operatorname{Col}_{1}(n)=\left\{c_{u} \mid u \text { is a column }\right\}
$$

Plactic monoids: column presentation

- Column extended presentation of the plactic monoid \mathbf{P}_{n}
\triangleright 1-cells:

$$
\operatorname{Col}_{1}(n)=\left\{c_{u} \mid u \text { is a column }\right\}
$$

\triangleright 2-cells: $\mathrm{Col}_{2}(n)$ is the set of 2-cells

$$
c_{u} c_{v} \stackrel{\alpha_{u}}{\Longrightarrow} c_{w} c_{w^{\prime}}
$$

such that u and v are columns, the planar representation of the Schensted tableau $P(u v)$ is not the juxtaposition of columns u and v and where w and w^{\prime} are respectively the left and right columns of $P(u v)$.

Plactic monoids: column presentation

- Column extended presentation of the plactic monoid \mathbf{P}_{n}
\triangleright 1-cells:

$$
\operatorname{Col}_{1}(n)=\left\{c_{u} \mid u \text { is a column }\right\}
$$

\triangleright 2-cells: $\mathrm{Col}_{2}(n)$ is the set of 2-cells

$$
c_{u} c_{v} \stackrel{\alpha_{u v}}{\Longrightarrow} c_{w} c_{w^{\prime}}
$$

such that u and v are columns, the planar representation of the Schensted tableau $P(u v)$ is not the juxtaposition of columns u and v and where w and w^{\prime} are respectively the left and right columns of $P(u v)$.
\triangleright 3-cells:

with x in $\operatorname{Knuth}_{1}(n)$ and v, t are columns.
Theorem. [Hage-M., 2015]
For $n \geqslant 2, \mathrm{Col}_{3}(n)$ is a finite coherent presentation of the plactic monoid \mathbf{P}_{n}.

Plactic monoids: column presentation

\rightarrow Column extended presentation of the plactic monoid \mathbf{P}_{n}
\triangleright 1-cells:

$$
\operatorname{Col}_{1}(n)=\left\{c_{u} \mid u \text { is a column }\right\}
$$

\triangleright 2-cells: $\mathrm{Col}_{2}(n)$ is the set of 2-cells

$$
c_{u} c_{v} \stackrel{\alpha_{u v}}{\Longrightarrow} c_{w} c_{w^{\prime}}
$$

such that u and v are columns, the planar representation of the Schensted tableau $P(u v)$ is not the juxtaposition of columns u and v and where w and w^{\prime} are respectively the left and right columns of $P(u v)$.
\triangleright 3-cells:

with x in $\operatorname{Knuth}_{1}(n)$ and v, t are columns.
Theorem. [Hage-M., 2015]
For $n \geqslant 2, \mathrm{Col}_{3}(n)$ is a finite coherent presentation of the plactic monoid \mathbf{P}_{n}.
Proof.
By homotopical completion-reduction of the 2-polygraph $\mathrm{Col}_{2}(n)$.

Conclusion

- Computations of polygraphic resolutions

Conclusion

- Computations of polygraphic resolutions
\triangleright Inductive constructions from coherent presentations, (Guiraud-M., 2012),

Conclusion

- Computations of polygraphic resolutions
\triangleright Inductive constructions from coherent presentations, (Guiraud-M., 2012),
\triangleright Objective: explicit resolutions for B_{n}^{+}and \mathbf{P}_{n}.

Conclusion

- Computations of polygraphic resolutions
\triangleright Inductive constructions from coherent presentations, (Guiraud-M., 2012),
\triangleright Objective: explicit resolutions for B_{n}^{+}and \mathbf{P}_{n}.
- Cubical coherent presentation and cubical polygraphic resolutions.
\triangleright Cubical polygraphic resolutions could help to explicit formulas for higher syzygies of B_{n}^{+} and P_{n}.

Conclusion

- Computations of polygraphic resolutions
\triangleright Inductive constructions from coherent presentations, (Guiraud-M., 2012),
\triangleright Objective: explicit resolutions for B_{n}^{+}and P_{n}.
- Cubical coherent presentation and cubical polygraphic resolutions.
\triangleright Cubical polygraphic resolutions could help to explicit formulas for higher syzygies of B_{n}^{+} and P_{n}.
- Prototype implementation of homotopical completion-reduction procedure, (Mimram, 2013)
\triangleright http://www.pps.univ-paris-diderot.fr/~smimram/rewr
\triangleright Objective: computations for higher ranks and higher syzygies.

