Philippe Malbos

Institut Camille Jordan, Université Claude Bernard Lyon 1

Joint works with

Stéphane Gaussent, Yves Guiraud, Nohra Hage, Samuel Mimram

GETCO 2015

Tuesday, April 7, 2015, Aalborg

▶ Given a category (or a monoid) C

▶ Given a category (or a monoid) C

presented by generators and relations

▶ Given a category (or a monoid) C

presented by generators and relations

 \triangleright we would like build a (small !) cofibrant approximation of C in the category of $(\infty,1)\text{-}categories,$

▶ Given a category (or a monoid) C

presented by generators and relations

 \triangleright we would like build a (small !) cofibrant approximation of C in the category of (∞ , 1)-categories,

- that is, a free $(\infty, 1)$ -category homotopically equivalent to C.

Given a category (or a monoid) C

presented by generators and relations

 \triangleright we would like build a (small !) cofibrant approximation of C in the category of (∞ , 1)-categories,

- that is, a free $(\infty, 1)$ -category homotopically equivalent to C.

► Polygraphic resolutions constructed from a rewriting system that presents C, (Guiraud-M., 2012).

Given a category (or a monoid) C

presented by generators and relations

 \triangleright we would like build a (small !) cofibrant approximation of C in the category of (∞ , 1)-categories,

- that is, a free $(\infty, 1)$ -category homotopically equivalent to C.

► Polygraphic resolutions constructed from a rewriting system that presents C, (Guiraud-M., 2012).

- Applications: computation of homological invariants
 - Baues-Wirsching (co)homology of category C.

Given a category (or a monoid) C

presented by generators and relations

 \triangleright we would like build a (small !) cofibrant approximation of C in the category of (∞ , 1)-categories,

- that is, a free $(\infty, 1)$ -category homotopically equivalent to C.

▶ Polygraphic resolutions constructed from a rewriting system that presents C, (Guiraud-M., 2012).

▶ Applications: computation of homological invariants

- Baues-Wirsching (co)homology of category C.

▶ In low dimensions coherent presentations

Given a category (or a monoid) C

presented by generators and relations

 \triangleright we would like build a (small !) cofibrant approximation of C in the category of (∞ , 1)-categories,

- that is, a free $(\infty, 1)$ -category homotopically equivalent to C.

▶ Polygraphic resolutions constructed from a rewriting system that presents C, (Guiraud-M., 2012).

Applications: computation of homological invariants

- Baues-Wirsching (co)homology of category C.

In low dimensions : coherent presentations

▷ generators, oriented relations, oriented syzygies.

▶ Given a category (or a monoid) C

presented by generators and relations

 \triangleright we would like build a (small !) cofibrant approximation of C in the category of (∞ , 1)-categories,

- that is, a free $(\infty, 1)$ -category homotopically equivalent to C.

▶ Polygraphic resolutions constructed from a rewriting system that presents C, (Guiraud-M., 2012).

Applications: computation of homological invariants

- Baues-Wirsching (co)homology of category C.

In low dimensions : coherent presentations

▷ generators, oriented relations, oriented syzygies.

▶ Applications

- Explicit description of actions of a monoid on categories (representation theory),
- Coherence theorems for monoids.

▶ A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite) set S of involutions, $s^2 = 1$, satisfying braid relations

 $tstst \ldots = ststs \ldots$

▶ A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite) set S of involutions, $s^2 = 1$, satisfying braid relations

 $tstst \ldots = ststs \ldots$

▶ Forgetting the involutive character of generators, one gets the Artin's presentation

 $\operatorname{Art}(\mathbf{W}) = \langle S \mid tstst \ldots = ststs \ldots \rangle$

of the Artin monoid $B^+(W)$.

A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite) set S of involutions, $s^2 = 1$, satisfying braid relations

 $tstst \ldots = ststs \ldots$

▶ Forgetting the involutive character of generators, one gets the Artin's presentation

 $\operatorname{Art}(\mathbf{W}) = \langle S \mid tstst \ldots = ststs \ldots \rangle$

of the Artin monoid $B^+(W)$.

Objective.

▷ Push further Artin's presentation and study the relations amongst the braid relations. (Brieskorn-Saito, 1972, Deligne, 1972, Deligne, 1997, Tits, 1981, Michel, 1999).

▶ Set $W = S_4$ the group of permutations of $\{1, 2, 3, 4\}$, with $S = \{r, s, t\}$ where

$$r = > | | s = | > | t = | > |$$

Set $W = S_4$ the group of permutations of $\{1, 2, 3, 4\}$, with $S = \{r, s, t\}$ where

$$r = \bigotimes | | s = | \bigotimes | t = | | \bigotimes$$

▶ The associated Artin monoid $B^+(S_4)$ is the monoid of braids on 4 strands:

 $\operatorname{Art}_2(\mathbf{S}_4) = \langle r, s, t \mid rsr = srs, rt = tr, tst = sts \rangle$

▶ Set $W = S_4$ the group of permutations of $\{1, 2, 3, 4\}$, with $S = \{r, s, t\}$ where

$$r = \bigotimes | | s = | \bigotimes | t = | | \bigotimes$$

• The associated Artin monoid $B^+(S_4)$ is the monoid of braids on 4 strands.

 $\operatorname{Art}_2(\mathbf{S}_4) = \langle r, s, t \mid rsr = srs, rt = tr, tst = sts \rangle$

► The relations amongst the braid relations on 4 strands are generated by the following Zamolodchikov relation (Deligne, 1997).

▶ Plactic monoid of rank n

$$\mathbf{P}_n = \langle 1, \dots, n \mid \frac{zxy = xzy \quad \text{for all } 1 \leq x \leq y < z \leq n}{yzx = yxz \quad \text{for all } 1 \leq x < y \leq z \leq n} \rangle$$

▶ Plactic monoid of rank n

$$\mathbf{P}_n = \langle 1, \dots, n \mid \begin{aligned} zxy = xzy & \text{for all } 1 \leq x \leq y < z \leq n \\ yzx = yxz & \text{for all } 1 \leq x < y \leq z \leq n \end{aligned}$$

▶ algebraic combinatoric, representation theory.

Plactic monoid of rank n

$$\mathbf{P}_n = \langle 1, \dots, n \mid \begin{aligned} zxy &= xzy \quad \text{for all } 1 \leq x \leq y < z \leq n \\ yzx &= yxz \quad \text{for all } 1 \leq x < y \leq z \leq n \end{aligned}$$

> algebraic combinatoric, representation theory.

 \blacktriangleright Coherent presentation for P_2

$$\mathbf{P}_2 = \langle 1, 2 \mid 211 = 121, 221 = 212 \rangle$$

▶ Plactic monoid of rank n

$$\mathbf{P}_n = \langle 1, \dots, n \mid \begin{aligned} zxy &= xzy \quad \text{for all } 1 \leq x \leq y < z \leq n \\ yzx &= yxz \quad \text{for all } 1 \leq x < y \leq z \leq n \end{aligned}$$

> algebraic combinatoric, representation theory.

 \blacktriangleright Coherent presentation for P_2

$$\mathbf{P}_2 = \langle 1, 2 \mid 211 = 121, 221 = 212 \rangle$$

▷ Relations amongst the relations generated by

Plactic monoid of rank n

$$\mathbf{P}_n = \langle 1, \dots, n \mid \begin{aligned} zxy &= xzy \quad \text{for all } 1 \leq x \leq y < z \leq n \\ yzx &= yxz \quad \text{for all } 1 \leq x < y \leq z \leq n \end{aligned}$$

> algebraic combinatoric, representation theory.

► Coherent presentation for P₂

$$P_2 = \langle 1, 2 | 211 = 121, 221 = 212 \rangle$$

▷ Relations amongst the relations generated by

▶ For $n \ge 3$, combinatorial 'explosion' with the Knuth's presentation.

Plactic monoid of rank n

$$\mathbf{P}_n = \langle 1, \dots, n \mid \begin{aligned} zxy &= xzy \quad \text{for all } 1 \leq x \leq y < z \leq n \\ yzx &= yxz \quad \text{for all } 1 \leq x < y \leq z \leq n \end{aligned}$$

> algebraic combinatoric, representation theory.

► Coherent presentation for P₂

$$P_2 = \langle 1, 2 | 211 = 121, 221 = 212 \rangle$$

▷ Relations amongst the relations generated by

▶ For $n \ge 3$, combinatorial 'explosion' with the Knuth's presentation.

Objective.

 \triangleright Compute finite coherent presentation for P_n .

▶ The Knuth-Bendix procedure does not terminate for

 \triangleright **B**⁺₃ = $\langle s, t | sts = tst \rangle$ on the two generators s and t, (Kapur-Narendran, 1985)

The Knuth-Bendix procedure does not terminate for

 \triangleright **B**⁺₃ = $\langle s, t | sts = tst \rangle$ on the two generators s and t, (Kapur-Narendran, 1985)

▶ **P**₄ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).

The Knuth-Bendix procedure does not terminate for

 $\triangleright \mathbf{B}_3^+ = \langle s, t | sts = tst \rangle$ on the two generators s and t, (Kapur-Narendran, 1985)

▶ **P**₄ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).

\triangleright Computations of coherent presentation for monoids B_n^+ of P_n need new generators.

The Knuth-Bendix procedure does not terminate for

 $\triangleright \mathbf{B}_3^+ = \langle s, t | sts = tst \rangle$ on the two generators s and t, (Kapur-Narendran, 1985)

▶ P₄ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).

• Computations of coherent presentation for monoids B_n^+ of P_n need new generators.

► Homotopical completion-reduction procedure adds

- ▷ generators,
- ▶ oriented relations,
- ▷ oriented syzygies

The Knuth-Bendix procedure does not terminate for

 $\triangleright \mathbf{B}_3^+ = \langle s, t \mid sts = tst \rangle$ on the two generators s and t, (Kapur-Narendran, 1985)

▶ P₄ on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).

• Computations of coherent presentation for monoids B_n^+ of P_n need new generators.

Homotopical completion-reduction procedure adds

- ▷ generators,
- ▶ oriented relations,
- ▷ oriented syzygies

and a way to homotopically reduce them.

Plan

I. Coherent presentations of categories

- Polygraphs as higher-dimensional rewriting systems
- Coherent presentations as cofibrant approximations

II. Homotopical completion-reduction procedure

- Tietze transformations
- Rewriting properties of polygraphs
- Completion-reduction procedure

III. Applications to Artin and plactic monoids

References

- Hage-M., Coherent presentations of plactic monoids, 2015.
- Gaussent-Guiraud-M., Coherent presentations of Artin monoids, 2015.
- Guiraud-M.-Mimram, A homotopical completion procedure with applications to coherence of monoids, 2013.

Part I. Coherent presentations of categories

► A 1-polygraph is an directed graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

► A 1-polygraph is an directed graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

A 2-polygraph is a triple Σ = (Σ₀, Σ₁, Σ₂) where
(Σ₀, Σ₁) is a 1-polygraph,
Σ₂ is a globular extension of the free 1-category Σ^{*}₁.

► A 1-polygraph is an directed graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

A 2-polygraph is a triple Σ = (Σ₀, Σ₁, Σ₂) where
(Σ₀, Σ₁) is a 1-polygraph,
Σ₂ is a globular extension of the free 1-category Σ₁^{*}.

► A rewriting step is a 2-cell of the free 2-category Σ_2^* over Σ with shape

where $u \implies v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

► A 1-polygraph is an directed graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

A 2-polygraph is a triple Σ = (Σ₀, Σ₁, Σ₂) where
(Σ₀, Σ₁) is a 1-polygraph,
Σ₂ is a globular extension of the free 1-category Σ₁^{*}.

► A rewriting step is a 2-cell of the free 2-category Σ_2^* over Σ with shape

 $t_0 s_1(\alpha)$

 $t_0 t_1(\alpha)$

where $u \implies v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

► A (3, 1) polygraph is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of

▷ a 2-polygraph Σ_2 ,

▷ a globular extension Σ_3 of the free (2, 1) category Σ_2^{\top} .

► A (3, 1)-polygraph is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of

▷ a 2-polygraph Σ_2 ,

▷ a globular extension Σ_3 of the free (2, 1)-category Σ_2^{\top} .

Let **C** be a category (or a monoid).

► A presentation of C is a 2-polygraph Σ such that

 $\bm{C}\simeq \bm{\Sigma}_1^*/\bm{\Sigma}_2$
Polygraphs

► A (3, 1)-polygraph is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of

▷ a 2-polygraph Σ_2 ,

▷ a globular extension Σ_3 of the free (2, 1)-category Σ_2^{\top} .

Let **C** be a category (or a monoid).

► A presentation of C is a 2-polygraph Σ such that

 $\bm{C}\simeq \bm{\Sigma}_1^*/\bm{\Sigma}_2$

An extended presentation of C is a (3,1)-polygraph Σ such that

 $\mathbf{C}\simeq \Sigma_1^*/\Sigma_2$

Coherent presentations of categories

► A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_3 is a homotopy basis.

In other words:

```
▷ the quotient (2, 1)-category \Sigma_2^{\top}/\Sigma_3 is aspherical,
```

In other words:

 \triangleright the quotient (2, 1)-category Σ_2^{\top}/Σ_3 is aspherical,

▷ the congruence generated by Σ_3 on the (2, 1)-category Σ_2^{\top} contains every pair of parallel 2-cells.

In other words:

 \triangleright the quotient (2, 1)-category Σ_2^{\top}/Σ_3 is aspherical,

 \triangleright the congruence generated by Σ_3 on the (2,1)-category Σ_2^\top contains every pair of parallel 2-cells.

▷ 3-cells of Σ_3 generate a tiling of Σ_2^{\top} .

In other words:

▷ the quotient (2, 1)-category Σ_2^{\top}/Σ_3 is aspherical,

 \triangleright the congruence generated by Σ_3 on the (2,1)-category Σ_2^\top contains every pair of parallel 2-cells.

▷ 3-cells of Σ_3 generate a tiling of Σ_2^{\top} .

Theorem. [Gaussent-Guiraud-M., 2015]

Let Σ be an extended presentation of a category C. For the Lack's model structure on 2-categories, the following assertions are equivalent:

i) The (3, 1)-polygraph Σ is a coherent presentation of C.

ii) The (2,1)-category Σ_2^{\top}/Σ_3 is a cofibrant approximation of C, that is, a cofibrant 2-category weakly equivalent to C.

Free monoid : no relation, an empty homotopy basis:

 $\langle x_1, \ldots, x_n \mid \emptyset \mid \emptyset \rangle$

▶ Free monoid : no relation, an empty homotopy basis:

 $\langle x_1, \ldots, x_n \mid \emptyset \mid \emptyset \rangle$

- Free commutative monoid of rank 3:
 - ▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\Upsilon rs} rs, ts \xrightarrow{\Upsilon st} st, tr \xrightarrow{\Upsilon rt} rt \mid all the 2-spheres \cdot \rangle$$

Free monoid : no relation, an empty homotopy basis:

$$\langle x_1, \ldots, x_n \mid \emptyset \mid \emptyset \rangle$$

- Free commutative monoid of rank 3:
 - ▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid all the 2-spheres$$

▷ a homotopy basis can be made with only one 3-cell

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid Z_{r,s,t} \rangle$$

Free monoid no relation, an empty homotopy basis:

$$\langle x_1, \ldots, x_n \mid \emptyset \mid \emptyset \rangle$$

- Free commutative monoid of rank 3:
 - ▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{r\xi}} rs, ts \xrightarrow{\gamma_{s\xi}} st, tr \xrightarrow{\gamma_{r\xi}} rt \mid a^{||}$$
 the 2-sphere

▷ a homotopy basis can be made with only one 3-cell

$$\langle r, s, t \mid sr \stackrel{\gamma_{rs}}{\Longrightarrow} rs, ts \stackrel{\gamma_{st}}{\Longrightarrow} st, tr \stackrel{\gamma_{rt}}{\Longrightarrow} rt \mid Z_{r,s,t} \rangle$$

where the 3-cell $Z_{r,s,t}$ is the **permutohedron**

► Artin monoid $B^+(S_3)$

► Artin monoid B⁺(S₃)

► Artin monoid B⁺(S₃)

$$\operatorname{Art}_{3}(\mathbf{S}_{3}) = \left\langle s, t \mid tst \stackrel{\boldsymbol{\gamma}_{st}}{\Longrightarrow} sts \mid \emptyset \right\rangle$$

Artin monoid B^+(S_4)

$$\operatorname{Art}_{3}(\mathbf{S}_{4}) = \left\langle r, s, t \mid rsr \xrightarrow{\gamma s_{t}} srs, rt \xrightarrow{\gamma t_{t}} tr, tst \xrightarrow{\gamma s_{t}} sts \mid Z_{r,s,t} \right\rangle$$

Problems.

- 1. How to compute a coherent presentation ?
- 2. How to transform a coherent presentation ?

Part II. Homotopical completion-reduction procedure

• Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

> Two (3, 1)-polygraphs Σ and Υ are **Tietze-equivalent** if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

► An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3-functor with source Σ_3^{\top} that belongs to one of the following pairs of dual operations:

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \stackrel{\approx}{\longrightarrow} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

b add a generator for u in Σ_1^* ,

и

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

b add a generator: for u in Σ_1^* , add a generating 1-cell x

u x

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \stackrel{\approx}{\longrightarrow} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

b add a generator. for u in Σ_1^* , add a generating 1-cell x and add a generating 2-cell

$$u \xrightarrow{\delta} x$$

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

b add a generator. for u in Σ_1^* , add a generating 1-cell x and add a generating 2-cell

$$u \xrightarrow{\delta} x$$

remove a generator: for a generating 2-cell α in Σ_2 with x in Σ_1 ,

$$u \xrightarrow{\alpha} x$$

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

b add a generator. for u in Σ_1^* , add a generating 1-cell x and add a generating 2-cell

$$u \xrightarrow{\delta} x$$

remove a generator: for a generating 2-cell α in Σ_2 with x in Σ_1 , remove x and α

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

▶ add a relation: for a 2-cell f in Σ_2^{\top} ,

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

• add a relation: for a 2-cell f in Σ_2^{\top} , add a generating 2-cell α_f

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

▶ add a relation: for a 2-cell f in Σ_2^{\top} , add a generating 2-cell α_f add a generating 3-cell A_f

Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

▶ add a relation: for a 2-cell f in Σ_2^{\top} , add a generating 2-cell α_f add a generating 3-cell A_f

remove a relation: for a 3-cell A with α in Σ_2 ,

Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

▶ add a relation: for a 2-cell f in Σ_2^{\top} , add a generating 2-cell α_f add a generating 3-cell A_f

remove a relation: for a 3-cell A with α in Σ_2 , remove α and A

> Two (3, 1)-polygraphs Σ and Υ are **Tietze-equivalent** if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3,1)-polygraph Σ is a 3-functor with source Σ_3^{\top} that belongs to one of the following pairs of dual operations:

▶ add a 3-cell: for 3-cells B,

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

▶ add a 3-cell for 3-cells B, add a generating 3-cell $A : f \Rightarrow g$

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

▶ add a 3-cell for 3-cells B, add a generating 3-cell $A : f \Rightarrow g$

remove a 3-cell: for a generating 3-cell $A: f \Rightarrow g$

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*$

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ_3^{-1} that belongs to one of the following pairs of dual operations:

▶ add a 3-cell for 3-cells B, add a generating 3-cell $A : f \Rightarrow g$

remove a 3-cell for a generating 3-cell $A : f \Rightarrow g$ remove A

Theorem. [Gaussent-Guiraud-M., 2015]

Two (finite) (3,1)-polygraphs Σ and Υ are Tietze equivalent if, and only if, there exists a (finite) Tietze transformation

$\mathfrak{T}: \Sigma^\top \longrightarrow \Upsilon^\top$

Theorem. [Gaussent-Guiraud-M., 2015]

Two (finite) (3,1)-polygraphs Σ and Υ are Tietze equivalent if, and only if, there exists a (finite) Tietze transformation

 $\mathfrak{T}: \Sigma^\top \longrightarrow \Upsilon^\top$

Consequence.

If Σ is a coherent presentation of a category C and if there exists a Tietze transformation

 $\mathfrak{T}: \Sigma^\top \longrightarrow \Upsilon^\top$

then Υ is a coherent presentation of **C**

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.
Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

 \triangleright Σ terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

 \triangleright **\Sigma** terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

▶ A branching of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

 \triangleright **\Sigma** terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

A branching of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source

 \triangleright Σ is confluent if all of its branchings are confluent:

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

 \triangleright **\Sigma** terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

▶ A branching of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source

Σ is confluent if all of its branchings are confluent:

 $\blacktriangleright \Sigma$ is convergent if it terminates and it is confluent.

A branching

is local if f and g are rewriting steps.

A branching

is local if f and g are rewriting steps.

► A critical branching is a local branching of the form

► The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{3}) = \left\langle s, t \mid tst \stackrel{\gamma st}{\Longrightarrow} sts \right\rangle$$

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{3}) = \left\langle s, t \mid tst \xrightarrow{\gamma st} sts \right\rangle$$

has only one critical branching:

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{3}) = \left\langle s, t \mid tst \xrightarrow{\gamma st} sts \right\rangle$$

has only one critical branching:

tstst

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{3}) = \left\langle s, t \mid tst \xrightarrow{\gamma st} sts \right\rangle$$

has only one critical branching:

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{3}) = \left\langle s, t \mid tst \xrightarrow{\gamma st} sts \right\rangle$$

has only one critical branching:

► The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{4}) = \left\langle r, s, t \mid sr \xrightarrow{\gamma rs} rs, ts \xrightarrow{\gamma st} st, tr \xrightarrow{\gamma rt} rt \right\rangle$$

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{4}) = \left\langle r, s, t \mid sr \xrightarrow{\gamma rs} rs, ts \xrightarrow{\gamma st} st, tr \xrightarrow{\gamma rt} rt \right\rangle$$

▶ It has only one critical branching

tsr

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{4}) = \left\langle r, s, t \mid sr \xrightarrow{\gamma rs} rs, ts \xrightarrow{\gamma st} st, tr \xrightarrow{\gamma rt} rt \right\rangle$$

It has only one critical branching

 $\gamma_{\rm st} r \rightarrow {}^{\rm st} r$ tsr

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{4}) = \left\langle r, s, t \mid sr \xrightarrow{\gamma rs} rs, ts \xrightarrow{\gamma st} st, tr \xrightarrow{\gamma rt} rt \right\rangle$$

▶ It has only one critical branching

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{4}) = \left\langle r, s, t \mid sr \xrightarrow{\gamma} rs, ts \xrightarrow{\gamma} st, tr \xrightarrow{\gamma} rt \right\rangle$$

▶ It has only one critical branching

▶ The 2-polygraph

$$\operatorname{Art}_{2}(\mathbf{S}_{4}) = \left\langle r, s, t \mid sr \xrightarrow{\gamma} rs, ts \xrightarrow{\gamma} st, tr \xrightarrow{\gamma} rt \right\rangle$$

▶ It has only one critical branching

Let Σ be a terminating 2-polygraph (with a total termination order).

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

for more aritical branchian

▷ for every critical branching

u , i

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical branching

compute f' and g' reducing to some normal forms.

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical branching

compute f' and g' reducing to some normal forms.

▷ if $\hat{v} = \hat{w}$, add a 3-cell $A_{f,g}$

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical branching

compute f' and g' reducing to some normal forms.

 \triangleright if $\hat{v} = \hat{w}$, add a 3-cell $A_{f,\sigma}$

▷ if $\hat{v} < \hat{w}$, add the 2-cell $\alpha_{f,g}$ and the 3-cell $A_{f,g}$

▶ Potential adjunction of additional 2-cells α_{f,g} can create new critical branchings, ▷ whose confluence must also be examined,

▶ possibly generating the adjunction of additional 2-cells and 3-cells

▷

▶ Potential adjunction of additional 2-cells α_{f,g} can create new critical branchings,
▷ whose confluence must also be examined,

 \blacktriangleright possibly generating the adjunction of additional 2-cells and 3-cells

▷

▶ This defines an increasing sequence of (3, 1)-polygraphs

 $\Sigma = \Sigma^0 \subseteq \Sigma^1 \subseteq \cdots \subseteq \Sigma^n \subseteq \Sigma^{n+1} \subseteq \cdots$

• The homotopical completion of Σ is the (3, 1)-polygraph

 $\mathbb{S}(\Sigma) = \bigcup_{n \ge 0} \Sigma^n.$

▶ Potential adjunction of additional 2-cells α_{f,g} can create new critical branchings,
▷ whose confluence must also be examined,

▶ possibly generating the adjunction of additional 2-cells and 3-cells

▷....

▶ This defines an increasing sequence of (3, 1)-polygraphs

 $\Sigma = \Sigma^0 \subseteq \Sigma^1 \subseteq \cdots \subseteq \Sigma^n \subseteq \Sigma^{n+1} \subseteq \cdots$

The homotopical completion of Σ is the (3,1)-polygraph

 $\mathbb{S}(\Sigma) = \bigcup_{n \ge 0} \Sigma^n.$

Theorem. [Gaussent-Guiraud-M., 2015]

For a terminating presentation Σ of a category C, the homotopical completion $S(\Sigma)$ of Σ is a coherent convergent presentation of C.

▶ Potential adjunction of additional 2-cells α_{f,g} can create new critical branchings,
▷ whose confluence must also be examined,

 \blacktriangleright possibly generating the adjunction of additional 2-cells and 3-cells

▷....

This defines an increasing sequence of (3, 1)-polygraphs

 $\Sigma = \Sigma^0 \subseteq \Sigma^1 \subseteq \cdots \subseteq \Sigma^n \subseteq \Sigma^{n+1} \subseteq \cdots$

The homotopical completion of Σ is the (3,1)-polygraph

 $\mathbb{S}(\Sigma) = \bigcup_{n \ge 0} \Sigma^n.$

Theorem. [Gaussent-Guiraud-M., 2015]

For a terminating presentation Σ of a category C, the homotopical completion $S(\Sigma)$ of Σ is a coherent convergent presentation of C.

Proof.

 \triangleright $S(\Sigma)$ obtained from Σ by successive application of Knuth-Bendix's procedure

Squier's coherence theorem.

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

The deglex order generated by t > s > a proves the termination of Σ_2^{KN} .

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

The deglex order generated by t > s > a proves the termination of Σ_2^{KN} .

$$\mathbb{S}(\Sigma_2^{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a$$

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

The deglex order generated by t>s>a proves the termination of Σ_2^{KN} .

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \ \text{s, t, a} \ | \ \text{ta} \stackrel{\alpha}{\Longrightarrow} \text{as, st} \stackrel{\beta}{\Longrightarrow} \text{a} \rangle$$

The deglex order generated by t>s>a proves the termination of Σ_2^{KN} .

$$S(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa \qquad | A$$

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\pmb{lpha}}{\Longrightarrow} \text{ as, st } \stackrel{\pmb{eta}}{\Longrightarrow} \text{ a} \right
angle$$

The deglex order generated by t > s > a proves the termination of Σ_2^{KN} .

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as, st } \stackrel{\beta}{\Longrightarrow} \text{ a} \right\rangle$$

The deglex order generated by t > s > a proves the termination of Σ_2^{KN} .

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as, st } \stackrel{\beta}{\Longrightarrow} \text{ a} \right\rangle$$

The deglex order generated by t > s > a proves the termination of Σ_2^{KN} .

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as, st } \stackrel{\beta}{\Longrightarrow} \text{ a} \right\rangle$$

The deglex order generated by t>s>a proves the termination of $\Sigma_2^{
m KN}$.

Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as, st } \stackrel{\beta}{\Longrightarrow} \text{ a} \right\rangle$$

The deglex order generated by t > s > a proves the termination of Σ_2^{KN} .

Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\pmb{lpha}}{\Longrightarrow} \text{ as, st } \stackrel{\pmb{eta}}{\Longrightarrow} \text{ a} \right
angle$$

The deglex order generated by t>s>a proves the termination of $\Sigma_2^{
m KN}$.

Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as, st } \stackrel{\beta}{\Longrightarrow} \text{ a} \right\rangle$$

The deglex order generated by t > s > a proves the termination of Σ_2^{KN} .

However. The extended presentation $S(\Sigma_2^{KN})$ obtained is bigger than necessary.

INPUT: A terminating 2-polygraph Σ .

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

\$ x

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

INPUT: A terminating 2-polygraph Σ .

- **Step 1**. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).
- Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of
 - \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a **collapsible part** Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

▷ the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

▷ the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

 \triangleright some collapsible 2-cells or 3-cells already present in the initial presentation Σ .

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

▷ the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

 \triangleright some collapsible 2-cells or 3-cells already present in the initial presentation Σ .

The homotopical completion-reduction of terminating 2-polygraph Σ is the (3, 1)-polygraph

 $\Re(\Sigma) = \pi_{\Gamma}(\Im(\Sigma))$

Theorem. [Gaussent-Guiraud-M., 2015]

For every terminating presentation Σ of a category C, the homotopical completion-reduction $\Re(\Sigma)$ of Σ is a coherent presentation of C.

Example.

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

Example.

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

 $\mathbb{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta } \overset{\alpha}{\Longrightarrow} \text{ as, st } \overset{\beta}{\Longrightarrow} \text{ a, sas } \overset{\gamma}{\Longrightarrow} \text{ aa, saa } \overset{\delta}{\Longrightarrow} \text{ aat } \mid A, B, C, D \right\rangle$

Example.

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

$$\begin{split} & \mathcal{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as, st } \stackrel{\beta}{\Longrightarrow} \text{ a, sas } \stackrel{\gamma}{\Longrightarrow} \text{ aa, saa } \stackrel{\delta}{\Longrightarrow} \text{ aat } \mid \text{ A, B, C, D} \right\rangle \\ & \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as , st } \stackrel{\beta}{\Longrightarrow} \text{ a, sas } \stackrel{\gamma}{\Longrightarrow} \text{ aa, saa } \stackrel{\delta}{\Longrightarrow} \text{ aat } \mid \text{ A, B, C, D} \right\rangle \end{split}$$

Example. $\Sigma_{2}^{\mathrm{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$ $S(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$ $\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$

▶ There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

 $\Sigma_2^{\mathrm{KN}}=ig\langle ext{ s, t, a } \mid ext{ ta } \stackrel{lpha}{\Longrightarrow} ext{ as, st } \stackrel{eta}{\Longrightarrow} ext{ a}ig
angle$

There are four critical triple branchings, overlapping on

Example.

sasta, sasast, sasasas, sasasaa.

▷ Critical triple branching on *sasta* proves that *C* is redundant:

 $C = sas \alpha^{-1} \star_1 (Ba \star_1 aa\alpha) \star_2 (saA \star_1 \delta a \star_1 aa\alpha)$

 $\Sigma_2^{\mathrm{KN}}=\left\langle \ \mathrm{s,t,a} \ \mid \ \mathrm{ta} \stackrel{\pmb{lpha}}{\Longrightarrow} \ \mathrm{as,\ st} \stackrel{\pmb{eta}}{\Longrightarrow} \ \mathrm{a} \left
ight
angle$

$$\begin{split} & \mathcal{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \right\rangle \\ & \left\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, \mathcal{K}, \mathcal{K} \right\rangle \end{split}$$

▶ There are four critical triple branchings, overlapping on

Example.

sasta, sasast, sasasas, sasasaa.

Critical triple branching on sasast proves that D is redundant:

 $D = sasa\beta^{-1} \star_1 \left((Ct \star_1 aaa\beta) \star_2 (saB \star_1 \delta at \star_1 aa\alpha t \star_1 aaa\beta) \right)$

Example.

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

$$\begin{split} & \mathcal{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \right\rangle \\ & \left\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, \mathcal{K}, \mathcal{M} \right\rangle \end{split}$$

 \triangleright The 3-cells A and B are collapsible and the rules γ and δ are redundant.

Example. $\Sigma_{2}^{\mathrm{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$ $\delta(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$ $\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$

 \triangleright The 3-cells A and B are collapsible and the rules γ and δ are redundant.

Example.

$$\Sigma_2^{\mathrm{KN}} = \left\langle \ \textit{s, t, a} \ \mid \ \textit{ta} \ \stackrel{\boldsymbol{lpha}}{\Longrightarrow} \ \textit{as, st} \ \stackrel{\boldsymbol{eta}}{\Longrightarrow} \ \textit{a} \
ight
angle$$

$$S(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$
$$\langle s, t, \rangle \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

 \triangleright The rule $st \stackrel{\beta}{\Longrightarrow} a$ is collapsible and the generator a is redundant.

Example.

$$\Sigma_2^{\mathrm{KN}} = \left\langle \ \textit{s,t,a} \ \middle| \ \textit{ta} \stackrel{\pmb{\alpha}}{\Longrightarrow} \textit{as, st} \stackrel{\pmb{\beta}}{\Longrightarrow} \textit{a} \right\rangle$$

$$S(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$
$$\langle s, t, \rangle \mid tst \stackrel{\alpha}{\Longrightarrow} sts, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$

$$\begin{aligned} \mathcal{R}(\boldsymbol{\Sigma}_{2}^{\mathrm{KN}}) &= \langle s, t \mid tst \stackrel{\alpha}{\Longrightarrow} sts \mid \emptyset \rangle \\ &= \mathsf{Art}_{3}(\mathbf{S}_{3}) \\ &= \langle \varkappa \mid , \mid \varkappa \mid \stackrel{\boldsymbol{\varkappa}}{\rightarrowtail} \stackrel{\boldsymbol{\alpha}}{\Longrightarrow} \stackrel{\boldsymbol{\alpha}}{\searrow} \mid \emptyset \rangle \end{aligned}$$

Example.

$$\Sigma_2^{\mathrm{KN}} = \left\langle \ \textit{s, t, a} \ \mid \ \textit{ta} \ \stackrel{\boldsymbol{lpha}}{\Longrightarrow} \ \textit{as, st} \ \stackrel{\boldsymbol{eta}}{\Longrightarrow} \ \textit{a} \left
ight
angle$$

$$S(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$
$$\langle s, t, \rangle \mid tst \xrightarrow{\alpha} sts, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\begin{aligned} \mathcal{R}(\Sigma_{2}^{\mathrm{KN}}) &= \langle s, t \mid tst \stackrel{\alpha}{\Longrightarrow} sts \mid \emptyset \rangle \\ &= \mathsf{Art}_{3}(\mathbf{S}_{3}) \\ &= \langle \Join \mid , \mid \Join \mid \widecheck{\Join} \stackrel{\alpha}{\Longrightarrow} \stackrel{\alpha}{\Longrightarrow} \widecheck{\bigtriangledown} \mid \emptyset \rangle \end{aligned}$$

With presentation $Art_2(S_3)$ two proofs of the same equality in B_3^+ are equal.

Part III. Applications : Artin and plactic monoids

► Let W be a Coxeter group

$$\mathbf{W} = \left\langle S \mid s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \right\rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word tsts... with m_{st} letters.

► Let W be a Coxeter group

$$\mathbf{W} = \left\langle S \mid s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \right\rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word tsts... with m_{st} letters.

▶ Artin's presentation of the Artin monoid $B^+(W)$

$$\operatorname{Art}_{2}(\mathbf{W}) = \left\langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \right\rangle$$

• Garside's extended presentation of the Artin monoid $B^+(W)$

▶ 1-cells:

 $\mathsf{Gar}_1(W) = W \setminus \{1\}$

► Garside's extended presentation of the Artin monoid B⁺(W)

▶ 1-cells:

$$Gar_1(W) = W \setminus \{1\}$$

▷ 2-cells:

$$Gar_{2}(\mathbf{W}) = \left\{ \begin{array}{c} u | v \end{array}^{\alpha_{u,v}} uv \text{ whenever } I(uv) = I(u) + I(v) \end{array} \right\}$$

where uv is the product in W and u|v is the product in the free monoid over W.

► Garside's extended presentation of the Artin monoid B⁺(W)

▶ 1-cells:

$$Gar_1(W) = W \setminus \{1\}$$

⊳ 2-cells:

$$Gar_{2}(\mathbf{W}) = \left\{ \begin{array}{c} u | v \end{array}^{\alpha_{u,v}} uv \text{ whenever } l(uv) = l(u) + l(v) \right\}$$

where uv is the product in W and u|v is the product in the free monoid over W. \triangleright Gar₃(W) made of one 3-cell

for every u, v, w in $W \setminus \{1\}$ such that the lengths can be added.

▶ Garside's extended presentation of the Artin monoid $B^+(W)$

▶ 1-cells:

$$Gar_1(W) = W \setminus \{1\}$$

⊳ 2-cells:

$$Gar_{2}(\mathbf{W}) = \left\{ \begin{array}{c} u | v \stackrel{\alpha_{u,v}}{\Longrightarrow} uv \text{ whenever } l(uv) = l(u) + l(v) \end{array} \right\}$$

where uv is the product in W and u|v is the product in the free monoid over W. \triangleright Gar₃(W) made of one 3-cell

for every u, v, w in $W \setminus \{1\}$ such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015] Gar₃(W) is a coherent presentation the Artin monoid $B^+(W)$ ▶ Garside's extended presentation of the Artin monoid $B^+(W)$

▶ 1-cells:

$$Gar_1(W) = W \setminus \{1\}$$

⊳ 2-cells:

$$Gar_{2}(\mathbf{W}) = \left\{ \begin{array}{c} u | v \stackrel{\alpha_{u,v}}{\Longrightarrow} uv \text{ whenever } l(uv) = l(u) + l(v) \end{array} \right\}$$

where uv is the product in W and u|v is the product in the free monoid over W. \triangleright Gar₃(W) made of one 3-cell

for every u, v, w in $W \setminus \{1\}$ such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]

 $Gar_3(W)$ is a coherent presentation the Artin monoid $B^+(W)$

Proof.

By homotopical completion-reduction of the 2-polygraph $Gar_2(W)$.
Artin monoids: Artin's coherent presentation

Theorem. [Gaussent-Guiraud-M., 2015]

The Artin monoid $B^+(W)$ admits the coherent presentation $Art_3(W)$ made of

▶ Artin's presentation

$$\operatorname{Art}_2(\mathbf{W}) = \langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

▷ one 3-cell $Z_{r,s,t}$ for every t > s > r in S such that the subgroup $W_{\{r,s,t\}}$ is finite.

Artin monoids: Zamolodchikov $Z_{r,s,t}$ according to Coxeter type

▶ 1-cells:

 $Knuth_1(n) = \{ 1, ..., n \}$

▶ 1-cells:

Knuth₁
$$(n) = \{ 1, ..., n \}$$

▷ 2-cells are Knuth relations:

$$\mathsf{Knuth}_2(n) = \left\{ \begin{array}{cc} zxy = xzy & \text{for all } 1 \leqslant x \leqslant y < z \leqslant n \\ yzx = yxz & \text{for all } 1 \leqslant x < y \leqslant z \leqslant n \end{array} \right\}$$

▶ 1-cells:

Knuth₁
$$(n) = \{1, ..., n\}$$

▷ 2-cells are Knuth relations:

$$\mathsf{Knuth}_2(n) = \left\{ \begin{array}{cc} zxy = xzy & \text{for all } 1 \leqslant x \leqslant y < z \leqslant n \\ yzx = yxz & \text{for all } 1 \leqslant x < y \leqslant z \leqslant n \end{array} \right\}$$

For $n \ge 4$, there is no finite completion of Knuth₂(n) on Knuth₁(n).

▶ 1-cells:

Knuth₁
$$(n) = \{ 1, ..., n \}$$

▷ 2-cells are Knuth relations:

$$\mathsf{Knuth}_2(n) = \left\{ \begin{array}{c} zxy = xzy \quad \text{for all } 1 \leqslant x \leqslant y < z \leqslant n \\ yzx = yxz \quad \text{for all } 1 \leqslant x < y \leqslant z \leqslant n \end{array} \right\}$$

For $n \ge 4$, there is no finite completion of Knuth₂(n) on Knuth₁(n).

Any 1-cell w in Knuth $_{1}^{*}(n)$ is equals to its Schensted's tableau P(w):

▶ 1-cells:

Knuth₁
$$(n) = \{ 1, ..., n \}$$

▷ 2-cells are Knuth relations:

$$\mathsf{Knuth}_2(n) = \left\{ \begin{array}{cc} zxy = xzy & \text{for all } 1 \leqslant x \leqslant y < z \leqslant n \\ yzx = yxz & \text{for all } 1 \leqslant x < y \leqslant z \leqslant n \end{array} \right\}$$

For $n \ge 4$, there is no finite completion of Knuth₂(n) on Knuth₁(n).

Any 1-cell w in Knuth $_{1}^{*}(n)$ is equals to its Schensted's tableau P(w):

1	1	1	2	2	3	4
2	2	3	3	4	6	
4	5	6	6			
6	7					

▶ 1-cells:

Knuth₁
$$(n) = \{ 1, ..., n \}$$

▷ 2-cells are Knuth relations:

$$\mathsf{Knuth}_2(n) = \left\{ \begin{array}{cc} zxy = xzy & \text{for all } 1 \leqslant x \leqslant y < z \leqslant n \\ yzx = yxz & \text{for all } 1 \leqslant x < y \leqslant z \leqslant n \end{array} \right\}$$

For $n \ge 4$, there is no finite completion of Knuth₂(n) on Knuth₁(n).

Any 1-cell w in Knuth $_{1}^{*}(n)$ is equals to its Schensted's tableau P(w):

1	1	1	2	2	3	4
2	2	3	3	4	6	
4	5	6	6			
6	7					

Column presentation (Cain-Gray-Malheiro, 2015)
> add columns as generators:

 $c_u = x_p \dots x_2 x_1 \in \mathsf{Knuth}_1^*(n)$ such that $x_p > \dots > x_2 > x_1$.

► Column extended presentation of the plactic monoid P_n

► Column extended presentation of the plactic monoid P_n

▶ 1-cells:

 $\operatorname{Col}_1(n) = \left\{ c_u \mid u \text{ is a column} \right\}$

► Column extended presentation of the plactic monoid P_n

▶ 1-cells:

 $\operatorname{Col}_1(n) = \{ c_u \mid u \text{ is a column} \}$

▷ 2-cells: $Col_2(n)$ is the set of 2-cells

$$c_u c_v \stackrel{\alpha_{u,v}}{\Longrightarrow} c_w c_{w'}$$

such that u and v are columns, the planar representation of the Schensted tableau P(uv) is not the juxtaposition of columns u and v and where w and w' are respectively the left and right columns of P(uv).

► Column extended presentation of the plactic monoid P_n

▶ 1-cells:

 $\operatorname{Col}_1(n) = \{ c_u \mid u \text{ is a column} \}$

```
▷ 2-cells: Col_2(n) is the set of 2-cells
```

$$c_u c_v \stackrel{\alpha_{u,v}}{\Longrightarrow} c_w c_{w'}$$

such that u and v are columns, the planar representation of the Schensted tableau P(uv) is not the juxtaposition of columns u and v and where w and w' are respectively the left and right columns of P(uv).

⊳ 3-cells:

with x in Knuth₁(n) and v, t are columns.

Theorem. [Hage-M., 2015]

For $n \ge 2$, $\operatorname{Col}_3(n)$ is a finite coherent presentation of the plactic monoid \mathbf{P}_n .

► Column extended presentation of the plactic monoid P_n

▶ 1-cells:

 $\operatorname{Col}_1(n) = \{ c_u \mid u \text{ is a column} \}$

```
▷ 2-cells: Col_2(n) is the set of 2-cells
```

$$c_u c_v \stackrel{\alpha_{u,v}}{\Longrightarrow} c_w c_{w'}$$

such that u and v are columns, the planar representation of the Schensted tableau P(uv) is not the juxtaposition of columns u and v and where w and w' are respectively the left and right columns of P(uv).

⊳ 3-cells:

with x in Knuth₁(n) and v, t are columns.

Theorem. [Hage-M., 2015]

For $n \ge 2$, $\operatorname{Col}_3(n)$ is a finite coherent presentation of the plactic monoid \mathbf{P}_n .

Proof.

By homotopical completion-reduction of the 2-polygraph $Col_2(n)$.

► Computations of polygraphic resolutions

Computations of polygraphic resolutions

▶ Inductive constructions from coherent presentations, (Guiraud-M., 2012),

Computations of polygraphic resolutions

▶ Inductive constructions from coherent presentations, (Guiraud-M., 2012),

 \triangleright **Objective**: explicit resolutions for B_n^+ and P_n .

Computations of polygraphic resolutions

▶ Inductive constructions from coherent presentations, (Guiraud M., 2012),

 \triangleright **Objective**: explicit resolutions for B_n^+ and P_n .

Cubical coherent presentation and cubical polygraphic resolutions.

 \triangleright Cubical polygraphic resolutions could help to explicit formulas for higher syzygies of B_n^+ and P_n .

Computations of polygraphic resolutions

▶ Inductive constructions from coherent presentations, (Guiraud M., 2012),

 \triangleright **Objective**: explicit resolutions for B_n^+ and P_n .

Cubical coherent presentation and cubical polygraphic resolutions.

 \triangleright Cubical polygraphic resolutions could help to explicit formulas for higher syzygies of B_n^+ and P_n^- .

Prototype implementation of homotopical completion-reduction procedure, (Mimram, 2013) http://www.pps.univ-paris-diderot.fr/~smimram/rewr

▷ **Objective**: computations for higher ranks and higher syzygies.