DIHOMOTOPY
 AND THE
 CUBE PROPERTY

SAMUEL MIMRAM
 École Polytechnique

joint work with
ÉRIC GOUBAULT

GETCO conference
April 10, 2015

General idea

Concurrent programs can be interpreted as directed spaces, but methods in algebraic topology have been devised for non-directed spaces.

Dihomotopy and homotopy coincide for common programs!

General idea

Concurrent programs can be interpreted as directed spaces, but methods in algebraic topology have been devised for non-directed spaces.

Dihomotopy and homotopy coincide for common programs!

Here, I will focus on some algebraic and topological aspects.

PART I

\longrightarrow

CUBICAL SEMANTICS
 OF
 CONCURRENT PROGRAMS

Commutation of actions concurrent programs

In concurrent programs, some actions do commute

$$
\mathrm{x}:=5 \quad \| \quad \mathrm{y}:=9
$$

in the sense that their order do not matter

Commutation of actions concurrent programs

In concurrent programs, some actions do not commute

$$
\mathrm{x}:=5 \quad \| \quad \mathrm{x}:=9
$$

in the sense that their order does matter

In fact, the resulting x could even be different from 5 and 9 !

Mutexes

In order to prevent incompatible actions from running in parallel, one uses mutexes, which are resources on which two actions are available

- P_{a} : take the resource a
- V_{a} : release the resource a and implementation
- guarantees that a resource has been taken at most once at any moment,
- forbids releasing a resource which as not been taken.

Mutexes

In order to prevent incompatible actions from running in parallel, one uses mutexes, which are resources on which two actions are available

- P_{a} : take the resource a
- V_{a} : release the resource a
and implementation
- guarantees that a resource has been taken at most once at any moment,
- forbids releasing a resource which as not been taken.

Our earlier program should be rewritten as

$$
P_{a} ; x:=5 ; V_{a} \quad \| \quad P_{a} ; x:=9 ; V_{a}
$$

Our earlier program should be rewritten as

$$
P_{a} ; x:=5 ; V_{a} \quad \| \quad P_{a} ; x:=9 ; V_{a}
$$

Possible executions are

Our earlier program should be rewritten as

$$
P_{a} ; x:=5 ; V_{a} \quad \| \quad P_{a} ; x:=9 ; V_{a}
$$

Possible executions are

Concurrent programs

We consider concurrent programs defined by
$p \quad::=A|p ; p| p+p|p \| p| p^{*}\left|P_{a}\right| V_{a}$
where

$$
\begin{aligned}
A & \text { an action (e.g. x:=5) } \\
p ; q & \text { do } p \text { then } q \\
p+q & \text { do } p \text { or } q \text { (if / then / else) } \\
p^{*} & \text { repeat } p \text { (while) } \\
P_{a} & \text { take mutex } a \\
V_{a} & \text { release mutex } a
\end{aligned}
$$

Cubical graphs

A cubical graph C consists of

- a set C_{0} of vertices
- a set C_{1} of edges
- source and target maps $\partial_{0}^{-}, \partial_{0}^{+}: C_{1} \rightarrow C_{0}$
- a set C_{2} of squares
- source and target maps $\partial_{0}^{-}, \partial_{0}^{+}, \partial_{1}^{-}, \partial_{1}^{+}: C_{2} \rightarrow C_{1}$
- a transposition $\tau: C_{2} \rightarrow C_{2}$
satisfying axioms so that

Cubical graphs

A cubical graph C consists of

- a set C_{0} of vertices
- a set C_{1} of edges
- source and target maps $\partial_{0}^{-}, \partial_{0}^{+}: C_{1} \rightarrow C_{0}$
- a set C_{2} of squares
- source and target maps $\partial_{0}^{-}, \partial_{0}^{+}, \partial_{1}^{-}, \partial_{1}^{+}: C_{2} \rightarrow C_{1}$
- a transposition $\tau: C_{2} \rightarrow C_{2}$
satisfying axioms so that

We sometimes add labels on edges.

Squares

We write

to indicate that there exists a square α with

$$
\partial_{0}^{-}(\alpha)=A \quad \partial_{1}^{+}(\alpha)=B \quad \ldots
$$

Cubical graph associated to a program

To every every program p we can associate a cubical graph C_{p}, together with beginning vertex b_{p} and end vertex e_{p}, by induction:

- A :

$$
C_{A}=b_{A} \xrightarrow{A} \cdot e_{A}
$$

Cubical graph associated to a program

To every every program p we can associate a cubical graph C_{p}, together with beginning vertex b_{p} and end vertex e_{p}, by induction:

- A :

$$
C_{A}=b_{A} \cdot \xrightarrow{A} \cdot e_{A}
$$

- P_{a} :

$$
C_{P_{a}}=b_{P_{a}} \cdot \xrightarrow{P_{a}} \cdot e_{P_{a}}
$$

- V_{a} :

$$
C_{V_{a}}=b_{V_{a}} \cdot \xrightarrow{V_{a}} \cdot e_{V_{a}}
$$

Cubical graph associated to a program

To every every program p we can associate a cubical graph C_{p}, together with beginning vertex b_{p} and end vertex e_{p}, by induction:

- $p ; q:$

Cubical graph associated to a program

To every every program p we can associate a cubical graph C_{p}, together with beginning vertex b_{p} and end vertex e_{p}, by induction:

- $p ; q:$

$$
C_{p ; q}=b_{p}: C_{p} e_{p} C_{q} ; e_{q}
$$

Cubical graph associated to a program

To every every program p we can associate a cubical graph C_{p}, together with beginning vertex b_{p} and end vertex e_{p}, by induction:

- $p ; q$:

$$
C_{p ; q}=b_{p}: C_{p} e_{p} C_{q} ; e_{q}
$$

- $p+q$:

$$
\begin{gathered}
C_{p+q}=b_{p+q} \cdot\left\{\begin{array}{l}
C_{p}, \\
\varepsilon_{q} \\
b_{q}
\end{array}, e_{p}=e_{p+q}\right.
\end{gathered}
$$

Cubical graph associated to a program

To every every program p we can associate a cubical graph C_{p}, together with beginning vertex b_{p} and end vertex e_{p}, by induction:

- p^{*} :

$$
p^{*}=b_{p^{*}}=e_{p} \stackrel{\varepsilon}{\ddots_{p}} C_{p}
$$

Cubical graph associated to a program

To every every program p we can associate a cubical graph C_{p}, together with beginning vertex b_{p} and end vertex e_{p}, by induction:

- p^{*} :

$$
p^{*}=b_{p^{*}}=e_{p} \cdot \frac{\varepsilon}{C_{p}}, b_{p}
$$

- $p \| q:$

$$
C_{p \| q}=C_{p} \otimes C_{q}
$$

Tensor product of cubical graphs

The tensor product $C \otimes D$ of two cubical graphs C and D has

- vertices: $(C \otimes D)_{0}=C_{0} \times D_{0}$
- edges: $(C \otimes D)_{1}=\left(C_{1} \times D_{0}\right) \sqcup\left(C_{0} \times D_{1}\right)$
- squares are of the form

for $f: x \rightarrow x^{\prime}$ in C and $g: y \rightarrow y^{\prime}$ in D.

Tensor product of cubical graphs

For instance:

Cubical semantics

Definition

The cubical semantics \check{C}_{p} of a program p is the cubical graph obtained from C_{p} by removing vertices (as well as adjacent vertices and squares) which are forbidden because some resource is taken more than once.

Cubical semantics

Definition

The cubical semantics \check{C}_{p} of a program p is the cubical graph obtained from C_{p} by removing vertices (as well as adjacent vertices and squares) which are forbidden because some resource is taken more than once.

Remark

This supposes that the resource consumption is unambiguously defined for a vertex. A program for which this is the case is called conservative, e.g. not

Paths as executions

Proposition

Paths in \check{C}_{p} starting from b_{p} are in bijection with executions of the program p.

$$
\check{C}_{\left(\mathrm{P}_{a} ; \mathrm{x}:=5 ; \mathrm{V}_{\mathrm{a}}\right) \|\left(\mathrm{P}_{\mathrm{a}} ; \mathrm{x}:=9 ; \mathrm{V}_{\mathrm{a}}\right)}
$$

Homotopy between paths

Definition

The homotopy relation \sim between paths is the smallest congruence such that $A \cdot B \sim B^{\prime} \cdot A^{\prime}$ whenever $A \cdot B \diamond B^{\prime} \cdot A^{\prime}$:

Homotopy between paths

Definition

The homotopy relation \sim between paths is the smallest congruence such that $A \cdot B \sim B^{\prime} \cdot A^{\prime}$ whenever $A \cdot B \diamond B^{\prime} \cdot A^{\prime}$:

Proposition

For "reasonable" programs, two homotopic executions lead to the same state.

Homotopy between paths

Definition

The homotopy relation \sim between paths is the smallest congruence such that $A \cdot B \sim B^{\prime} \cdot A^{\prime}$ whenever $A \cdot B \diamond B^{\prime} \cdot A^{\prime}$:

Proposition

For "reasonable" programs, two homotopic executions lead to the same state.

It seems interesting to study the space of paths up to homotopy.

PART II

HOMOTOPY VS DIHOMOTOPY

Path direction

In classical topology paths are not directed: given a path $p: I \rightarrow X$ we also have a reverse path $\bar{p}: I \rightarrow X$ defined by

$$
\bar{p}(t)=p(1-t)
$$

and most constructions in algebraic topology depend on this (the fundamental group, etc.)

Path direction

In classical topology paths are not directed: given a path $p: I \rightarrow X$ we also have a reverse path $\bar{p}: I \rightarrow X$ defined by

$$
\bar{p}(t)=p(1-t)
$$

and most constructions in algebraic topology depend on this (the fundamental group, etc.)

On the contrary our paths must follow the directions indicated by arrows.

How can we compare the two?

Dipaths

We call a dipath what we have been calling a path, i.e. a sequence of composable arrows:

$$
\xrightarrow{A} \xrightarrow{B} \xrightarrow{C} \quad \text { or } A \cdot B \cdot C
$$

Dipaths

We call a dipath what we have been calling a path, i.e. a sequence of composable arrows:

$$
\xrightarrow{A} \xrightarrow{B} \xrightarrow{C} \quad \text { or } A \cdot B \cdot C
$$

We call a path a sequence of possibly reversed composable arrows:

$$
\xrightarrow{A} \stackrel{B}{\longleftrightarrow} \xrightarrow{C} \text { or } A \cdot \bar{B} \cdot C
$$

Dihomotopy

We call dihomotopy between paths, the smallest congruence $\leftrightarrow \leadsto$ such that for every square

we have
$A \cdot B \longleftrightarrow B^{\prime} \cdot A^{\prime}$
$\bar{A} \cdot B^{\prime} \leadsto B \cdot \overline{A^{\prime}}$
$\bar{B} \cdot \bar{A} \leadsto \overline{A^{\prime}} \cdot \overline{B^{\prime}}$

Dihomotopy

We call dihomotopy between paths, the smallest congruence $\leftrightarrow \leadsto$ such that for every square

we have
$A \cdot B \leadsto B^{\prime} \cdot A^{\prime}$
$\bar{A} \cdot B^{\prime} \leadsto B \cdot \overline{A^{\prime}}$
$\bar{B} \cdot \bar{A} \rightarrow \overline{A^{\prime}} \cdot \overline{B^{\prime}}$

Remark

A path dihomotopic to a dipath is necessarily a dipath.

Homotopy

The homotopy relation on paths \sim is the smallest congruence containing dihomotopy and such that for every edge

$$
x \xrightarrow{A} y
$$

we have

$$
\mathrm{id}_{x} \sim A \cdot \bar{A} \quad \bar{A} \cdot A \sim \mathrm{id}_{y}
$$

Homotopy

The homotopy relation on paths \sim is the smallest congruence containing dihomotopy and such that for every edge

$$
x \xrightarrow{A} y
$$

we have

$$
\mathrm{id}_{x} \sim A \cdot \bar{A} \quad \bar{A} \cdot A \sim \mathrm{id}_{y}
$$

Remark

Clearly $f \leadsto g$ implies $f \sim g$, but converse is not generally true.

Homotopy vs dihomotopy

Consider the following "matchbox":

where every square is filled excepting the top one:

$$
\overline{A_{1} \cdot B_{4} \cdot B_{1} \cdot A_{4}}
$$

Homotopy vs dihomotopy

Consider the following "matchbox":

We have

$$
A_{1} \cdot B_{4} \sim B_{1} \cdot A_{4} \quad \text { but not } \quad A_{1} \cdot B_{4} \longleftrightarrow B_{1} \cdot A_{4}
$$

Homotopy vs dihomotopy

$$
\begin{aligned}
A_{1} \cdot B_{4} & \sim C_{1} \cdot \overline{C_{1}} \cdot A_{1} \cdot B_{4} \\
& \sim C_{1} \cdot A_{2} \cdot \overline{C_{4}} \cdot B_{4} \\
& \sim C_{1} \cdot A_{2} \cdot B_{3} \cdot \overline{C_{3}} \\
& \sim C_{1} \cdot B_{2} \cdot A_{3} \cdot \overline{C_{3}} \\
& \sim B_{1} \cdot C_{2} \cdot A_{3} \cdot \overline{C_{3}} \\
& \sim B_{1} \cdot A_{4} \cdot C_{3} \cdot \overline{C_{3}} \\
& \sim B_{1} \cdot A_{4}
\end{aligned}
$$

Homotopy vs dihomotopy

This example cannot be obtained as the semantics of a program!

Binary conflicts

In a situation such as

the vertex x is forbidden (and has to be removed).

Binary conflicts

In a situation such as

the vertex x is forbidden (and has to be removed).

In this case, the vertex y has to be removed too, because $A \neq \mathrm{V}_{a}$!

The cube property

Semantics of programs satisfy the cube property:

The cube property

Semantics of programs satisfy the cube property:

and other more minor properties, e.g.

implies $A^{\prime}=A^{\prime \prime}$ and $B^{\prime}=B^{\prime \prime}$.

Homotopy vs dihomotopy

Theorem

In a cubical graph satisfying the cube property, two dipaths are dihomotopic if and only if they are homotopic.

PART III

PRESENTING
 THE
 FUNDAMENTAL
 CATEGORY
 AND
 GROUPOID

Fundamental groupoid and category

To every cubical graph C, we can associate

1. a fundamental groupoid $\Pi_{1}(C)$ of vertices and paths up to homotopy,
2. a fundamental category $\vec{\Pi}_{1}(C)$ of vertices and dipaths up to dihomotopy.

Fundamental groupoid and category

To every cubical graph C, we can associate

1. a fundamental groupoid $\Pi_{1}(C)$ of vertices and paths up to homotopy,
2. a fundamental category $\vec{\Pi}_{1}(C)$ of vertices and dipaths up to dihomotopy.

Notice that previous theorem can be reformulated as
Theorem
If C satisfies the cube property, then the inclusion functor

$$
\vec{\Pi}_{1}(C) \quad \hookrightarrow \quad \Pi_{1}(C)
$$

is faithful.

The fundamental 2-category

In order to study the relationships between the two categories, we in introduce:

Definition

The fundamental 2-category $\vec{\Pi}_{2}(C)$ is the 2-category whose

- 0-cells are vertices of C,
- 1-cells are paths in C,
- 2-cells are generated by

$$
\gamma_{B^{\prime}, A^{\prime}}^{A, B}: A \cdot B \Rightarrow B^{\prime} \cdot A^{\prime} \quad \text { whenever }
$$

$$
\eta_{A}: \mathrm{id}_{x} \Rightarrow A \cdot \bar{A} \quad \varepsilon_{A}: \bar{A} \cdot A \Rightarrow \mathrm{id}_{y} \quad \text { for } \quad x \xrightarrow{A} y
$$

- quotiented by relations on 2-cells
- horizontal composition is concatenation of paths

Towards a proof

Notice that

- two paths f, g are homotopic if and only if there is a 2 -cell

$$
\alpha: f \Rightarrow g
$$

- the paths f, g are dihomotopic if and only if there is such a 2 -cell constructed without generators η_{A} and ε_{A} :

$$
\eta_{A}: \mathrm{id}_{x} \Rightarrow A \cdot \bar{A} \quad \varepsilon_{A}: \bar{A} \cdot A \Rightarrow \mathrm{id}_{y}
$$

Towards a proof

Notice that

- two paths f, g are homotopic if and only if there is a 2 -cell

$$
\alpha: f \Rightarrow g
$$

- the paths f, g are dihomotopic if and only if there is such a 2 -cell constructed without generators η_{A} and ε_{A} :

$$
\eta_{A}: \mathrm{id}_{x} \Rightarrow A \cdot \bar{A} \quad \varepsilon_{A}: \bar{A} \cdot A \Rightarrow \mathrm{id}_{y}
$$

Remark

Notice that this does not depend on the relations on 2-cells.

Towards a proof

Notice that

- two paths f, g are homotopic if and only if there is a 2 -cell

$$
\alpha: f \Rightarrow g
$$

- the paths f, g are dihomotopic if and only if there is such a 2 -cell constructed without generators η_{A} and ε_{A} :

$$
\eta_{A}: \mathrm{id}_{x} \Rightarrow A \cdot \bar{A} \quad \varepsilon_{A}: \bar{A} \cdot A \Rightarrow \mathrm{id}_{y}
$$

Theorem
Any 2-cell $\alpha: f \Rightarrow g$ between f and g is equal to one without the bad generators (with the right relations!).

String diagrams

For the 2-cells I will use the string-diagrammatic notation:

for $\gamma_{B^{\prime}, A^{\prime}}^{A, B}$ and

for η_{A} and ε_{A}.

Relations on 2-cells
We relations on 2-cells so that

- $\gamma_{B^{\prime}, A^{\prime}}^{A, B}$ acts like a symmetry:

Relations on 2-cells

We relations on 2-cells so that

- η_{A} and ε_{A} act as (co)units of an adjunction:

and

Relations on 2-cells

We relations on 2-cells so that

- the two are "naturally" compatible:

+ dual and symmetric relations

Derivable relations

Some other relations are derivable:

Well-definedness

Notice that "not every diagram makes sense": if we cannot commute some actions for instance.
Lemma
If the left member of a relation is well-defined then the right member too.

Well-definedness

Notice that "not every diagram makes sense": if we cannot commute some actions for instance.
Lemma
If the left member of a relation is well-defined then the right member too.

Proof.
This is where we use our properties on the cubical graph:

A rewriting system

We can turn our relations into a rewriting system (from left to right), e.g.

Conjecture

The rewriting system is convergent, thus normal forms are canonical representatives of equivalence classes.

A proof for our theorem

Suppose given a 2 -cell between dipaths $\alpha: f \Rightarrow g$. This 2 -cell is equal to a normal form, so we suppose that we are in this case. Proposition
The 2-cell α does not contain η_{A} or ε_{A} generators.

A proof for our theorem

Suppose given a 2 -cell between dipaths $\alpha: f \Rightarrow g$. This 2 -cell is equal to a normal form, so we suppose that we are in this case.
Proposition
The 2-cell α does not contain η_{A} or ε_{A} generators.
Proof.
Suppose that it "contains"

$$
\varepsilon_{A}: \bar{A} \cdot A \Rightarrow i d_{x}
$$

i.e.

$$
\alpha=\psi \circ\left(\mathrm{id}_{f} \cdot \varepsilon_{A} \cdot \mathrm{id}_{g}\right) \circ \phi
$$

A proof for our theorem

What can ϕ be?

A proof for our theorem

What can ϕ be?

- Notice that ϕ cannot be an identity, otherwise α would contain \bar{A} in its source (a reversed edge), which would not be a dipath.

A proof for our theorem

What can ϕ be?

- Notice that ϕ cannot be an identity, otherwise α would contain \bar{A} in its source (a reversed edge), which would not be a dipath.
- Thus ϕ is thus of the form

where ρ is a generator.

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping in mind that α must be in normal form. For instance, if $\rho=\gamma$,

- in a case such as

we can use the exchange law to "put the γ down in the ψ " and reason by induction on ϕ^{\prime}.

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping in mind that α must be in normal form. For instance, if $\rho=\gamma$,

- in a case such as

we can use the exchange law to "put the γ down in the ψ " and reason by induction on ϕ^{\prime}.

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping in mind that α must be in normal form. For instance, if $\rho=\gamma$,

- the following cannot happen

otherwise α would not be normal.

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping in mind that α must be in normal form. For instance, if $\rho=\gamma$,

- we can show that α is of the form

and thus the morphism would contain \bar{A} (a reversed transition in its source).

A real proof

Showing that the rewriting system is convergent is difficult:

- there is an infinite number of critical pairs even though there is a finite number of rules (they can however be grouped in a finite number of families),
- there is an awful lot of cases to be checked.

A real proof

Showing that the rewriting system is convergent is difficult:

- there is an infinite number of critical pairs even though there is a finite number of rules (they can however be grouped in a finite number of families),
- there is an awful lot of cases to be checked.

In practice, we only need a representative (not necessarily unique), which can be defined by hand, and the proof goes on roughly as indicated before. So we actually have a proof here.

Notes on the axioms

In the category Vect we have bjiections

$$
\frac{A \otimes B \rightarrow C}{A \rightarrow C \otimes B^{*}} \quad \frac{A \rightarrow B \otimes C}{B^{*} \otimes A \rightarrow C}
$$

Notes on the axioms

In the category Vect we have bjiections

$$
\frac{A \otimes B \rightarrow C}{A \rightarrow C \otimes B^{*}} \quad \frac{A \rightarrow B \otimes C}{B^{*} \otimes A \rightarrow C}
$$

In particular, consider the morphisms associated to $\mathrm{id}_{A}: A \rightarrow A$,

$$
\eta: \mathbb{k} \rightarrow A \otimes A^{*} \quad \varepsilon: A^{*} \otimes A \rightarrow \mathbb{k}
$$

Together with the symmetry $\gamma: A \otimes A \rightarrow A \otimes A$, these satisfy the axioms before, i.e. these correspond to cubical graph with one vertex, one edge and one square.

Notes on the axioms

In the category Vect we have bjiections

$$
\frac{A \otimes B \rightarrow C}{A \rightarrow C \otimes B^{*}} \quad \frac{A \rightarrow B \otimes C}{B^{*} \otimes A \rightarrow C}
$$

In particular, consider the morphisms associated to $\mathrm{id}_{A}: A \rightarrow A$,

$$
\eta: \mathbb{k} \rightarrow A \otimes A^{*} \quad \varepsilon: A^{*} \otimes A \rightarrow \mathbb{k}
$$

Together with the symmetry $\gamma: A \otimes A \rightarrow A \otimes A$, these satisfy the axioms before, i.e. these correspond to cubical graph with one vertex, one edge and one square.

To be precise, we also have to satisfy the axiom
$(\operatorname{dim} A) \mathrm{id}_{k}=\operatorname{tr}\left(\mathrm{id}_{A}\right)=A\left(\bar{A}=\quad=\mathrm{id}_{k}\right.$
i.e. $\operatorname{dim} A=1$.

CONCLUSION

Going further

For a cubical graph satisfying the cube property:

- universal dicovering has a simple definition,
- its unfolding corresponds to the configuration space of an event structure (Chepoi, Ardilla et al., ...)
- its trace space can be computed thanks to (traditional) homology
- metric geometric realization is non-positively curved (= locally CAT(0))
Also:
- Relations on 2-cells are meaningful?
- Variants for n-semaphores, etc.
- Links with motion planning (Ghrist et al.)
- Links with geometric group theory (Dehornoy, ...)

