
DIHOMOTOPY
AND THE
CUBE PROPERTY

SAMUEL MIMRAM
École Polytechnique

joint work with
ÉRIC GOUBAULT

GETCO conference

April 10, 2015

General idea

Concurrent programs can be interpreted as directed spaces,
but methods in algebraic topology have been devised for
non-directed spaces.

Dihomotopy and homotopy coincide for common programs!

Here, I will focus on some algebraic and topological aspects.

2 / 39

General idea

Concurrent programs can be interpreted as directed spaces,
but methods in algebraic topology have been devised for
non-directed spaces.

Dihomotopy and homotopy coincide for common programs!

Here, I will focus on some algebraic and topological aspects.

2 / 39

PART I

B

CUBICAL SEMANTICS
OF

CONCURRENT PROGRAMS

3 / 39

Commutation of actions concurrent programs

In concurrent programs, some actions do commute

x := 5 ∥ y := 9

in the sense that their order do not matter

x:=5

����
��
��
�� y:=9

��?
??

??
??

?

y:=9
��?

??
??

??
? ⋄

x:=5
����
��
��
��

4 / 39

Commutation of actions concurrent programs

In concurrent programs, some actions do not commute

x := 5 ∥ x := 9

in the sense that their order does matter

x:=5

����
��
��
�� x:=9

��?
??

??
??

?

x:=9
��?

??
??

??
?

x:=5
����
��
��
��

In fact, the resulting x could even be different from 5 and 9!

4 / 39

Mutexes

In order to prevent incompatible actions from running in parallel,
one uses mutexes, which are resources on which two actions
are available

▶ Pa: take the resource a
▶ Va: release the resource a

and implementation
▶ guarantees that a resource has been taken at most once at
any moment,

▶ forbids releasing a resource which as not been taken.

Our earlier program should be rewritten as

Pa ; x:=5 ;Va ∥ Pa ; x:=9 ;Va
Possible executions are

5 / 39

Mutexes

In order to prevent incompatible actions from running in parallel,
one uses mutexes, which are resources on which two actions
are available

▶ Pa: take the resource a
▶ Va: release the resource a

and implementation
▶ guarantees that a resource has been taken at most once at
any moment,

▶ forbids releasing a resource which as not been taken.

Our earlier program should be rewritten as

Pa ; x:=5 ;Va ∥ Pa ; x:=9 ;Va

Possible executions are

5 / 39

Mutexes

Our earlier program should be rewritten as

Pa ; x:=5 ;Va ∥ Pa ; x:=9 ;Va

Possible executions are

Pa

{{www
ww
ww Pa

##G
GG

GG
GG

x:=5
{{www

ww
ww

Pa
GG

##GG
G

⋄
Pa
ww

{{www
x:=9

##G
GG

GG
GG

Va

{{www
ww
ww

Pa
GG

##GG
G

⋄
x:=5w

ww

{{www
x:=9
GGG

##GG
G

⋄
Pa
ww

{{www
Va

##G
GG

GG
GG

Pa ##G
GG

GG
GG ⋄

Va
ww

{{www ##G
GG

GG
GG
x:=9
GGG

##GG
G

⋄
x:=5w

ww

{{www
Va
GG

##GG
G

⋄

Pa{{www
ww
ww

x:=9 ##G
GG

GG
GG ⋄

Va
ww

{{www
Va
GG

##GG
G

⋄

x:=5{{www
ww
ww

Va ##G
GG

GG
GG ⋄

Va{{www
ww
ww

5 / 39

Mutexes

Our earlier program should be rewritten as

Pa ; x:=5 ;Va ∥ Pa ; x:=9 ;Va

Possible executions are

Pa

{{www
ww
ww Pa

##G
GG

GG
GG

x:=5
{{www

ww
ww x:=9

##G
GG

GG
GG

Va

{{www
ww
ww Va

##G
GG

GG
GG

Pa ##G
GG

GG
GG

Pa{{www
ww
ww

x:=9 ##G
GG

GG
GG

x:=5{{www
ww
ww

Va ##G
GG

GG
GG

Va{{www
ww
ww

5 / 39

Concurrent programs

We consider concurrent programs defined by

p ::= A | p ;p | p+p | p ∥p | p∗ | Pa | Va

where

A an action (e.g. x:=5)

p ;q do p then q

p+ q do p or q (if / then / else)

p∗ repeat p (while)

Pa take mutex a

Va release mutex a

6 / 39

Cubical graphs

A cubical graph C consists of
▶ a set C0 of vertices
▶ a set C1 of edges
▶ source and target maps ∂−0 , ∂

+
0 : C1 → C0

▶ a set C2 of squares
▶ source and target maps ∂−0 , ∂

+
0 , ∂

−
1 , ∂

+
1 : C2 → C1

▶ a transposition τ : C2 → C2

satisfying axioms so that

∂−
0 (α)

~~~~
~~
~~
~~
~

∂−
1 (α)

  @
@@

@@
@@

@@

∂+
1 (α)   @

@@
@@

@@
@@ α

∂+
0 (α)~~~~

~~
~~
~~
~

We sometimes add labels on edges.

7 / 39



Cubical graphs

A cubical graph C consists of
▶ a set C0 of vertices
▶ a set C1 of edges
▶ source and target maps ∂−0 , ∂

+
0 : C1 → C0

▶ a set C2 of squares
▶ source and target maps ∂−0 , ∂

+
0 , ∂

−
1 , ∂

+
1 : C2 → C1

▶ a transposition τ : C2 → C2

satisfying axioms so that

∂−
0 (α)

~~~~
~~
~~
~~
~

∂−
1 (α)

 @
@@

@@
@@

@@

∂+
1 (α) @

@@
@@

@@
@@ α

∂+
0 (α)~~~~

~~
~~
~~
~

We sometimes add labels on edges.
7 / 39

Squares

We write

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

or A · B ⋄ B′ · A′

to indicate that there exists a square α with

∂−0 (α) = A ∂+1 (α) = B . . .

8 / 39

Cubical graph associated to a program

To every every program p we can associate a cubical graph Cp,
together with beginning vertex bp and end vertex ep, by induction:

▶ A:

CA = bA eA
A

▶ Pa:

CPa = bPa ePa
Pa

▶ Va:

CVa = bVa eVa
Va

9 / 39

Cubical graph associated to a program

To every every program p we can associate a cubical graph Cp,
together with beginning vertex bp and end vertex ep, by induction:

▶ A:

CA = bA eA
A

▶ Pa:

CPa = bPa ePa
Pa

▶ Va:

CVa = bVa eVa
Va

9 / 39

Cubical graph associated to a program

To every every program p we can associate a cubical graph Cp,
together with beginning vertex bp and end vertex ep, by induction:

▶ p ;q:

Cp ; q =

bp Cp ep bq Cq eq

▶ p+ q:

Cp+q = bp+q

bp

bq

ε

ε

ep = eq = ep+q
Cp

Cq

9 / 39

Cubical graph associated to a program

To every every program p we can associate a cubical graph Cp,
together with beginning vertex bp and end vertex ep, by induction:

▶ p ;q:

Cp ; q = bp Cp ep bq Cq eq

▶ p+ q:

Cp+q = bp+q

bp

bq

ε

ε

ep = eq = ep+q
Cp

Cq

9 / 39

Cubical graph associated to a program

To every every program p we can associate a cubical graph Cp,
together with beginning vertex bp and end vertex ep, by induction:

▶ p ;q:

Cp ; q = bp Cp ep bq Cq eq

▶ p+ q:

Cp+q = bp+q

bp

bq

ε

ε

ep = eq = ep+q
Cp

Cq

9 / 39

Cubical graph associated to a program

To every every program p we can associate a cubical graph Cp,
together with beginning vertex bp and end vertex ep, by induction:

▶ p∗:

p∗ = bp∗ = ep bpCp

ε

ep∗ε

▶ p ∥q:
Cp ∥ q = Cp ⊗ Cq

9 / 39

Cubical graph associated to a program

To every every program p we can associate a cubical graph Cp,
together with beginning vertex bp and end vertex ep, by induction:

▶ p∗:

p∗ = bp∗ = ep bpCp

ε

ep∗ε

▶ p ∥q:
Cp ∥ q = Cp ⊗ Cq

9 / 39

Tensor product of cubical graphs

The tensor product C⊗ D of two cubical graphs C and D has
▶ vertices: (C⊗ D)0 = C0 × D0

▶ edges: (C⊗ D)1 = (C1 × D0) ⊔ (C0 × D1)

▶ squares are of the form

(x, y)
(f,y)

zzvvv
vv
vv
vv (x,g)

$$H
HH

HH
HH

HH

(x′, y)

(x′,g) $$H
HH

HH
HH

HH
α (x, y′)

(f,y′)zzvvv
vv
vv
vv

(x′, y′)

for f : x→ x′ in C and g : y→ y′ in D.

10 / 39

Tensor product of cubical graphs

For instance:

Pa // x:=5 // Va // ⊗ Pa // x:=9 // Va //

=

Pa

{{www
ww
ww Pa

##G
GG

GG
GG

x:=5
{{www

ww
ww

Pa
GG

##GG
G

⋄
Pa
ww

{{www
x:=9

##G
GG

GG
GG

Va

{{www
ww
ww

Pa
GG

##GG
G

⋄
x:=5w

ww

{{www
x:=9
GGG

##GG
G

⋄
Pa
ww

{{www
Va

##G
GG

GG
GG

Pa ##G
GG

GG
GG ⋄

Va
ww

{{www ##G
GG

GG
GG
x:=9
GGG

##GG
G

⋄
x:=5w

ww

{{www
Va
GG

##GG
G

⋄

Pa{{www
ww
ww

x:=9 ##G
GG

GG
GG ⋄

Va
ww

{{www
Va
GG

##GG
G

⋄

x:=5{{www
ww
ww

Va ##G
GG

GG
GG ⋄

Va{{www
ww
ww

10 / 39

Cubical semantics

Definition
The cubical semantics Čp of a program p is the cubical graph
obtained from Cp by removing vertices (as well as adjacent
vertices and squares) which are forbidden because some
resource is taken more than once.

Remark
This supposes that the resource consumption is unambiguously
defined for a vertex. A program for which this is the case is called
conservative, e.g. not

Pa

~~||
||
||
|| Pa

 B
BB

BB
BB

B

Pa ��>
>>

>>
>>

Pb����
��
��
�

?

11 / 39

Cubical semantics

Definition
The cubical semantics Čp of a program p is the cubical graph
obtained from Cp by removing vertices (as well as adjacent
vertices and squares) which are forbidden because some
resource is taken more than once.

Remark
This supposes that the resource consumption is unambiguously
defined for a vertex. A program for which this is the case is called
conservative, e.g. not

Pa

~~||
||
||
|| Pa

 B
BB

BB
BB

B

Pa ��>
>>

>>
>>

Pb����
��
��
�

?
11 / 39

Paths as executions

Proposition
Paths in Čp starting from bp are in bijection with executions of the
program p.

Č(Pa ; x:=5 ; Va) ∥(Pa ; x:=9 ;Va)
=

Pa

{{www
ww
ww Pa

##G
GG

GG
GG

x:=5
{{www

ww
ww x:=9

##G
GG

GG
GG

Va

{{www
ww
ww Va

##G
GG

GG
GG

Pa ##G
GG

GG
GG

Pa{{www
ww
ww

x:=9 ##G
GG

GG
GG

x:=5{{www
ww
ww

Va ##G
GG

GG
GG

Va{{www
ww
ww

12 / 39

Homotopy between paths

Definition
The homotopy relation ∼ between paths is the smallest
congruence such that A · B ∼ B′ · A′ whenever A · B ⋄ B′ · A′:

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

Proposition
For “reasonable” programs, two homotopic executions lead to
the same state.

It seems interesting to study the space of paths up to homotopy.

13 / 39

Homotopy between paths

Definition
The homotopy relation ∼ between paths is the smallest
congruence such that A · B ∼ B′ · A′ whenever A · B ⋄ B′ · A′:

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

Proposition
For “reasonable” programs, two homotopic executions lead to
the same state.

It seems interesting to study the space of paths up to homotopy.

13 / 39

Homotopy between paths

Definition
The homotopy relation ∼ between paths is the smallest
congruence such that A · B ∼ B′ · A′ whenever A · B ⋄ B′ · A′:

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

Proposition
For “reasonable” programs, two homotopic executions lead to
the same state.

It seems interesting to study the space of paths up to homotopy.
13 / 39

PART II

B

HOMOTOPY
VS

DIHOMOTOPY

14 / 39

Path direction

In classical topology paths are not directed: given a path
p : I→ X we also have a reverse path p : I→ X defined by

p(t) = p(1− t)

and most constructions in algebraic topology depend on this (the
fundamental group, etc.)

On the contrary our paths must follow the directions indicated by
arrows.

How can we compare the two?

15 / 39

Path direction

In classical topology paths are not directed: given a path
p : I→ X we also have a reverse path p : I→ X defined by

p(t) = p(1− t)

and most constructions in algebraic topology depend on this (the
fundamental group, etc.)

On the contrary our paths must follow the directions indicated by
arrows.

How can we compare the two?

15 / 39

Dipaths

We call a dipath what we have been calling a path, i.e. a
sequence of composable arrows:

A // B // C // or A · B · C

We call a path a sequence of possibly reversed composable
arrows:

A // oo B C // or A · B · C

16 / 39

Dipaths

We call a dipath what we have been calling a path, i.e. a
sequence of composable arrows:

A // B // C // or A · B · C

We call a path a sequence of possibly reversed composable
arrows:

A // oo B C // or A · B · C

16 / 39

Dihomotopy

We call dihomotopy between paths, the smallest congruence
↭ such that for every square

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

we have

A · B↭ B′ · A′ A · B′ ↭ B · A′ B · A↭ A′ · B′

Remark
A path dihomotopic to a dipath is necessarily a dipath.

17 / 39

Dihomotopy

We call dihomotopy between paths, the smallest congruence
↭ such that for every square

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

we have

A · B↭ B′ · A′ A · B′ ↭ B · A′ B · A↭ A′ · B′

Remark
A path dihomotopic to a dipath is necessarily a dipath.

17 / 39

Homotopy

The homotopy relation on paths ∼ is the smallest congruence
containing dihomotopy and such that for every edge

x A // y

we have
idx ∼ A · A A · A ∼ idy

Remark
Clearly f↭ g implies f ∼ g, but converse is not generally true.

18 / 39

Homotopy

The homotopy relation on paths ∼ is the smallest congruence
containing dihomotopy and such that for every edge

x A // y

we have
idx ∼ A · A A · A ∼ idy

Remark
Clearly f↭ g implies f ∼ g, but converse is not generally true.

18 / 39

Homotopy vs dihomotopy

Consider the following “matchbox”:

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

where every square is filled excepting the top one:

((((((((hhhhhhhhA1 · B4 ⋄ B1 · A4

19 / 39

Homotopy vs dihomotopy

Consider the following “matchbox”:

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

We have

A1 · B4 ∼ B1 · A4 but not A1 · B4 ↭ B1 · A4

19 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4

∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Homotopy vs dihomotopy

C1

��

B1

???

��?
??

A1 //

C4

��

B4

��?
??

??
??

?

C2

��

A4
//

C3

��

A2
//

B2 ��?
??

??
??

?

B3

???

��?
??

A3

//

A1 · B4 ∼ C1 · C1 · A1 · B4

∼ C1 · A2 · C4 · B4

∼ C1 · A2 · B3 · C3

∼ C1 · B2 · A3 · C3

∼ B1 · C2 · A3 · C3

∼ B1 · A4 · C3 · C3

∼ B1 · A4

This example cannot be obtained as the semantics of a program!

20 / 39

Binary conflicts

In a situation such as

Pa ∥Pa ∥A =

Pa

xxqqq
qqq

qqq
qq

A
��

Pa

&&MM
MMM

MMM
MMM

A

��
Pa
KKK

KKK
K

%%KKyysss
sss

sss
sss

%%KK
KKK

KKK
KKK

K

Pa
sss

sss
s

yyss
A

��

Pa $$I
II

II
II

II
II x

A
�� Pazzuu

uu
uu
uu
uu
u

y

the vertex x is forbidden (and has to be removed).

In this case, the vertex y has to be removed too, because A ̸= Va!

21 / 39

Binary conflicts

In a situation such as

Pa ∥Pa ∥A =

Pa

xxqqq
qqq

qqq
qq

A
��

Pa

&&MM
MMM

MMM
MMM

A

��
Pa
KKK

KKK
K

%%KKyysss
sss

sss
sss

%%KK
KKK

KKK
KKK

K

Pa
sss

sss
s

yyss
A

��

Pa $$I
II

II
II

II
II x

A
�� Pazzuu

uu
uu
uu
uu
u

y

the vertex x is forbidden (and has to be removed).

In this case, the vertex y has to be removed too, because A ̸= Va!

21 / 39

The cube property

Semantics of programs satisfy the cube property:

A

����
��
��
��

��

C′

��?
??

??
??

?

B
��

⋄

����
��
��
��

��?
??

??
??

? ⋄

B′

��

C ��?
??

??
??

? ⋄

A′
����
��
��
��

⇔

A

����
��
��
�� C′

��?
??

??
??

?

B
�� ��?

??
??

??
? ⋄

����
��
��
��

B′

��

C ��?
??

??
??

? ⋄

��

⋄

A′
����
��
��
��

and other more minor properties, e.g.

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

and

A

����
��
��
�� B′′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′′
����
��
��
��

implies A′ = A′′ and B′ = B′′.

22 / 39

The cube property

Semantics of programs satisfy the cube property:

A

����
��
��
��

��

C′

��?
??

??
??

?

B
��

⋄

����
��
��
��

��?
??

??
??

? ⋄

B′

��

C ��?
??

??
??

? ⋄

A′
����
��
��
��

⇔

A

����
��
��
�� C′

��?
??

??
??

?

B
�� ��?

??
??

??
? ⋄

����
��
��
��

B′

��

C ��?
??

??
??

? ⋄

��

⋄

A′
����
��
��
��

and other more minor properties, e.g.

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

and

A

����
��
��
�� B′′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′′
����
��
��
��

implies A′ = A′′ and B′ = B′′.
22 / 39

Homotopy vs dihomotopy

Theorem
In a cubical graph satisfying the cube property, two dipaths are
dihomotopic if and only if they are homotopic.

23 / 39

PART III

B

PRESENTING
THE

FUNDAMENTAL
CATEGORY

AND
GROUPOID

24 / 39

Fundamental groupoid and category

To every cubical graph C, we can associate

1. a fundamental groupoid Π1(C) of vertices and paths up to
homotopy,

2. a fundamental category Π⃗1(C) of vertices and dipaths up
to dihomotopy.

Notice that previous theorem can be reformulated as

Theorem
If C satisfies the cube property, then the inclusion functor

Π⃗1(C) ↪→ Π1(C)

is faithful.

25 / 39

Fundamental groupoid and category

To every cubical graph C, we can associate

1. a fundamental groupoid Π1(C) of vertices and paths up to
homotopy,

2. a fundamental category Π⃗1(C) of vertices and dipaths up
to dihomotopy.

Notice that previous theorem can be reformulated as

Theorem
If C satisfies the cube property, then the inclusion functor

Π⃗1(C) ↪→ Π1(C)

is faithful.

25 / 39

The fundamental 2-category

In order to study the relationships between the two categories,
we in introduce:

Definition
The fundamental 2-category Π⃗2(C) is the 2-category whose

▶ 0-cells are vertices of C,
▶ 1-cells are paths in C,
▶ 2-cells are generated by

γA,BB′,A′ : A · B⇒ B′ · A′ whenever

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

ηA : idx ⇒ A · A εA : A · A⇒ idy for x A // y

▶ quotiented by relations on 2-cells
▶ horizontal composition is concatenation of paths

26 / 39

Towards a proof

Notice that
▶ two paths f,g are homotopic if and only if there is a 2-cell

α : f ⇒ g

▶ the paths f,g are dihomotopic if and only if there is such a
2-cell constructed without generators ηA and εA:

ηA : idx ⇒ A · A εA : A · A⇒ idy

27 / 39

Towards a proof

Notice that
▶ two paths f,g are homotopic if and only if there is a 2-cell

α : f ⇒ g

▶ the paths f,g are dihomotopic if and only if there is such a
2-cell constructed without generators ηA and εA:

ηA : idx ⇒ A · A εA : A · A⇒ idy

Remark
Notice that this does not depend on the relations on 2-cells.

27 / 39

Towards a proof

Notice that
▶ two paths f,g are homotopic if and only if there is a 2-cell

α : f ⇒ g

▶ the paths f,g are dihomotopic if and only if there is such a
2-cell constructed without generators ηA and εA:

ηA : idx ⇒ A · A εA : A · A⇒ idy

Theorem
Any 2-cell α : f⇒ g between f and g is equal to one without the
bad generators (with the right relations!).

27 / 39

String diagrams

For the 2-cells I will use the string-diagrammatic notation:

A B

B′ A′

B

��?
??

??
??

?
A

??��������

B′
��?

??
??

??
? ⋄

A′

??��������

for γA,BB′,A′ and

A A
A A

for ηA and εA.
28 / 39

Relations on 2-cells

We relations on 2-cells so that

▶ γA,BB′,A′ acts like a symmetry:

A B

B′ A′

A B

=

A B

A B

A B C

A′

B′

C′

C′′ B′′ A′′

=

A B C

C′

B′

A′

C′′ B′′ A′′

29 / 39

Relations on 2-cells

We relations on 2-cells so that

▶ ηA and εA act as (co)units of an adjunction:

A

A

A

=

A

A

A

A

A

=

A

A

and

A A =

29 / 39

Relations on 2-cells

We relations on 2-cells so that

▶ the two are “naturally” compatible:

B A′ A′

B′

A
A

B

=

B A′ A′

B

A
′ A′

A A

=

A
′ A′

+ dual and symmetric relations

29 / 39

Derivable relations

Some other relations are derivable:

A B A′

A′

B′

=

A B A′

A

B′

A

A′

A′

A′

A

=

A

A

30 / 39

Well-definedness

Notice that “not every diagram makes sense”: if we cannot
commute some actions for instance.

Lemma
If the left member of a relation is well-defined then the right
member too.

Proof.
This is where we use our properties on the cubical graph:

A B C

A′

B′

C′

C′′ B′′ A′′

=

A

����
��
��
��

��

C′′

��?
??

??
??

?

B
��

⋄

����
��
��
��

��?
??

??
??

? ⋄

B′′

��

C ��?
??

??
??

? ⋄

A′′
����
��
��
��

=

A

����
��
��
�� C′′

��?
??

??
??

?

B
�� ��?

??
??

??
? ⋄

����
��
��
��

B′′

��

C ��?
??

??
??

? ⋄

��

⋄

A′′
����
��
��
��

=

A B C

C′

B′

A′

C′′ B′′ A′′

31 / 39

Well-definedness

Notice that “not every diagram makes sense”: if we cannot
commute some actions for instance.

Lemma
If the left member of a relation is well-defined then the right
member too.

Proof.
This is where we use our properties on the cubical graph:

A B C

A′

B′

C′

C′′ B′′ A′′

=

A

����
��
��
��

��

C′′

��?
??

??
??

?

B
��

⋄

����
��
��
��

��?
??

??
??

? ⋄

B′′

��

C ��?
??

??
??

? ⋄

A′′
����
��
��
��

=

A

����
��
��
�� C′′

��?
??

??
??

?

B
�� ��?

??
??

??
? ⋄

����
��
��
��

B′′

��

C ��?
??

??
??

? ⋄

��

⋄

A′′
����
��
��
��

=

A B C

C′

B′

A′

C′′ B′′ A′′

31 / 39

A rewriting system

We can turn our relations into a rewriting system (from left to
right), e.g.

A B C

A′

B′

C′

C′′ B′′ A′′

⇛

A B C

C′

B′

A′

C′′ B′′ A′′

Conjecture
The rewriting system is convergent, thus normal forms are
canonical representatives of equivalence classes.

32 / 39

A proof for our theorem

Suppose given a 2-cell between dipaths α : f⇒ g. This 2-cell is
equal to a normal form, so we suppose that we are in this case.

Proposition
The 2-cell α does not contain ηA or εA generators.

Proof.
Suppose that it “contains”

εA : A · A⇒ idx

i.e. α = ψ ◦ (idf ·εA · idg) ◦ ϕ
...

α

...

=

...
ϕ

... A A ...

ψ
...

33 / 39

A proof for our theorem

Suppose given a 2-cell between dipaths α : f⇒ g. This 2-cell is
equal to a normal form, so we suppose that we are in this case.

Proposition
The 2-cell α does not contain ηA or εA generators.

Proof.
Suppose that it “contains”

εA : A · A⇒ idx

i.e. α = ψ ◦ (idf ·εA · idg) ◦ ϕ
...

α

...

=

...
ϕ

... A A ...

ψ
...

33 / 39

A proof for our theorem

What can ϕ be?
...

α

...

=

...
ϕ

... A A ...

ψ
...

34 / 39

A proof for our theorem

What can ϕ be?
...

α

...

=

...
ϕ

... A A ...

ψ
...

▶ Notice that ϕ cannot be an identity, otherwise α would
contain A in its source (a reversed edge), which would not be
a dipath.

▶ Thus ϕ is thus of the form
...

ϕ

...

=
ϕ′

... ρ ...

where ρ is a generator.

34 / 39

A proof for our theorem

What can ϕ be?
...

α

...

=

...
ϕ

... A A ...

ψ
...

▶ Notice that ϕ cannot be an identity, otherwise α would
contain A in its source (a reversed edge), which would not be
a dipath.

▶ Thus ϕ is thus of the form
...

ϕ

...

=
ϕ′

... ρ ...

where ρ is a generator.
34 / 39

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping
in mind that α must be in normal form. For instance, if ρ = γ,

▶ in a case such as

...
ϕ′

... A A ...

ψ
...

we can use the exchange law to “put the γ down in the ψ”
and reason by induction on ϕ′.

35 / 39

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping
in mind that α must be in normal form. For instance, if ρ = γ,

▶ in a case such as

...
ϕ′

A A

... ...

ψ
...

we can use the exchange law to “put the γ down in the ψ”
and reason by induction on ϕ′.

35 / 39

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping
in mind that α must be in normal form. For instance, if ρ = γ,

▶ the following cannot happen

...
ϕ′

... A A ...

ψ
...

...
ϕ′

... A A ...

ψ
...

otherwise α would not be normal.

35 / 39

A proof for our theorem

We then proceed on case analysis on ρ and its position, keeping
in mind that α must be in normal form. For instance, if ρ = γ,

▶ we can show that α is of the form

...

A A ...
ψ
...

and thus the morphism would contain A (a reversed
transition in its source).

35 / 39

A real proof

Showing that the rewriting system is convergent is difficult:
▶ there is an infinite number of critical pairs even though there
is a finite number of rules (they can however be grouped in a
finite number of families),

▶ there is an awful lot of cases to be checked.

In practice, we only need a representative (not necessarily
unique), which can be defined by hand, and the proof goes on
roughly as indicated before. So we actually have a proof here.

36 / 39

A real proof

Showing that the rewriting system is convergent is difficult:
▶ there is an infinite number of critical pairs even though there
is a finite number of rules (they can however be grouped in a
finite number of families),

▶ there is an awful lot of cases to be checked.

In practice, we only need a representative (not necessarily
unique), which can be defined by hand, and the proof goes on
roughly as indicated before. So we actually have a proof here.

36 / 39

Notes on the axioms

In the category Vect we have bjiections

A⊗ B→ C

A→ C⊗ B∗
A→ B⊗ C

B∗ ⊗ A→ C

In particular, consider the morphisms associated to idA : A→ A,

η : k → A⊗ A∗ ε : A∗ ⊗ A→ k

Together with the symmetry γ : A⊗ A→ A⊗ A, these satisfy the
axioms before, i.e. these correspond to cubical graph with one
vertex, one edge and one square.

To be precise, we also have to satisfy the axiom

(dimA) idk = tr(idA) = A A = = idk

i.e. dimA = 1.

37 / 39

Notes on the axioms

In the category Vect we have bjiections

A⊗ B→ C

A→ C⊗ B∗
A→ B⊗ C

B∗ ⊗ A→ C

In particular, consider the morphisms associated to idA : A→ A,

η : k → A⊗ A∗ ε : A∗ ⊗ A→ k

Together with the symmetry γ : A⊗ A→ A⊗ A, these satisfy the
axioms before, i.e. these correspond to cubical graph with one
vertex, one edge and one square.

To be precise, we also have to satisfy the axiom

(dimA) idk = tr(idA) = A A = = idk

i.e. dimA = 1.

37 / 39

Notes on the axioms

In the category Vect we have bjiections

A⊗ B→ C

A→ C⊗ B∗
A→ B⊗ C

B∗ ⊗ A→ C

In particular, consider the morphisms associated to idA : A→ A,

η : k → A⊗ A∗ ε : A∗ ⊗ A→ k

Together with the symmetry γ : A⊗ A→ A⊗ A, these satisfy the
axioms before, i.e. these correspond to cubical graph with one
vertex, one edge and one square.

To be precise, we also have to satisfy the axiom

(dimA) idk = tr(idA) = A A = = idk

i.e. dimA = 1.
37 / 39

CONCLUSION

38 / 39

Going further

For a cubical graph satisfying the cube property:
▶ universal dicovering has a simple definition,
▶ its unfolding corresponds to the configuration space of an
event structure (Chepoi, Ardilla et al., …)

▶ its trace space can be computed thanks to (traditional)
homology

▶ metric geometric realization is non-positively curved
(= locally CAT(0))

Also:
▶ Relations on 2-cells are meaningful?
▶ Variants for n-semaphores, etc.
▶ Links with motion planning (Ghrist et al.)
▶ Links with geometric group theory (Dehornoy, …)

39 / 39

