Generalized similarity measures for text data. Hubert Wagner (IST Austria)
 Joint work with Herbert Edelsbrunner

GETCO 2015, Aalborg

April 9, 2015

Plan

- Shape of data.
- Text as a point-cloud.
- Log-transform and similarity measure.
- Bregman divergence and topology.

Shape of data.

Main tools.

Rips and Cech simplicial complexes:

- Capture the shape of the union of balls.
- Combinatorial representation.

Persistence captures geometric-topological information of the data:

- Key property: stability!

Interpretation of filtration values.

For a simplex $S=v_{0}, \ldots, v_{k}, f(S)=t$ means that at filtration threshold t, objects v_{0}, \ldots, v_{k} are considered close.

Text as a point-cloud.

Basic concepts

Corpus:

- (Large) collection of text documents.

Term-vector:

- Weighted vector of key-words or terms.
- Summarizes the topic of a single document.
- Higher weight means higher importance.

Concept: Vector Space Model

- Vector Space Model maps a corpus K to \mathbb{R}^{d}.
- Each distinct term in K becomes a direction, so d can be high (10 s thousands).
- Each document is represented by its term-vector.

Concept: Similarity measures

- Cosine similarity compares two documents.
- Distance (dissimilarity) $d(a, b):=1-\operatorname{sim}(a, b)$.
- This d is not a metric.

Geometry-topological tools.

Interpreting Rips

A simplex is added immediately after its boundary:

- $d(a, b)$ - the dissimilarity.
- For triangle $d(a, b, c)=$ $\max (d(a, b), d(a, c), d(b, c))$.
- Is this the filtering function we want?

Generalized similarity

Goal:

- Extend similarity from pairs to larger subsets of documents.
- Its persistence should be stable.
- As a bonus, the resulting complex will be smaller.

Simple example.

For simplicity, let us work with binary term-vectors (or sets of terms).

- $\operatorname{sim}_{J}\left(X_{1}, d o t s, X_{d}\right)=\frac{\operatorname{card} \cap_{i} X_{i}}{\operatorname{card} \cup_{i} X_{i}}$.
- Generalizes the Jaccard index.

cat	dog	donkey
1	1	0
0	1	1
1	0	1

New direction.

Flawed generalized cosine measure:

$$
\begin{equation*}
R_{\mathrm{cos}}\left(p^{0}, p^{1}, \ldots, p^{k}\right)=\sum_{j=1}^{n} \prod_{i=0}^{k} p_{j}^{i} \tag{1}
\end{equation*}
$$

Another option: the length of the geometric mean:

$$
\begin{equation*}
R_{\mathrm{gm}}\left(p^{0}, p^{1}, \ldots, p^{k}\right)=\left(\sum_{j=1}^{n}\left(\prod_{i=0}^{k} p_{j}^{i}\right)^{\frac{2}{k+1}}\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

Log-transform

We study the N -dimensional log-transform and related distances.

Log-transform

Log-transform in 3D

Log-distance

Log-distance: formula

Let $x, y \in \mathbb{R}^{n-1}, s=\left(x, F_{1}(x)\right)$ and $t=\left(y, F_{1}(y)\right)$.
Then the log-distance from x to y is
$D(x, y)=\sum_{j=1}^{n}\left(t_{j}-s_{j}\right) e^{2 t_{j}}$.

Log-distance: conjugate

Log-distance: conjugate in 3D

Log Ball

Log Cech complex

$\operatorname{Cech}_{r}(X)=\left\{\xi \subseteq X \mid \bigcap_{x \in \xi} \mathbb{B}_{r}(x) \neq \emptyset\right\}$.
(3)

Generalized measure.

For each simplex $\xi \in \Delta(X)$, there is a smallest radius for which ξ belongs to the Čech complex:

$$
\begin{equation*}
r_{\mathrm{C}}(\xi)=\min \left\{r \mid \xi \in \operatorname{Cech}_{r}(X)\right\} \tag{4}
\end{equation*}
$$

We call $r_{\mathrm{C}}: \Delta(X) \rightarrow \mathbb{R}$ the Čech radius function of X.
In the original coordinate space, we get the desired similarity measure:

$$
\begin{equation*}
R_{\mathrm{C}}(\xi)=e^{-r_{\mathrm{C}}(\xi) / \sqrt{n}} \tag{5}
\end{equation*}
$$

Bregman divergences

Bregman divergences

Bregman distance from x to y :

$$
\begin{equation*}
D_{F}(x, y)=F(x)-[F(y)+\langle\nabla F(y), x-y\rangle] ; \tag{6}
\end{equation*}
$$

Bregman divergences

F can be any strictly convex function!

- It covers the Sq. Eucl. distance, squared Mahalanobis distance, Kullback-Leibler divergence, Itakura-Saito distance.
- Extensive use in machine learning.
- Links to statistics via [regular] exponential family (of distributions).

Further connections

- Bregman-based Voronoi [Nielsen at el].
- Information Geometry.
- Collapsibility Cech \rightarrow Delunay [Bauer, Edelsbrunner].
- Persistence stability for geometric complexes [Chazal, de Silva, Oudot]

Summary

- New, stable and relevant distance (dissimilarity measure) for texts.
- It serves as an interpretation of text data.
- Link between TDA and Bregman divergences.

Thank you!

Research partially supported by the TOPOSYS project

