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Plan

I Shape of data.

I Text as a point-cloud.

I Log-transform and similarity measure.

I Bregman divergence and topology.



Shape of data.













































Main tools.

Rips and Cech simplicial complexes:

I Capture the shape of the union of balls.

I Combinatorial representation.

Persistence captures geometric-topological
information of the data:

I Key property: stability!







































Interpretation of filtration values.

For a simplex S = v0, . . . , vk , f (S) = t means that
at filtration threshold t, objects v0, . . . , vk are

considered close.



Text as a point-cloud.



Basic concepts

Corpus:

I (Large) collection of text documents.

Term-vector:

I Weighted vector of key-words or terms.

I Summarizes the topic of a single document.

I Higher weight means higher importance.



Concept: Vector Space Model

I Vector Space Model maps a corpus K to Rd .

I Each distinct term in K becomes a direction, so
d can be high (10s thousands).

I Each document is represented by its term-vector.
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Concept: Similarity measures

I Cosine similarity compares two documents.

I Distance (dissimilarity) d(a, b) := 1− sim(a, b).

I This d is not a metric.
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Geometry-topological tools.



Interpreting Rips

A simplex is added immediately after its boundary:

I d(a, b) – the dissimilarity.

I For triangle d(a, b, c) =
max(d(a, b), d(a, c), d(b, c)).

I Is this the filtering function we want?



Generalized similarity
Goal:

I Extend similarity from pairs to larger subsets of
documents.

I Its persistence should be stable.
I As a bonus, the resulting complex will be

smaller.
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Simple example.

For simplicity, let us work with binary term-vectors
(or sets of terms).

I simJ(X1, dots,Xd) = card∩iXi

card∪iXi
.

I Generalizes the Jaccard index.
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0 1 1
1 0 1



New direction.

Flawed generalized cosine measure:

Rcos(p
0, p1, . . . , pk) =

n∑
j=1

k∏
i=0

pij . (1)

Another option: the length of the geometric mean:

Rgm(p0, p1, . . . , pk) =

 n∑
j=1

(
k∏

i=0

pij

) 2
k+1


1
2

. (2)



Log-transform

We study the N-dimensional log-transform and
related distances.



Log-transform



Log-transform in 3D



Log-distance



Log-distance: formula

Let x , y ∈ Rn−1, s = (x , F1(x)) and t = (y , F1(y)).
Then the log-distance from x to y is
D(x , y) =

∑n
j=1(tj − sj)e

2tj .



Log-distance: conjugate

x
x* y*

y



Log-distance: conjugate in 3D



Log Ball



Log Cech complex

Cechr(X ) = {ξ ⊆ X |
⋂
x∈ξ

Br(x) 6= ∅}. (3)



Generalized measure.

For each simplex ξ ∈ ∆(X ), there is a smallest
radius for which ξ belongs to the Čech complex:

rC(ξ) = min{r | ξ ∈ Cechr(X )}. (4)

We call rC : ∆(X )→ R the Čech radius function of
X .
In the original coordinate space, we get the desired
similarity measure:

RC(ξ) = e−rC(ξ)/
√
n (5)



Bregman divergences



Bregman divergences

Bregman distance from x to y :

DF (x , y) = F (x)− [F (y) + 〈∇F (y), x − y〉] ; (6)



Bregman divergences

F can be any strictly convex function!

I It covers the Sq. Eucl. distance, squared
Mahalanobis distance, Kullback-Leibler
divergence, Itakura-Saito distance.

I Extensive use in machine learning.

I Links to statistics via [regular] exponential
family (of distributions).



Further connections

I Bregman-based Voronoi [Nielsen at el].

I Information Geometry.

I Collapsibility Cech→Delunay [Bauer,
Edelsbrunner].

I Persistence stability for geometric complexes
[Chazal, de Silva, Oudot]



Summary

I New, stable and relevant distance (dissimilarity
measure) for texts.

I It serves as an interpretation of text data.

I Link between TDA and Bregman divergences.
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