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Contexto

Los esquemas de compartición de secretos fueron introducidos en 1979 de
forma independiente por Shamir [72] y Blakley [12]. Un esquema de com-
partición de secretos es una herramienta combinatoria que permite dividir
el conocimiento acerca de cierto secreto s en varios fragmentos de informa-
ción a1, a2, . . . , an, de tal manera que cualquier conjunto lo su�cientemente
grande de estos fragmentos determina completamente el secreto, mientras
que cualquier conjunto pequeño de fragmentos es independiente de él. Los
esquemas de compartición de secretos tienen numerosas aplicaciones en crip-
tografía. Aunque originalmente fueron propuestos como un medio de alma-
cenar claves criptográ�cas, posteriormente fue utilizado en otras áreas dentro
de la criptografía como la threshold cryptography (�criptografía umbral�, cuyo
estudio fue iniciado en [35]) o la computación multiparte, de la que volvere-
mos a hablar más adelante. Algunas de estas aplicaciones requieren esquemas
de compartición de secretos con algunas propiedades algebraicas adicionales.
En esta tesis, consideraremos esquemas de compartición de secretos lineales
(ECSL) ideales con t-multiplicación fuerte.

La linealidad es una propiedad que garantiza que tanto el secreto como
los fragmentos son elementos de espacios vectoriales sobre cierto cuerpo
�nito Fq y que si dos secretos s y s′ tienen como �vectores de fragmentos�
(a1, a2, . . . , an) y (a′1, a

′
2, . . . , a

′
n) respectivamente, entonces para cualquier ele-

mento λ ∈ Fq, (a1 + λa′1, a2 + λa′2, . . . , an + λa′n) es un vector de fragmentos
del secreto s + λs′. Los esquemas lineales ideales son aquellos en los que el
secreto y todos los fragmentos son elementos del propio cuerpo Fq.

Cramer, Damgård y Maurer [32] introdujeron las propiedades de multi-
plicación y t-multiplicación fuerte de un esquema de compartición de secretos
lineal ideal. Un esquema de este tipo tiene multiplicación si el conjunto de los
productos de fragmentos (a1a

′
1, a2a

′
2, . . . , ana

′
n) determina el producto de los

secretos ss′. Y tiene t-multiplicación fuerte si satisface dos requerimientos:
por una parte tiene t-privacidad, es decir, cualquier conjunto de t fragmentos
(o menos) es independiente del secreto; por otro lado si quitamos cualquier
conjunto de t fragmentos, el esquema tiene multiplicación para el conjunto
de n− t fragmentos restantes.

Las aplicaciones originales de los esquemas de compartición de secretos
lineales ideales con t-multiplicación fuerte pertenecían al dominio de la com-
putación multiparte (MPC). Se ha realizado una investigación muy prolí�ca
en este área de la criptografía en los últimos 20 años. Se pueden consultar
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algunos resúmenes de la investigación en este área en [27] o la tesis doctoral
de Robbert de Haan [42].

A grandes rasgos, la computación multiparte estudia el siguiente pro-
blema: un conjunto de participantes P1, . . . , Pn, cada uno de los cuales posee
un cierto dato privado x1, . . . , xn quiere computar de forma conjunta una
función pública de estos datos f(x1, . . . , xn) sin revelar más información de
la necesaria acerca de ellos, y esto debería seguir siendo así incluso si al-
gunos de los participantes hacen trampas de forma coordinada. De forma
un poco más precisa, se persiguen tres objetivos: ningún subconjunto de
participantes S = {Pi1 , . . . , Pit} que puedan coordinarse para hacer trampas
debería obtener más información acerca del dato privado xj de un partici-
pante Pj /∈ S que la que se puede obtener a partir de sus datos iniciales
{xi1 , . . . , xit} y la evaluación de la función f(x1, . . . , xn) que obtienen (pri-
vacidad); además la posible intervención de un conjunto de participantes
tramposos no puede evitar que la computación de la función �nalice (ro-
bustez ) y que el resultado obtenido por el resto de participantes sea el valor
correcto f(x1, . . . , xn) (correctitud). Otro modo de entender los objetivos de
la computación multiparte es considerar que los participantes deberían emu-
lar, por medio de un protocolo, un escenario ideal donde existe una tercera
parte de con�anza que es incorruptible, recibe los datos x1, . . . , xn de los par-
ticipantes, calcula f(x1, . . . , xn) y les comunica este valor. En el protocolo
real, los participantes no tienen acceso a esta tercera parte de con�anza ideal,
sólo pueden enviarse mensajes unos a otros (supondremos que cada par de
participantes se puede comunicar por medio de un canal privado, de forma
que el contenido de los mensajes enviados entre ellos permanece inescrutable
para los demás participantes). Sin embargo la información obtenida acerca
del resultado de la computación y de los datos de los demás participantes
debería ser la misma que en la situación ideal.

Que un protocolo de computación multiparte cumpla los objetivos ante-
riores depende de qué conjuntos de participantes pueden cooperar para hacer
trampas. Normalmente se supone que los participantes tramposos han sido
corrompidos por cierto adversario externo, que obtiene toda la información
recibida por ellos durante el protocolo y controla totalmente las acciones
que estos ejecutan, por lo que les puede hacer desviarse del protocolo de
forma coordinada. Para los participantes honestos no es posible, al menos
al principio del protocolo, determinar qué participantes son corruptos y por
tanto se considera que el adversario puede corromper cualquier conjunto en
cierta familia de subconjuntos de {P1, . . . , Pn}. El ejemplo más frecuente es
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que el adversario puede corromper cualquier subconjunto de como mucho t
participantes, para cierto entero t.

En 1988, Ben-Or, Goldwasser y Wigderson [10] e (independientemente)
Chaum, Crépeau y Damgård [21] demostraron el teorema fundamental de la
computación multiparte incondicionalmente segura. Este resultado a�rma
que cualquier función puede ser calculada por un conjunto de n participantes
intercambiando una cantidad total de información polinomial en el número de
participantes n y en el tamaño de cierta descripción de la función y además
el protocolo es incondicionalmente seguro si el adversario corrompe como
mucho t < n/3 participantes. Aquí, la palabra incondicional quiere decir
que el protocolo es seguro independientemente del poder computacional del
adversario. Por tanto, la seguridad del protocolo no depende del hecho de
que cierto problema matemático no pueda ser resuelto e�cientemente por el
aadversario, como es el caso en otras áreas de la criptografía, por ejemplo
el cifrado de clave pública. Por supuesto, existen muchos resultados intere-
santes relativos a la computación multiparte con seguridad computacional,
comenzando con el trabajo de Goldreich, Micali y Wigderson [40], pero no
nos ocuparemos de ellos aquí.

Los protocolos de computación multiparte de [10] y [21] utilizan los es-
quemas de compartición de secretos de Shamir, que se propusieron ya en [72].
Estos esquemas de compartición de secretos lineales ideales se pueden de�nir
para cualquier cuerpo �nito Fq y cualquier número n de fragmentos siempre
que n < q. Además tienen t-multiplicación fuerte para cualquier entero t tal
que 3t < n.

Los protocolos se basan en el hecho de que toda función se puede escribir
como un circuito aritmético sobre algún cuerpo �nito Fq (es decir tanto los
datos iniciales como el resultado de la evaluación son elementos del cuerpo
Fq y el resultado de la función se puede calcular por medio de un circuito
en el que las puertas son sumas o multiplicaciones de dos variables o de una
variable por un elemento �jo del cuerpo Fq). Usan el esquema de comparti-
ción de secretos de Shamir como una suerte de sistema de cifrado dedicado
con el que todos los participantes pueden �cifrar� cierta información pero sólo
un conjunto su�cientemente grande de participantes puede descifrarla (reu-
niendo los fragmentos que cada uno tiene). La linealidad y t-multiplicación
fuerte implican que este mecanismo de cifrado tiene propiedades homomór-
�cas en el sentido de que conociendo los cifrados de dos elementos a y b del
cuerpo Fq, los participantes pueden calcular, mediante un proceso interactivo
si es necesario, un cifrado de cualquier función lineal de a y b o del producto
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ab, sin revelar información alguna acerca de a y b al adversario. Además,
el adversario no puede impedir que estas computaciones se completen con
éxito. Por tanto en cada puerta del circuito, los participantes del protocolo
pueden computar de forma segura un cifrado de la salida de la puerta a par-
tir de cifrados de las entradas. Los participantes solo descifran (de forma
conjunta) el resultado de la función, y no los valores cuyos cifrados han sido
computados en los pasos intermedios. El adversario no puede interrumpir
este descifrado abandonando el protocolo, ya que los demás participantes
conocen su�cientes fragmentos del resultado para poder recuperarlo. La co-
rrectitud de este paso de descifrado se basa en parte en técnicas de corrección
de errores, que permiten el descifrado e�ciente del resultado en presencia de
fragmentos incorrectos, desbaratando por tanto cualquier intento del adver-
sario de evitar el éxito del protocolo comunicando información falsa a los
participantes honestos en este último paso.

Aunque estos protocolos usan implicitamente las propiedades del esquema
de Shamir que hemos mencionado antes, la propiedad de t-multiplicación
fuerte no fue de�nida explícitamente en estos artículos. Cramer, Damgård
y Maurer [32] no sólo introdujeron la noción de esquema de compartición
de secretos lineal con t-multiplicación fuerte, sino que de hecho generalizaron
los resultados anteriores, demostrando que a partir de cualquier esquema con
n fragmentos que satisfaga estas propiedades (y no sólo de los esquemas de
Shamir) podemos construir un protocolo e�ciente de computación multiparte
para n participantes para computar un circuito aritmético sobre Fq y que es
incondicionalmente seguro contra cualquier adversario que corrompa t par-
ticipantes. Por tanto, para obtener las mejores construcciones en términos
de seguridad, necesitamos utilizar esquemas de compartición de secretos li-
neales ideales con la mayor tolerancia de corrupción posible, la que se de�ne
como el cociente 3t

n−1 . Otra propiedad muy interesante de cualquier esquema
de compartición de secretos lineal con t-multiplicación fuerte es que, como
fue demostrado en [28], existe un algoritmo que permite la reconstrucción
e�ciente de un secreto a partir del conjunto de todos los fragmentos incluso
si algún subconjunto de t de estos fragmentos son erróneos.

Algunos esquemas de Shamir tienen la mejor tolerancia de corrupción
para esquemas de compartición de secretos lineales ideales, así que cuando
los utilizamos en la construcción de Cramer, Damgård y Maurer obtenemos
los mejores protocolos de computación multiparte en términos de seguridad,
y en este sentido podemos decir que los protocolos de [10], [21] son casos
particulares �óptimos�. El inconveniente es que, como hemos dicho, los es-
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quemas de Shamir sólo están de�nidos si n < q y por lo tanto no se pueden
utilizar para construir un protocolo de computación multiparte para com-
putar un circuito aritmético sobre Fq para n participantes si n ≥ q, al menos
no utilizando la construcción de [32]. Una posible solución sería llevar a cabo
los cálculos en Fqk , una extensión de Fq tal que qk > n, pero esto haría cre-
cer la complejidad de comunicación del protocolo, ya que cualquier elemento
comunicado durante un paso en el que se comparte un secreto pertenecería
a Fqk y por tanto la cantidad de información enviada sería k veces mayor.

Una alternativa es buscar esquemas de compartición de secretos lineales
ideales sin la restricción n < q del esquema de Shamir pero con tolerancia
de corrupción grande. En 2006, Chen y Cramer iniciaron el estudio del com-
portamiento asintótico de los esquemas lineales con t-multiplicación fuerte.
Para ello, introdujeron los esquemas de compartición de secretos algebraico-
geométricos, que se construyen a partir de códigos lineales algebraico-geomé-
tricos. Estos esquemas son generalizaciones de los esquemas de Shamir pero
no requieren la condición n < q. De hecho para un q �jo se pueden cons-
truir esquemas algebraico-geométricos sobre Fq para un número arbitrario
de participantes. Además Chen y Cramer demostraron algunos resultados
acerca de la multiplicación fuerte de sus esquemas. Probaron que para al-
gunos cuerpos �nitos, se puede construir una familia in�nita de esquemas de
compartición de secretos con un número creciente de participantes tales que
estos esquemas tienen t-multiplicación fuerte para t = Ω(n), es decir, que su
tolerancia de corrupción está acotada inferiormente por alguna constante.

Debemos mencionar también que los esquemas de compartición lineales
ideales que no tienen necesariamente t-multiplicación fuerte pero sí tienen t-
privacidad para un t grande y al mismo tiempo multiplicación, se pueden uti-
lizar como base para construir protocolos de computación multiparte, como
se demostró en [32]. Sin embargo, estos protocolos no obtienen seguridad per-
fecta, ya que tienen cierta probabilidad de error. En [19], se demostró que
este tipo de esquemas de compartición de secretos se pueden obtener a par-
tir de códigos autoduales, que están bien estudiados (ver por ejemplo [67]).
Sin embargo, la propiedad de t-multiplicación fuerte parece ser mucho más
complicada de obtener.

Recientemente el trabajo de Chen y Cramer se ha aplicado sorprenden-
temente en algunos problemas criptográ�cos, algunos de ellos fuera del do-
minio de la computación multiparte. Ishai, Kushilevitz, Ostrovsky y Sahai
mostraron una notable aplicación en el contexto de las pruebas de cono-
cimiento cero [46]. Construyeron un protocolo de conocimiento cero para
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el problema de la satisfacibilidad de un circuito, que es un problema NP-
completo, que requiere la comunicación de O(1) bits por puerta del circuito.
En [48] Ishai, Prabkharan y Sahai demostraron como transformar un proto-
colo de computación multiparte que sea seguro sólo si la mayoría de los par-
ticipantes son honestos en un protocolo seguro sin esta condición suponiendo
que exista una implementación ideal de un protocolo de transferencia incons-
ciente (oblivious transfer). En [47], Ishai, Kushilevitz, Ostrovsky y Sahai
aplicaron de nuevo los resultados de [20] en el contexto de la �criptografía re-
sistente a fugas de información� (leakage resilient cryptography). El trabajo
de [47] introduce extractores de correlaciones, una herramienta que permite
proteger los protocolos de computación biparte contra fugas de información.
Para esta aplicación se necesitan también familias de esquemas de compar-
tición de secretos con t-multiplicación fuerte para t = Ω(n), pero además
se requiere una propiedad de independencia de fragmentos: todo fragmento
debe ser independiente de todo subconjunto de t fragmentos distintos de él.
Pero la construcción de [20] también disfruta de esta propiedad.

Contribuciones

El principal objetivo de esta tesis es el estudio del comportamiento asintótico
de las familias de esquemas de compartición de secretos que son adecuadas
para la computación multiparte; es decir esquemas de secretos lineales ideales
con t-multiplicación fuerte. Para hacer esto, de�niremos para cada cuerpo
�nito Fq una clase de códigos lineales sobre Fq, que llamaremos C†(Fq), a
partir de cuyos elementos podemos construir esquemas de compartición de
secretos lineales ideales con multiplicación. Introduciremos también el con-
cepto de tolerancia de corrupción τ̂(C) de un código C ∈ C†(Fq), que es una
medida de la tolerancia de corrupción de los correspondientes esquemas de
compartición de secretos, y �nalmente la tolerancia de corrupción asintótica
óptima τ̂(q) de un cuerpo �nito Fq, de�nida como τ̂(q) = lim supn→∞ Tq(n),
donde para todo entero n > 1, Tq(n) denota el valor máximo que puede al-
canzar τ̂(C) cuando consideramos todos los códigos C ∈ C†(Fq) de longitud
n+1. Es decir, τ̂(q) representa la mejor tolerancia de corrupción que podemos
obtener asintóticamente para familias in�nitas de esquemas de compartición
de secretos lineales ideales tal que el número de fragmentos tiende a in�nito.

El estudio del parámetro τ̂(q) es el objetivo más importante de esta tesis.
Demostraremos que para cualquier cuerpo �nito Fq, 0 < τ̂(q) < 1, y daremos
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cotas inferiores y superiores explícitas para estos valores.
Bastantes resultados de esta tesis han sido publicados (ver [15], [16], [17]

y [18]).
El texto está estructurado en tres partes.
En la parte I se introducen las nociones y resultados preliminares necesa-

rios acerca de códigos lineales, cuerpos de funciones algebraicas y esquemas
de compartición de secretos.

La parte II se dedicará al estudio asintótico de los esquemas de com-
partición de secretos lineales ideales con multiplicación fuerte. Esta parte
tiene cuatro capítulos. En el capítulo 4 de�nimos para todo cuerpo �nito
Fq, una clase de códigos lineales sobre Fq, denotada por C†(Fq). Todo código
C ∈ C†(Fq) da lugar al menos a un esquema de compartición de secretos
li-neal Σ(C, i) con multiplicación, donde i es una coordenada pre�jada del
código. Introduciremos la tolerancia de corrupción τ̂(C) del código C. Para
ello consideraremos todos los esquemas de compartición de secretos lineales
Σ(C, i) que se pueden construir a partir de C y tienen ti-multiplicación fuerte
para algún ti > 0 y de�niremos τ̂(C) como el máximo del cociente 3ti

n−1 , donde
n+1 denota la longitud de C. Como veremos, 0 ≤ τ̂(C) ≤ 1, donde τ̂(C) = 1
sólo puede ocurrir para códigos MDS. En el capítulo 5 de�nimos, para todo
cuerpo �nito Fq y todo entero n > 1, el valor Tq(n) como la máxima tole-
rancia de corrupción τ̂(C) cuando consideramos todos los códigos C ∈ C†(Fq)
de longitud n + 1 e introducimos el parámetro τ̂(q) = lim supn→∞ Tq(n). El
estudio de este parámetro es el objetivo principal de esta tesis. También
recordaremos los resultados de [20], que implican que τ̂(q) > 0 para algunos
cuerpos �nitos Fq (en realidad para un número in�nito de cuerpos �nitos).
En el capítulo 6, demostraremos que, en realidad, se tiene τ̂(q) > 0 para
todo cuerpo �nito Fq y daremos algunas cotas inferiores explícitas para τ̂(q).
Finalmente, en el Capítulo 7, demostraremos que también se tiene τ̂(q) < 1
para todo cuerpo �nito Fq y daremos de forma explícita cotas superiores para
τ̂(q).

Finalmente, en la parte III introduciremos los sistemas de ecuaciones
de Riemann-Roch y demostraremos que las soluciones a ciertos sistemas de
este tipo dan lugar a códigos lineales con ciertas propiedades combinatorias.
Como aplicaciones obtendremos cotas inferiores mejoradas para τ̂(q) para al-
gunos cuerpos �nitos Fq y estudiaremos un problema asintótico concerniente
a la complejidad de las multiplicaciones en extensiones de cuerpos �nitos.
Esta parte tiene cinco capítulos. Primero, en el capítulo 8 de�nimos los
sistemas de ecuaciones de Riemann-Roch. Las ecuaciones de estos sistemas
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son igualdades de dimensiones de Riemann-Roch asociadas a divisores de
un cuerpo de funciones algebraicas y la indeterminada es un divisor. De-
mostraremos que las soluciones de ciertos sistemas de ecuaciones permiten
construir códigos algebraico-geométricos con ciertas propiedades combinato-
rias. Obtendremos también condiciones sobre los parámetros del sistema y
el cuerpo de funciones algebraicas sobre el que está de�nido que son su�-
cientes para asegurar que existen soluciones. Estas condiciones involucran
dos tipos de parámetros: el número Ar de divisores positivos de un cierto
grado �jo r del cuerpo de funciones algebraicas y el tamaño del subgrupo de
m-torsión Cl0(F)[m] del grupo de clases de divisores de grado cero Cl0(F) del
cuerpo de funciones algebraicas. En el capítulo 9, daremos cotas superiores
para el número de divisores positivos de cierto grado de un cuerpo de fun-
ciones algebraicas. En el capítulo 10, obtendremos varias cotas superiores
asintóticas para los parámetros |Cl0(F)[m]|, usando resultados conocidos de
geometría algebraica, como los resultados clásicos de Weil acerca de la torsión
de variedades abelianas, resultados acerca de los pares de Weil y el teorema
de Deuring-Shafarevich.

En el capítulo 11, planteamos en primer lugar sistemas de ecuaciones de
Riemann-Roch cuyas soluciones dan lugar a códigos algebraico-geométricos
con cierta tolerancia de corrupción. Aplicamos los resultados del capítulo 8
y las cotas del capítulo 9 para obtener condiciones su�cientes para la reso-
lubilidad de este tipo particular de sistemas de Riemann-Roch. Finalmente
aplicando las cotas del capítulo 10 obtenemos cotas inferiores para τ̂(q) que
en algunos casos son mejores que las obtenidas en la parte II. Por último,
en el capítulo 12 mostramos una aplicación interesante de las técnicas desa-
rrolladas en esta parte a un problema que no está (directamente) ligado a la
criptografía. Analizaremos la complejidad asintótica de la multiplicación en
extensiones de cuerpos �nitos. Dada una extensión Fqk de un cuerpo �nito
Fq, consideramos la mínima complejidad m(q, k) de cierto tipo de algorit-
mos que computan el producto de dos elementos en Fqk . El valor m(q, k)
representa el mínimo número de productos en Fq que necesitamos para cal-
cular este producto mediante uno de estos algoritmos. D. V. Chudnovski
y G. V. Chudnovski [23] fueron los primeros en proponer el uso de códi-
gos algebraico-geométricos para obtener cotas superiores para m(q, k). Más
tarde, Shparlinski, Tsfasman y Vladut [73] analizaron el comportamiento
asintótico de este parámetro (cuando q está �jo y k crece). Sin embargo,
hay un paso de una de sus demostraciones que no está completamente justi-
�cado. Esto tiene consecuencias en su demostración de las cotas superiores
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para el parámetro asintótico µ(q) = lim infk∈Nm(q, k)/k y también afecta a
algunos trabajos posteriores de otros autores sobre este tema. En el capí-
tulo 12 nos ocuparemos de este problema y veremos como se puede resolver,
utilizando la maquinaria introducida en esta parte de la tesis, para obtener
cotas superiores para µ(q).





Introduction

19





Introduction 21

Context

Secret sharing schemes were introduced in 1979, independently by Blak-
ley [12] and Shamir [72]. A secret sharing scheme is a combinatorial object
which allows for the split of the knowledge of certain secret s into several
pieces of information a1, a2, . . . , an (the shares), in such a way that any large
enough subset of these shares determines the secret, while any small subset
of shares is information-theoretically independent of it. Secret sharing has
found many important applications in cryptography. It was �rst proposed
as a means of storing cryptographic keys. However, secret sharing has also
been applied in other cryptographic areas like threshold cryptography (start-
ing with [35]) and multiparty computation, of which more will be explained
afterwards. Some of these applications require special secret sharing schemes
with some extra algebraic properties. This thesis will be mostly concerned
with ideal linear secret sharing schemes (LSSS) with t-strong multiplication.

Linearity is a property that guarantees that the secret and shares are
elements of vector spaces over some �nite �eld Fq and if two secrets s and s′

have as share vectors (a1, a2, . . . , an) and (a′1, a
′
2, . . . , a

′
n) then for any λ ∈ Fq,

(a1 + λa′1, a2 + λa′2, . . . , an + λa′n) is a vector of shares for the secret s+ λs′.
Ideal linear schemes are those where the secret and all the shares are elements
of the �eld Fq.

The properties of multiplication and t-strong multiplication of an ideal
linear secret sharing scheme were �rst de�ned by Cramer, Damgård and
Maurer [32]. A linear secret sharing scheme has multiplication if the set of
product of shares (a1a

′
1, a2a

′
2, . . . , ana

′
n) determines the product of the secrets

ss′. And a scheme has t-strong multiplication if it satis�es two requirements:
on the one hand, it has t-privacy, that is, any set of t (or less) shares is
independent of the secret; on the other hand, if we remove any subset of t
shares, the scheme has multiplication for the remaining set of n− t shares.

Original applications of ideal linear secret sharing schemes with t-strong
multiplication belonged to the domain of multiparty computation (MPC).
Research in this fundamental area of cryptography has been very proli�c
within the last 20 years. For overviews in this subject, see [27] or Robbert
de Haan's Ph.D. thesis [42].

At a high level, multiparty computation studies the following problem:
a set of players P1, . . . , Pn, each holding a certain private input x1, . . . , xn,
want to jointly compute some public function of these data f(x1, . . . , xn)
without revealing more information than necessary about their inputs, and
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this should hold even if some of the players cheat, possibly in a coordinated
way. More precisely, three goals are pursued: no set of possibly colluding
players S = {Pi1 , . . . , Pit} should obtain more information about the input
xj of a player Pj /∈ S other than what is implied by their inputs {xi1 , . . . , xit}
and the evaluation f(x1, . . . , xn) (privacy) and despite the possible presence
of cheaters, the computation of the function succeeds and the players obtain
an output(robustness) which is the actual value f(x1, . . . , xn)(correctness).
Another way to look at this problem is by saying that the players P1, . . . , Pn
should emulate, by means of a protocol, an ideal scenario where a trustwor-
thy, incorruptible third party receives the inputs from the players, computes
the function and returns the output of the function to them. In the ac-
tual protocol, the players do not have access to such a idealized trustworthy
third party; instead, each player can send messages to every other player (we
assume the existence of untappable private channels between each pair of
players). Yet the information obtained by the players about the output and
the inputs of other players should be the same as in this ideal situation.

That a speci�c MPC protocol achieves the goals above depends on which
players collude and cheat. It is usually assumed that all the cheating players
are corrupted by some external adversary, who obtains all the information
received by them and takes full control of the actions of these players, possibly
making them deviate from the protocol. For the honest players it is not
possible, at least at the beginning of the protocol, to determine which players
are corrupt and therefore it is considered that the adversary could corrupt
any set in a certain family of subsets of {P1, . . . , Pn}. The most usual example
is that the adversary can corrupt any set of up to t players, for some integer
t.

In 1988, Ben-Or, Goldwasser and Wigderson [10] and (independently)
Chaum, Crépeau and Damgård [21] proved the fundamental theorem of un-
conditionally secure multiparty computation. This result states that every
function can be computed by a set of n players exchanging a total amount
of information which is polynomial in n and in the size of certain description
of the function and this protocol is unconditionally secure if the adversary
corrupts up to t < n/3 players. Here the word unconditional means that the
protocol executed by the players is secure regardless of the computational
power of the adversary. Therefore, the security of the protocol does not de-
pend on the fact that a certain mathematical problem cannot be e�ciently
solved by the adversary, as it is the case in other areas of cryptography, like
public key encryption. Of course, there are also many interesting results
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concerning computationally secure multiparty computation protocols, start-
ing with the work of Goldreich, Micali and Wigderson [40], but these will not
be addressed here.

The MPC protocols in [10] and [21] use Shamir's secret sharing schemes,
which were already proposed in the seminal paper [72]. These ideal linear
secret sharing schemes can be de�ned for any �eld Fq and any number n of
shares whenever n < q. Moreover they have t-strong multiplication for any
integer t with 3t < n.

The protocols are based on the fact that every function can be written as
an arithmetic circuit over some �nite �eld Fq (that is, the inputs and outputs
are elements of the �eld Fq and the output can be computed from the inputs
by a circuit whose gates consist on sums, multiplications of two inputs or
multiplications of an input with a �xed constant of the �eld Fq). They use
Shamir's secret sharing scheme as a dedicated encryption system with which
every player can �encrypt� some information but only a large enough subset
of the players can decrypt it (by pooling together their shares). Linearity and
t-strong multiplication imply that this encryption mechanism has homomor-
phic properties in the sense that knowing the encryptions of two elements
a and b of the �eld Fq, the players can compute, possibly by an interactive
process, an encryption of any linear function of a and b or of the product
ab, without leaking any information about a and b to the adversary. Further-
more, the success of these computations cannot be disrupted by the possibly
faulty behaviour of the adversary. Hence, the players can securely compute
an encryption of the output of every gate of the circuit given the encryptions
of the inputs. The players only decrypt (jointly) the output of the function,
and not the values computed at the intermediate steps. The adversary can-
not stop this decryption by leaving the protocol, since the other players still
know enough shares of the output to be able to recover it. The correctness of
this decryption step is partially based on error correcting techniques, which
allow for the e�cient decryption of the output in the presence of incorrect
shares, thus thwarting any attempt of the adversary to disrupt the protocol
by communicating false information in this step.

Even though these protocols implicitly use the algebraic properties of
Shamir's scheme that we have mentioned earlier, the t-strong multiplication
property was not explicitly de�ned in these papers. Cramer, Damgård and
Maurer [32] not only de�ned the notion of linear secret sharing scheme with
t-strong multiplication, but in fact also generalized the previous results, prov-
ing that from any ideal scheme with n shares satisfying these properties (and
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not only from Shamir's schemes) we can construct an e�cient multiparty
computation protocol for n players to compute an arithmetic circuit over Fq
and that is unconditionally secure against any active adversary corrupting
t parties. Therefore, in order to obtain the best constructions in terms of
security, we need to use ideal linear secret sharing schemes with the largest
possible corruption tolerance, which is de�ned as the ratio 3t

n−1 . Another very
interesting property of any LSSS with t-strong multiplication is that, as it
was proved in [28], there is an algorithm that allows for the e�cient recon-
struction of a secret from the set of all shares even if some subset of up to t
of these shares are false.

Some Shamir's schemes achieve the best possible corruption tolerance for
ideal linear secret sharing schemes, so when plugged into the construction by
Cramer, Damgård and Maurer they yield the best MPC protocols in terms
of security, and in that sense we can say the protocols of [10], [21] are
�optimal� particular cases. The drawback is that, as we have said, Shamir's
scheme can only be used if n < q and hence cannot be used in order to
construct an MPC protocol to compute an arithmetic circuit over Fq for n
players if n ≥ q, at least not using the paradigm in [32]. A possible solution
is to carry out the computations in Fqk , an extension �eld of Fq such that
qk > n, but this blows up the communication complexity of the protocol, as
every element communicated during a secret sharing step belongs to Fqk and
hence the amount of information to be sent is k times bigger.

An alternative is to search for ideal linear secret sharing schemes without
the restriction n < q of Shamir's scheme and still have large corruption tol-
erance. In 2006, Chen and Cramer [20] initiated the study of the asymptotic
behaviour of linear secret sharing schemes with t-strong multiplication. They
introduced algebraic geometric secret sharing schemes, which are constructed
from algebraic geometric linear codes. These schemes are generalizations of
Shamir's schemes but they do not require that n < q. In fact, for a �xed
q one can construct algebraic geometric schemes for an arbitrary number of
players. At the same time, Chen and Cramer proved some results concerning
strong multiplication of their schemes. They showed that for some �nite
�elds, one can construct an in�nite family of secret sharing schemes with
unbounded number of players such that they have t-strong multiplication for
t = Ω(n), that is, their corruption tolerances were lower bounded by some
constant.

We should also mention that ideal linear secret schemes which do not
necessarily have t-strong multiplication, but do have t-privacy for large t and
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at the same time multiplication for the set of all players, can also be used as a
basis to construct MPC protocols, as was also proved in [32]. However, these
protocols do not achieve perfect security, since they have some probability
to fail. In [19], it was proved that this kind of secret sharing schemes can
be obtained from self-dual codes, which are well studied (see for example
[67]). However, the property of t-strong multiplication seems to be much
more elusive.

There have been some surprising applications of the work by Chen and
Cramer in cryptographic problems, some of them outside the domain of mul-
tiparty computation. Ishai, Kushilevitz, Ostrovsky and Sahai showed a re-
markable application in the context of zero knowledge proofs [46]. They
constructed a zero knowledge protocol for the problem of circuit satis�abil-
ity, which is an NP-complete problem, requiring only the communication of
O(1) bits per gate in the circuit. In [48] Ishai, Prabkharan and Sahai showed
how to transform an MPC protocol which is secure only if the majority of the
players are honest into an MPC protocol which is secure without this assump-
tion in the oblivious transfer-hybrid model, that is, assuming we had an ideal
implementation of an oblivious transfer protocol. In [47], Ishai, Kushilevitz,
Ostrovsky and Sahai applied again the results of [20] in the context of leakage
resilient cryptography. The work of [47] introduces correlation extractors, a
tool that allows for the protection of two-party computation protocols against
information leakage. Families of secret sharing schemes with t-strong multi-
plication for t = Ω(n) are needed, but in addition they requiere a property of
independence of shares: any share should be independent from every subset
of t shares. But the construction from [20] also enjoys this property.

Contributions

The main goal of this thesis is the study of the asymptotical behaviour of
families of �MPC-friendly� secret sharing schemes; that is, ideal linear secret
sharing schemes with t-strong multiplication. In order to do this, we intro-
duce for every �nite �eld Fq a class of Fq-linear codes C†(Fq) whose elements
give rise to ideal linear secret sharing schemes with multiplication. We also
introduce the corruption tolerance τ̂(C) of a code C ∈ C†(Fq), as the mea-
sure of the corruption tolerance of the corresponding linear secret sharing
schemes, and �nally the asymptotical optimal corruption tolerance τ̂(q) of
a �nite �eld Fq, de�ned as τ̂(q) = lim supn→∞ Tq(n), where for any integer
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n > 1, Tq(n) denotes the maximal corruption tolerance τ̂(C) among all codes
C ∈ C†(Fq) of length n + 1. So τ̂(q) represents the best possible corruption
tolerance that we can achieve asymptotically for in�nite families of linear
secret sharing schemes with unbounded number of players.

The study of the parameter τ̂(q) is the most important concern of this
thesis. We will prove that for every �nite �eld Fq, 0 < τ̂(q) < 1, giving
explicit lower and upper bounds for these values.

Many of the results of the thesis have been published in the papers [15],
[16], [17] and [18].

The text is structured in three parts.
In Part I the necessary preliminary notions and results about linear codes,

algebraic function �elds and codes and secret sharing schemes are introduced.
Part II is devoted to the study of asymptotics of ideal linear secret sharing

schemes with strong multiplication. This part has four chapters. In Chap-
ter 4, we de�ne, for every �nite �eld Fq, a class of Fq−linear codes C†(Fq).
Every code C ∈ C†(Fq) gives rise to at least one ideal linear secret sharing
scheme Σ(C, i) with multiplication, where i is a special coordinate of the
code. We introduce the corruption tolerance τ̂(C) of the code C. For this
we consider all linear secret sharing schemes Σ(C, i) that can be constructed
from C having ti-strong multiplication for some ti > 0 and de�ne τ̂(C) as
the maximum of the ratio 3ti

n−1 , where n + 1 is the length of C. As we will
show, we have that 0 ≤ τ̂(C) ≤ 1, where τ̂(C) = 1 may only happen for MDS
codes. In Chapter 5 we de�ne for every �nite �eld Fq and every integer n > 1,
Tq(n) as the maximal corruption tolerance τ̂(C) among all codes C ∈ C†(Fq)
of length n + 1 and we introduce the parameter τ̂(q) = lim supn→∞ Tq(n).
The study of this parameter is the main goal of this thesis. We also revisit
the results of [20], which imply that τ̂(q) > 0 for some �nite �elds Fq (in fact
for an in�nite number of �nite �elds).

In Chapter 6, we prove that τ̂(q) > 0 actually holds for all �nite �elds
Fq and give some explicit lower bounds for τ̂(q). Finally, in Chapter 7, we
prove that τ̂(q) < 1 also holds for all �nite �elds Fq and give explicit upper
bounds for τ̂(q).

Finally, in Part III we introduce Riemann-Roch systems of equations and
show that solutions of certain Riemann-Roch systems yield algebraic geomet-
ric codes with certain combinatorial properties. As applications we obtain
improved lower bounds for τ̂(q) for some �nite �elds Fq and we study an
asymptotical problem about the complexity of multiplications in extensions
of �nite �elds. This part has �ve chapters. First, in Chapter 8 we de�ne
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the Riemann-Roch systems of equations. The equations in these systems
are equalities of the Riemann-Roch dimensions of divisors of a function �eld
and the indeterminate is a divisor. We prove that a solution of a certain
Riemann-Roch system yields an algebraic geometric code with certain com-
binatorial properties. We also give general conditions on the parameters of
the system and the function �elds which are su�cient to ensure the exis-
tence of solutions. These conditions involve two special kinds of parameters:
the number Ar of positive divisors of a given degree r and the size of the
m-torsion subgroup Cl0(F)[m] of the degree zero divisor class group Cl0(F)
of the functsion �eld. In Chapter 9, we give upper bounds for the number
of positive divisors of a certain degree of a function �eld. In Chapter 10, we
deduce several asymptotically upper bounds for the parameters |Cl0(F)[m]|,
using known algebraic geometric results, such as Weil's classical results on
torsion of abelian varieties, Weil Pairing and Deuring-Shafarevich theorem.
In Chapter 11, we �rst pose Riemann-Roch systems of equation whose solu-
tions yield algebraic geometric codes with a certain corruption tolerance. We
apply the results of Chapter 8 and the bound in Chapter 9 to give su�cient
conditions for the solvability of these particular Riemann-Roch systems. Ap-
plying the bounds in Chapter 10 we obtain bounds for τ̂(q) which in some
cases are better than the lower bounds obtained in Part II. Finally, in Chap-
ter 12 we show an interesting application of the techniques developed in this
part to a di�erent problem which is not (directly) related with cryptography.
We analyze the asymptotical complexity of multiplication over extensions of
�nite �elds. Given an extension �eld Fqk of Fq, we consider the minimal com-
plexity m(q, k) of certain kind of algorithms that compute the product of two
elements in Fqk . The value m(q, k) represents the minimal number of prod-
ucts in Fq that we need to compute the product. D. V. Chudnovski and G.
V. Chudnovski [23] �rst proposed the use of algebraic geometric codes to ob-
tain upper bounds for m(q, k). Later, Shparlinski, Tsfasman and Vladut [73]
analyzed the asymptotical behaviour of this parameter (when q is �xed and
k grows). However, there is an unjusti�ed step in one of their proofs. This
gap has consequences in the proof of their upper bounds for the asymptot-
ical parameter µ(q) = lim infk∈Nm(q, k)/k and also a�ects subsequent work
about this topic by other authors. In Chapter 12 we identify and repair this
gap, using the machinery introduced in this part of the thesis.
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Chapter 1

Linear codes

This chapter is an overview of some basic notions and results about linear
codes over �nite �elds, which will be used throughout the text. Most of
these notions can be found in the books by Hu�man and Pless [44] and
MacWilliams and Sloane [53].

1.1 De�nitions

We state now the basic de�nitions about linear codes over �nite �elds.

Definition 1.1 A linear code C over Fq of length k(C) is a Fq-vector sub-
space of Fk(C)

q . The elements c ∈ C are the words of the code.

Definition 1.2 Let C be a linear code over Fq. If c ∈ C, its coordi-

nate vector is denoted as (π0(c), π1(c), . . . , πk(C)−1(c)) ∈ Fk(C)
q and the set

I(C) := {0, 1, . . . , k(C) − 1} is used to index the coordinates. For a subset

A ⊆ I(C), πA denotes the projection πA : C → F|A|q given by c 7→ (πi(c))i∈A.

Two important parameters are the dimension and the minimum distance
of a linear code over Fq.

Definition 1.3 The dimension dimC of a linear code C over Fq is its di-
mension as an Fq-linear subspace of Fk(C)

q . The number of words in C is
qdimC.

31



32 Part � I. Preliminaries

Definition 1.4 Let r ≥ 1 be an integer. Let x = (π0(x), π1(x), . . . , πr−1(x))
and y = (π0(y), π1(y), . . . , πr−1(y)) ∈ Frq. The distance between x and y is

d(x,y) := |{i ∈ {0, 1, . . . , r − 1} : πi(x) 6= πi(y)}|.

The minimum distance d(C) of a linear code over Fq, is

d(C) := min{d(w1,w2) : w1,w2 ∈ C,w1 6= w2}

if C 6= {0} and d(C) = k(C) + 1 if C = {0}.

The minimum distance d(C) can be characterized using the notion of
Hamming weights, which will also be useful for us.

Definition 1.5 Given x = (π0(x), π1(x), . . . , πr−1(x)) ∈ Frq, its Hamming
weight is

wHam(x) := |{i ∈ {0, 1, . . . , r − 1} : πi(x) 6= 0}| = d(x,0).

Lemma 1.6 If {0} 6= C is a linear code over Fq, then

d(C) = min
c∈C,c 6=0

wHam(c).

The concept of dual code will also be especially useful in this text.

Definition 1.7 Let C be a linear code over Fq. Its dual code is the following
linear code over Fq

C⊥ := {c∗ ∈ Fk(C)
q :< c∗, c >= 0 ∀c ∈ C}

where < ·, · > denotes the inner product in Fk(C)
q .

One can easily check:

Lemma 1.8 We have the following properties:

� C⊥ is a linear code over Fq, with k(C⊥) = k(C).

� (C⊥)⊥ = C.

� dimC = k(C)− dimC⊥.
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Definition 1.9 A linear code C over Fq is self-dual if C = C⊥ and self-
orthogonal if C ⊆ C⊥

There are more ways in which a linear code over Fq can be obtained from
a given one. Next we explain the concept of shortened codes, which we will
use later on.

Definition 1.10 (Shortened code) Let C be a linear code over Fq and
∅ 6= A ⊆ I(C). Let CA,0 := {c ∈ C : πA(c) = 0}. The linear code D over Fq
obtained by shortening C at A is

D := {πB(c) : c ∈ CA,0} ⊆ F|B|q

where B = I(C) \ A.

1.2 Bounds on the parameters

We will need some upper bounds for the dimension dimC of a linear code C
over Fq, in terms of d(C) and k(C).

Theorem 1.11 (Singleton bound) For any linear code C over Fq, we
have

dimC + d(C) ≤ k(C) + 1.

Definition 1.12 A linear code C over Fq is a maximum distance separable
(MDS) code if it attains the Singleton bound, i.e., if dimC+d(C) = k(C)+1.

The following is a well known result (see for example [53]).

Theorem 1.13 If C is an MDS code then C⊥ is also an MDS code.

�Trivial� examples of MDS codes over a �nite �eld Fq with arbitrary length
and dimensions in a certain range exist over any �nite �eld.

Lemma 1.14 Let Fq be a �nite �eld, ` > 0 an integer. For any integer
k ∈ {0, 1, ` − 1, `}, there exists an MDS code C over Fq with k(C) = ` and
dimC = k.
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Indeed, for every �nite �eld Fq and integer `, consider the linear codes over
Fq of length ` de�ned as C1 = {0}, C2 = {(λ, λ, . . . , λ) : λ ∈ Fq}, C3 = C⊥2 ,
C4 = C⊥1 = F`q. These have dimensions 0, 1, `− 1, `, respectively.

As we will recall later on, there exist MDS codes C whose dimensions
do not belong to the set {0, 1, k(C)− 1, k(C)}, but this does not happen for
arbitrary �nite �elds and arbitrary values of k(C). Hence, it is usual to make
the following distinction.

Definition 1.15 A MDS code C is trivial if dimC ∈ {0, 1, k(C)− 1, k(C)}
and nontrivial otherwise.

In the sequel, we need the following notation.

Definition 1.16 Let t ≥ 0 be an integer. Fq[X]≤t denotes the subset of all
polynomials f in Fq[X] with deg f ≤ t.

Now we describe a family of linear codes over Fq, Reed-Solomon codes.
They are MDS codes and, in some cases, nontrivial.

Definition 1.17 (Reed-Solomon code) Let Fq be a �nite �eld and let
t, n ∈ Z such that 0 ≤ t ≤ n < q and n ≥ 1. A Reed-Solomon code C of
length k(C) = n+ 1 and dimension dimC = t+ 1 (denoted by RSq[n, t]-code)
is a linear code over Fq of the form

C = {(f(x0), f(x1), . . . , f(xn)) : f ∈ Fq[X]≤t}

where x0, x1, . . . , xn are distinct elements in Fq. 1

Proposition 1.18 For every RSq[n, t]-code C, d(C) = n− t+ 1. Hence, C
is an MDS code. If in addition 1 ≤ t ≤ n− 2, C is a nontrivial MDS code.

By de�nition, for every RSq[n, t]-code C, k(C) ≤ q. But in fact, there
exist a priori upper bounds on the length of any nontrivial MDS code.

1This de�nition is a bit more general than the usual one, since the standard de�nition
of Reed-Solomon code also requires k(C) = q−1 and xi 6= 0 for all i. In fact, the de�nition
here is a particular case of the notion of generalized Reed-Solomon code (see [44]).
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Theorem 1.19 ([53], ch.11.3 cor.7) Let C be an MDS code over Fq with
2 ≤ dimC ≤ k(C)− 2. Then

q ≥ max{dimC + 1, k(C)− dimC + 1}.

Consequently,
k(C) ≤ 2q − 2

for any nontrivial MDS code C over Fq.

It has been conjectured (see [53]) that

Remark 1.20 (Main conjecture on MDS codes) Let C be a non triv-
ial MDS code over Fq. If q is even and either dimC = 3 or dimC = q − 1,
then k(C) ≤ q + 2. Otherwise k(C) ≤ q + 1.

For completeness we state now, for a linear code C over Fq, more upper
bounds for dimC in terms of d(C), k(C) and q. In order to do this it is useful
to consider the following numbers.

Definition 1.21 For every �nite �eld Fq and d, ` ∈ Z with 0 < d ≤ ` + 1,
let

Aq(`, d) := max{|C| : C linear code over Fq with k(C) = `, d(C) = d}.

Note Aq(k(C), k(C) + 1) = 1.

Lemma 1.22 For any linear code C over Fq, qdimC ≤ Aq(k(C), d(C)).

Definition 1.23 Let Fq be a �nite �eld, r, n ≥ 0 be integers and let x ∈ Fnq .
The Hamming ball of radius r centered at x is

Br(x) := {y ∈ Fnq , d(x,y) ≤ r}.

We denote the cardinality of any Br(x) as

Mq(n, r) := |Br(x)| =
r∑
i=0

(
n

i

)
(q − 1)i

(note the de�nition is indeed independent on the selection of x ∈ Fnq ).
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Finally we state the upper bounds.

Theorem 1.24 (Hamming (or sphere packing) upper bound) For any
�nite �eld Fq and any d, ` ∈ Z with 1 ≤ d ≤ `+ 1,

Aq(`, d) ≤ q`

Mq(`, bd−12 c)
.

Theorem 1.25 (Plotkin upper bound) For any �nite �eld Fq and any
d, ` ∈ Z with 1 ≤ d ≤ `+ 1,

Aq(`, d) ≤ b d

d− θq`
c

where θq = 1− 1
q
.

Now we will state the �asymptotical versions� of these bounds. We �rst
need the following de�nitions and result.

Definition 1.26 De�ne the relative dimension of a linear code C over Fq
as R(C) := dimC

k(C)
and its relative minimum distance as δ(C) := d(C)

k(C)
.

Definition 1.27 De�ne

Vq = {(δ(C), R(C)), {0} 6= C linear code over Fq} ⊆ [0, 1]× [0, 1]

and Uq the set of accumulation points of Vq.

Theorem 1.28 (Manin [55]) There is a continuous decreasing function
αq : [0, 1]→ [0, 1] such that

Uq = {(δ, R)|δ ∈ [0, 1] and R ∈ [0, αq(δ)]}.

Moreover αq(0) = 1 and αq(δ) = 0 for δ ∈ [1− 1
q
, 1].

The exact value of αq(δ) is not known, except in the cases δ = 0 and
δ ∈ [1 − 1

q
, 1] listed above. The upper bounds for dimC for any linear code

over Fq stated before imply upper bounds for αq. In order to state them, we
need the following de�nition, that will turn out to be useful throughout the
text.



Chapter � 1. Linear codes 37

Definition 1.29 (q-ary entropy function) The q-ary entropy function
is the continuous function de�ned as

Hq : [0, 1− 1

q
]→ R

x 7→

{
x logq(q − 1)− x logq x− (1− x) logq(1− x) if 0 < x ≤ 1− 1

q
.

0 if x = 0.

Theorem 1.30 (Upper bounds for αq) Let θq = 1− 1
q
.

� αq(δ) ≤ 1− δ
θq

for δ ∈ [0, θq] (asymptotical Plotkin upper bound).

� αq(δ) ≤ 1−Hq(δ/2) for δ ∈ [0, 1] (asymptotical Hamming upper bound).

Next we state a well known lower bound for the quantities Aq(`, d).

Theorem 1.31 (Gilbert-Varshamov lower bound) For any �nite �eld
Fq and any d, ` ∈ Z such that 1 ≤ d ≤ `,

Aq(`, d) ≥ q`

Mq(`, d− 1)
.

Consequently, there exists a linear code C over Fq with d(C) = d, k(C) = `
and such that

dimC ≥ k(C)− logqMq(k(C), d(C)− 1).

The asymptotical version of this theorem is as follows:

Theorem 1.32 (Asymptotical Gilbert-Varshamov lower bound)
For δ ∈ [0, 1− 1

q
], we have

αq(δ) ≥ 1−Hq(δ).

Gilbert-Varshamov bound says that for any δ ∈ [0, 1 − 1
q
] there exists a

family of linear codes C = {C(m)}m∈N over Fq such that limm→∞ k(C(m)) =∞,

lim
m→∞

δ(C(m)) = δ

and
lim
m→∞

R(C(m)) = 1−Hq(δ).

Until the early 80's, it was believed that Gilbert-Varshamov lower bound
was sharp. However, Tsfasman, Vl�aduµ and Zink showed in [78] that this
bound could be exceeded.
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Theorem 1.33 (Tsfasman-Vl�aduµ-Zink bound for q square) Let Fq
be a �nite �eld with q square. Then for δ ∈ [0, 1− 1√

q−1 ], we have

αq(δ) ≥ (1− 1
√
q − 1

)− δ.

For q ≥ 49, there exist 0 < δ1(q) < δ2(q) < 1− 1√
q−1 such that this bound

is better than the Gilbert-Varshamov bound in the interval (δ1(q), δ2(q)).

1.3 Generalized linear codes

In the sequel we will need a generalization of the notion of linear code over
Fq, where the coordinates of the words are not restricted to be in Fq.

Definition 1.34 Let Fq be a �nite �eld. Fix an algebraic closure Fq of
Fq. A generalized Fq-linear code C of length k(C) is an Fq-linear subspace

C ⊂ Fk(C)

q with dimFq C <∞.

Note that for any generalized Fq-linear code, there exist k0, k1, . . . , kn ≥ 1
such that

C ⊆ Fqk0 × Fqk1 × · · · × Fqkn .

Definition 1.35 A space of de�nition of C is any generalized Fq-linear code
V of the form

V = Fqk0 × Fqk1 × · · · × Fqkn
for integers k0, . . . , kn ≥ 1 such that C ⊆ V .



Chapter 2

Algebraic function �elds and
codes

In this chapter, we give some basic de�nitions and results about algebraic
function �elds and algebraic geometric codes, which will be necessary after-
wards. The terminology and results explained in this chapter are taken from
Stichtenoth [75] except when indicated. The proofs of most results can also
be found in [75].

2.1 Algebraic function �elds

We give basic de�nitions and properties about algebraic function �elds.

Definition 2.1 Let K be a �eld. An algebraic function �eld F/K in one
variable over K (function �eld for short) is an extension �eld F ⊇ K such
that F is a �nite extension of K(x), where x ∈ F is trascendental over K.

Obviously in the de�nition above F is an algebraic extension of K(x)
because it is a �nite extension, but F is a trascendental extension of K
because it contains x. In this text we will only consider function �elds F/K
with K a perfect �eld.

Definition 2.2 The set K̃ of all elements in F that are algebraic over K is
called the �eld of constants of F/K

Note that if K̃ is the �eld of constants of F/K then F/K̃ is also a function
�eld. In the sequel we only consider function �elds F/K where K̃ = K.

39
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Theorem 2.3 If F/K is a function �eld over K we can write

F = K(x, y)/(φ(y))

where φ(T ) ∈ K(x)[T ] is an irreducible polynomial.

Definition 2.4 A valuation ring O of F/K is a subring O of F satisfying

� K ( O ( F.

� For any f ∈ F, at least one of the elements f , f−1 belongs to O.

Proposition 2.5 A valuation ring O of F/K is a local ring, i.e., its only
maximal ideal is P = O \ O∗, where O∗ denotes the group of units of O.

2.2 Places

Definition 2.6 A place P of F/K is the maximal ideal of some valuation
ring O of F/K. P(F) denotes the set of all places of F.

Theorem 2.7 For any function �eld F/K, |P(F)| is in�nite.

Proposition 2.8 Given P ∈ P(F), there is a unique valuation ring OP such
that P is its maximal ideal. This valuation ring is precisely

OP = {f ∈ F : f−1 /∈ P}.

Proposition 2.9 Any valuation ring O in F/K is also a principal ideal
domain. Therefore, any place P of F/K is a principal ideal and can be
written in the form P = tPOP for some tP ∈ P .

Remark 2.10 Valuation rings which are also principal ideal domains are
called discrete valuation rings.

Definition 2.11 Let P ∈ P(F). An uniformizing parameter for P is any
element tP ∈ P such that P = tPOP .

Proposition 2.12 Given P ∈ P(F) and a uniforming parameter tP for P ,
every element f 6= 0 in OP can be written in a unique way as f = tnPu,
for n ∈ Z, n ≥ 0, and u ∈ O∗P . Furthermore, for any f 6= 0 in OP and
any two uniformizing parameters tP , t

′
P of P , if f = tnPu = (t′P )n

′
u′ are the

corresponding representations then n = n′.
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Definition 2.13 Let P ∈ P(F) and tP be a uniformizing parameter for P .
Let the function

vP : F→ Z ∪ {∞}
be de�ned as follows:

vP (f) :=


n if 0 6= f ∈ OP , and f = tnPu, u ∈ O∗P
−n if f ∈ F \ OP , and f−1 = tnPu, u ∈ O∗P
∞ if f = 0

The value vP (f) is the valuation of f at P .

The fact that OP is a valuation ring (f ∈ F \ OP implies f−1 ∈ OP )
and Proposition 2.12 ensure that this is well de�ned. Note that for any
f ∈ F \ {0}, we have vP (f) = −vP (f−1).

Proposition 2.14 The valuation at P ∈ P(F) satis�es the following prop-
erties:

� vP (f) =∞ ⇐⇒ f = 0.

� vP (f + g) ≥ min
{
vP (f), vP (g)

}
for any f, g ∈ F. If vP (f) 6= vP (g)

then equality holds.

� vP (fg) = vP (f) + vP (g) for any f, g ∈ F.

� There exists f ∈ F such that vP (f) = 1.

� vP (f) = 0 for any f ∈ K \ {0}.

Any function whose domain is a �eld, whose image is contained in Z∪{∞}
and satis�es these properties is a discrete valuation. Any discrete valuation
v of F, satis�es v = vP for some place P of F.

We now describe how to evaluate a function f ∈ F in a place P ∈ P(F).

Definition 2.15 Given P ∈ P(F), FP = OP/P is the residue class �eld of
P . The evaluation of an element f ∈ OP in P is its residue class in FP and
is denoted f(P ). For f /∈ OP , its evaluation at P is de�ned as f(P ) =∞.

Definition 2.16 Let m > 0 be an integer. We say that P ∈ P(F) is a zero
of f ∈ F of order m if f ∈ P (i.e. f(P ) = 0) and vP (f) = m. We say that
P is a pole of f of order m if f /∈ OP (i.e. f(P ) =∞) and vP (f) = −m.
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Proposition 2.17 Let P ∈ P(F). Then K ⊆ OP and K ∩ P = {0}. Hence
there is a canonical embedding of K into FP , so K can be considered as a
sub�eld of FP . Furthermore the degree |FP : K| of the �eld extension satis�es
|FP : K| ≤ |F : K(x)| <∞, for any 0 6= x ∈ P .

Definition 2.18 For every P ∈ P(F), the degree of P is the positive integer
degP = |FP : K|.

Definition 2.19 For any integer k ≥ 1, let

P(k)(F) := {P ∈ P(F) : degP = k}.

Remark 2.20 If F/K is a function �eld with K an algebraically closed �eld,
then P(F) = P(1)(F).

2.3 Divisors

Definition 2.21 A divisor D of the function �eld F/K is a formal sum
D =

∑
P∈P(F)mPP with mP ∈ Z such that mP = 0 except for a �nite number

of places P ∈ P(F).
The set of places P such that mP 6= 0 is called the support of D and denoted
supp D. The set of divisors of F/K is denoted Div(F).

Given a place P ∈ P(F), by abuse of notation, P also denotes the divisor
P := 1 · P ∈ Div(F).

Definition 2.22 Given D =
∑

P∈P(F)mPP ∈ Div(F), its degree is the

integer degD :=
∑

P∈P(F)mP degP .

Definition 2.23 Given D =
∑

P∈P(F)mPP,D
′ =

∑
P∈P(F) nPP ∈ Div(F),

their sum is D +D′ :=
∑

P∈P(F)(mP + nP )P .

Lemma 2.24 (Div(F),+) is an abelian group. Its zero element is

0 :=
∑

P∈P(F)

0 · P ∈ Div(F).

Definition 2.25 For any r ∈ Z, let

Divr(F) := {D ∈ Div(F) : degD = r} ⊆ Div(F).
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Lemma 2.26 Div0(F) is a subgroup of Div(F). For any integer r ∈ Z such
that Divr(F) 6= ∅, Divr(F) is a coset of Div0(F) inside Div(F), i.e., given
D ∈ Divr(F), we have Divr(F) = D + Div0(F).

Theorem 2.27 (Schmidt) Let F/Fq be a function �eld over a �nite �eld
Fq. Then Div1(F) 6= ∅ and consequently Divr(F) 6= ∅ for all r ∈ Z.

Remark 2.28 If K is an algebraically closed �eld, then the result above also
holds, and in fact in that case it is trivial since for every P ∈ P(F), degP = 1
and the divisor P ∈ Div(F) belongs to Div1(F).

Next we de�ne a partial order in the set Div(F).

Definition 2.29 Given D =
∑

P∈P(F)mPP,D
′ =

∑
P∈P(F) nPP ∈ Div(F),

we say that D ≤ D′ if mP ≤ nP for every P ∈ P(F).

Definition 2.30 A divisor D is called e�ective (or positive) if D ≥ 0.

Lemma 2.31 If D,D′ ∈ Div(F) are such that D ≤ D′ then degD ≤ degD′.
Hence any e�ective divisor D ∈ Div(F) satis�es degD ≥ 0 and the only
e�ective divisor in Div0(F) is 0.

A divisor can be associated to every f ∈ F \ {0}. In order to de�ne these
divisors, we �rst need to state the following result.

Theorem 2.32 Every f ∈ F \ {0} has �nitely many zeros and poles. In
other words, vP (f) = 0 except for �nitely many P ∈ P(F).

Later we will state a stronger result. But this is enough to de�ne principal
divisors:

Definition 2.33 Given f ∈ F \ {0}, the divisor

(f) :=
∑

P∈P(F)

vP (f)P ∈ Div(F)

is the principal divisor associated to f .
Pr(F) := {D ∈ Div(F) : ∃f ∈ F \ {0} with D = (f)} is the set of principal
divisors.
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Definition 2.34 Let f ∈ F \ {0} and denote by Z (respectively N) the set
of zeros (resp. poles) of f ∈ P(F). We de�ne

(f)0 :=
∑
P∈Z

vP (f)P ∈ Div(F)

and

(f)∞ :=
∑
P∈N

(−vP (f))P ∈ Div(F)

Note that for any f ∈ F \ {0}, (f)0, (f)∞ ≥ 0, (f) = (f)0 − (f)∞ and

(f) = 0 ⇔ f ∈ K \ {0} (remember we are assuming K = K̃, the last
statement is not true otherwise).

The next important result states that any function f ∈ F\K has at least
a zero and a pole and in fact, it has the same number of poles and zeros
counting multiplicities.

Theorem 2.35 Let F/K be a function �eld. For any f ∈ F \K,

deg(f)0 = deg(f)∞ = |F : K(f)|.

Corollary 2.36 For any f ∈ F \ {0}, we have deg(f) = 0. Consequently
Pr(F) ⊆ Div0(F).

The following property is a consequence of the properties of the discrete
valuations (see Proposition 2.14).

Proposition 2.37 For any f, g ∈ F \ {0}, (fg) = (f) + (g).

Corollary 2.38 Pr(F) is a subgroup of Div0(F).

2.4 Class groups

Since Pr(F) is a subgroup of Div(F), we can consider the following quotient
group.
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Definition 2.39 The divisor class group of F/K is the quotient

Cl(F) := Div(F)/Pr(F).

For D ∈ Div(F), the class of D in Cl(F) is denoted by [D]. The degree zero
divisor class group of F/K is

Cl0(F) := Div0(F)/Pr(F).

Note that Cl0(F) is a subgroup of Cl(F).

Definition 2.40 We say that D, D′ ∈ Div(F) are equivalent (denoted as
D ∼ D′) if D −D′ ∈ Pr(F), i.e., if they lie in the same class in Cl(F).

Corollary 2.36 implies

Lemma 2.41 Let D,D′ ∈ Div(F) such that D ∼ D′. Then degD = degD′.

This guarantees the correctness of the following de�nition.

Definition 2.42 For any D ∈ Div(F), the degree of the class [D] ∈ Cl(F)
is deg[D] := degD.

Definition 2.43 Let F/K be a function �eld. For any integer r ∈ Z, we
de�ne the set

Clr(F) := {[D] ∈ Cl(F) : deg[D] = r}.

This de�nition is consistent with that of the group Cl0(F). Furthermore any
Clr(F) for r 6= 0 is a coset of Cl0(F) contained in Cl(F).

The number of classes of equivalence in Clr(F) is the same for any r ∈ Z
and is given by the class number, which is de�ned next.

Definition 2.44 The class number of a function �eld F/K is the integer
h(F) := |Cl0(F)|. Note that h(F) = |Clr(F)| for all r ∈ Z. When F is clear
by the context we will write h.

Theorem 2.45 For any function �eld F/K, h is �nite.

We will need the following well-known �interpolation� lemma.
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Theorem 2.46 (Weak Approximation Theorem) Let F/K be a func-
tion �eld, a �nite number of places P1, . . . , Pn ∈ P(F), with Pi 6= Pj, possibly
equal elements x1, . . . , xn ∈ F and r1, . . . , rn ∈ Z. Then, there exists x ∈ F
such that vPi

(x− xi) = ri for all i = 1, . . . , n.

Whenever we use the Approximation Theorem, we will refer to the fol-
lowing consequence.

Corollary 2.47 Given a divisor D ∈ Div(F) and a �nite number of places
P1, . . . , Pn ∈ P(F) there exists D′ ∈ Div(F) such that D′ ∼ D and

supp(D′) ∩ {P1, . . . , Pn} = ∅.

Proof. Let ri = −vP (D), i = 1, . . . , n. By the Weak Approximation
Theorem there exists x ∈ F such that vPi

(x) = ri. Then D′ = (x) + D
satis�es D′ ∼ D and vPi

(D′) = 0 for i = 1, . . . , n. 4

2.5 Riemann-Roch spaces and genus

To every divisor of a function �eld F/K one can associate a vector space over
K in the following way.

Definition 2.48 Let D ∈ Div(F). The Riemann-Roch space associated to
D is

L(D) := {f ∈ F, (f) +D ≥ 0} ∪ {0}

If a divisor D is written as D =
∑

P∈P mPP −
∑

Q∈Q nQQ, for some
P ,Q ⊆ P(F) with P ∩ Q = ∅ and mP ≥ 0 for all P ∈ P , nQ ≥ 0 for all
Q ∈ Q, then L(D) collects all functions f ∈ F such that f has a zero of order
at least nQ in Q, for all Q ∈ Q and can have a pole of order at most mP in
P , for all P ∈ P .

Proposition 2.49 Let F/K be a function �eld and D ∈ Div(F). Then
L(D) is a K-vector space of �nite dimension.

Definition 2.50 Let F/K be a function �eld and D ∈ Div(F). `(D) denotes
the dimension of L(D) as a vector space over K.
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Lemma 2.51 We have the following properties:

� For any D ∈ Div(F), `(D) ≤ degD + 1. Therefore, if degD < 0,
`(D) = 0.

� Let D,D′ ∈ Div(F), D ∼ D′. Then L(D) ∼= L(D′). Consequently
`(D) = `(D′).

� L(0) = K and therefore L(D) ∼= K for any D ∈ Pr(F). Consequently
`(0) = 1 and `(D) = 1 for any D ∈ Pr(F).

� For all D ∈ Div0(F) \ Pr(F), `(D) = 0.

The second of these properties allows for the de�nition of the Riemann-
Roch dimension of a class of divisors.

Definition 2.52 For any D ∈ Div(F), the Riemann-Roch dimension of the
class [D] ∈ Cl(F) is `([D]) := `(D).

The notion of genus of a function �eld will be introduced next.

Theorem 2.53 (Riemann's Theorem) There exists M ∈ Z such that for all
divisors D ∈ Div(F),

`(D) ≥M + degD.

Definition 2.54 The genus of F/K is the following non-negative integer

g(F) := max
D∈Div(F)

degD − `(D) + 1.

When F is clear by the context we write g.

This number exists and is not negative because of Theorem 2.53.
In particular, function �elds of genus 0 can be characterized in some cases

as follows.

Definition 2.55 A function �eld F/K is rational if F = K(x) for some
x ∈ F.

Theorem 2.56 Let F/K be a function �eld. F/K is a rational function �eld
if and only if Div1(F) 6= ∅ and g(F) = 0.
If, in addition, K is a �nite �eld or an algebraically closed �eld, then F/K
is a rational function �eld if and only if g(F) = 0.
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2.6 Canonical divisors

Canonical divisors are a special class of divisors. We introduce them now
and prove some properties.1

Definition 2.57 Let F/K be a function �eld. The space of di�erential
forms of F, Ω(F), is the F-vector space generated by the symbols df , f ∈ F,
subject to the relations:

� d(f + g) = df + dg, for all f, g ∈ F

� d(fg) = f · dg + g · df for all f, g ∈ F

� df = 0 for all f ∈ K

Proposition 2.58 Ω(F) is a 1-dimensional F-vector space. Moreover, df is
a basis of Ω(F) over F if and only if F/K(f) is a �nite separable extension.

Proposition 2.59 Let tP ∈ F be a uniformizing parameter for P ∈ P(F).
Then, for every w ∈ Ω(F) there exists f ∈ F with w = f · dtP . Such f is
denoted by w

dtP
.

Proposition 2.60 The valuation vP ( w
dtP

) is independent of the uniformiz-
ing parameter tP , i.e., vP ( w

dtP
) = vP ( w

dt′P
) for any two uniformizing parame-

ters tP , t
′
P .

Therefore the following notion is well de�ned.

Definition 2.61 For any w ∈ Ω(F) and any place P ∈ P(F) we de�ne
vP (w) := vP ( w

dtP
) for a uniformizing parameter tP in P

Proposition 2.62 Let w ∈ Ω(F) \ {0}. Then vP (w) = 0 for all but a �nite
number of places P ∈ P(F)

This allows us to associate a divisor to every nonzero di�erential form.
These divisors will be called canonical.

1In [75], Stichtenoth introduces, more generally, canonical divisors for function �elds
F/K with K non necessarily a perfect �eld and in order to do that, he uses the notion of
Weil di�erentials. However in the case of perfect �elds, his de�nition is equivalent to the
one presented in this section, as follows from Remark 4.3.7 of [75].
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Definition 2.63 (Canonical divisor) Let w ∈ Ω(F) \ {0}. The canoni-
cal divisor associated to w is

(w) :=
∑

P∈P(F)

vP (w) · P ∈ Div(F)

Finally, we state several important facts about canonical divisors.

Proposition 2.64 For all w1, w2 ∈ Ω(F) \ {0}, (w1) ∼ (w2). Furthermore,
given any w ∈ Ω(F) \ {0}, if D ∼ (w) then D is also a canonical divisor
D = (w′) for some w′ ∈ Ω(F) \ {0}. In other words, the set of canonical
divisors is a class in Cl(F).

Theorem 2.65 For any canonical divisor W ∈ Div(F), we have

degW = 2g − 2 and `(W ) = g.

2.7 The Riemann-Roch theorem

Riemann-Roch theorem characterizes the dimension of a Riemann-Roch space.

Theorem 2.66 (Riemann-Roch Theorem) Let F/K be a function �eld
and D ∈ Div(F). For any canonical divisor W ∈ Div(F), we have

`(D) = `(W −D) + degD − g + 1.

Corollary 2.67 Let F/K be a function �eld and D ∈ Div(F).
If degD ≥ 2g − 1 then `(D) = degD − g + 1.

Proof. For any canonical divisor W , degW = 2g − 2. Hence we have
deg(W −D) < 0 and therefore `(W −D) = 0 by Lemma 2.51. 4

2.8 The zeta function of a function �eld

The zeta function of a function �eld collects information about the number
of e�ective divisors of degree r for every r ∈ Z. In this section we de�ne zeta
functions and state results about the number of e�ective divisors of a given
degree.

The results of this section and the rest of this chapter are valid for function
�elds over �nite �elds.
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Definition 2.68 Let F/Fq be a function �eld and r ∈ Z. Let

Ar(F) := {D ∈ Divr(F) : D ≥ 0}

and denote Ar(F) its cardinality. When F is clear by the context we write Ar
and Ar.

Lemma 2.69 Let F/Fq be a function �eld. For every r ∈ Z, Ar is �nite.

Note that for every function �eld F/Fq, Ar = 0 for r < 0, A0 = 1, and
A1 = |P(1)(F)|. In general, we can state the following results.

Proposition 2.70 Let r ∈ Z, F/Fq a function �eld. Let [D] ∈ Clr(F).
Then

|Ar ∩ [D]| = q`(D) − 1

q − 1

Proposition 2.71 Let Fq be a �nite �eld and F/Fq a function �eld. For
r > 2g − 2,

Ar =
h

q − 1
(qr+1−g − 1)

The zeta function of F collects the information about the numbers Ar(F)
for all r > 0.

Definition 2.72 (Zeta Function of F) Let Fq be a �nite �eld and F/Fq
a function �eld. The formal power series

Z(T ) :=
∞∑
i=0

AiT
i ∈ C[[T ]]

is the zeta function of F/Fq.

For the rest of the chapter, let Z(T ) be the zeta function of F/Fq.

Proposition 2.73 Z(T ) is convergent for every T ∈ C with |T | < 1/q.

Theorem 2.74 (Functional equation of Z(T )) Z(T ) satis�es the fol-
lowing functional equation:

Z(T ) = qg−1T 2g−2Z(
1

qT
).
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Theorem 2.75 (1− T )(1− qT )Z(T ) ∈ Z[T ].

Definition 2.76 (L-Polynomial of F) The L-polynomial of F/Fq is the
polynomial

L(T ) := (1− T )(1− qT )Z(T )

Proposition 2.77 (Properties of the L-polynomial) We have:

� deg(L(T )) = 2g.

� L(T ) satis�es the functional equation L(T ) = qgT 2gL( 1
qT

).

� L(1) = h.

� If we write L(T ) = a0 + a1T + · · ·+ a2gT
2g, then a0 = 1, a2g = qg and

a2g−i = qg−iai for all 0 ≤ i ≤ g. Moreover a1 = |P(1)(F)| − (q + 1).

Theorem 2.78 There exist α1, α2, . . . , α2g ∈ C such that L(T ) can be de-
composed as L(T ) =

∏2g
i=1(1− αiT ) and αiαg+i = q holds for all 1 ≤ i ≤ g.

Corollary 2.79 Let L(T ) =
∏2g

i=1(1 − αiT ) be the L-polynomial of F/Fq.
Then

|P(1)(F)| = q + 1−
2g∑
i=1

αi.

Finally we state an important result, known as the Hasse-Weil Theorem.
This can be regarded as an analogue, for function �elds, of the Riemann
Hypothesis. Details can be checked in [68] and [75].

Theorem 2.80 (Hasse-Weil Theorem) Let L(T ) =
∏2g

i=1(1 − αiT ) be
the L-polynomial of F/Fq. Then |αi| =

√
q for every i = 1, . . . , 2g.

2.9 Hasse-Weil and Drinfeld-Vl�aduµ bounds and

Ihara's constant A(q)

Let F/Fq be a function �eld. The results given in the previous section imply
upper bounds on |P(1)(F)|. We describe some of these bounds in this section.
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Theorem 2.81 (Hasse-Weil bound) Write N = |P(1)(F)|. Then

|N − (q + 1)| ≤ 2g
√
q.

Definition 2.82 A function �eld F/Fq is called maximal if it achieves

|P(1)(F)| = (q + 1) + 2g
√
q.

We now consider asymptotical bounds for |P(1)(F)| with respect to g(F).

Definition 2.83 For every �nite �eld Fq, and any integer g ≥ 0, let

Nq(g) := max
F/Fq :g(F)=g

|P(1)(F)|.

Definition 2.84 (Ihara's constant) Ihara's constant is de�ned for ev-
ery �nite �eld Fq as

A(q) := lim sup
g→∞

Nq(g)/g.

Ihara's constant has been studied extensively, yet its value is not known
for all q. The Hasse-Weil bound gives the upper bound A(q) ≤ 2

√
q. However

this bound is too optimistic. In fact, the following is known:

Theorem 2.85 (Drinfeld-Vl�aduµ bound) For every �nite �eld Fq,

A(q) ≤ √q − 1.

It turns out that when q is a square, the Drinfeld-Vl�aduµ bound is at-
tained.

Theorem 2.86 Let Fq be a �nite �eld with q square. Then A(q) =
√
q − 1.

The result was proved independently by Ihara [45] and Tsfasman,Vl�aduµ
and Zink [78].

For other �elds Fq, the exact value of A(q) is not known, but there exist
lower bounds. Serre [70] proved the following result.

Theorem 2.87 There exists an absolute constant c ∈ R, c > 0, such that
A(q) > c log q > 0 for all �nite �eld Fq.

Remark 2.88 The previous result is known to be true for c = 1
96

(see [63]).
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But better lower bounds are known for speci�c �nite �elds. For example,
the currently tightest lower bound for A(2) is due to from Xing and Yeo [84]:

Proposition 2.89 A(2) ≥ 97
376

= 0.2579 . . .

This is still far away from the upper bound by Drinfeld and Vl�aduµ which
is A(2) ≤ 0.4142 . . .

For cubic �elds, there exist better lower bounds for A(q). Zink [86] proved:

Theorem 2.90 Let p be a prime. Then

A(p3) ≥ 2
p2 − 1

p+ 2
.

Bezerra, Garcia and Stichtenoth [11] extended this result and proved:

Theorem 2.91 Let Fq be a �nite �eld, with q a cube and let ` = 3
√
q. Then

A(q) ≥ 2
`2 − 1

`+ 2
.

Niederreiter and Xing [62] proved the following bounds for Ihara's con-
stant on other �elds of non-prime cardinality.

Theorem 2.92 We have

� Let Fq be a �nite �eld with q an odd number and m ≥ 3 an integer,
then:

A(qm) ≥ 2q

b2
√

2q + 1c+ 1
.

� Let Fq be a �nite �eld with q an even number, q ≥ 4 and m ≥ 3 an odd
integer, then:

A(qm) ≥ q + 1

b2
√

2q + 2c+ 2
.

It will be helpful for us to introduce the notion of Ihara's limit of an
in�nite family of function �elds with unbounded genus.
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Definition 2.93 Let F = {F(m)}m∈N be an in�nite family of function �elds
over Fq such that

lim
m→∞

g(F(m)) =∞.

We de�ne Ihara's limit of a family of function �elds as

A(F) := lim sup
m→∞

|P(1)(F(m))|
g(F(m))

.

We say F is an asymptotically good family if A(F) > 0 and an asymptoti-
cally optimal family if in addition it attains the optimal value A(F) = A(q).

2.10 Towers of function �elds

Most of the proofs of the results on lower bounds for A(q) of the previous
section rely on deep methods from number theory and algebraic geometry.
A �more elementary� approach to this problem consists in the recursive con-
struction of towers of function �elds, where each function �eld of the family
is explicitly written as a simple algebraic extension of the previous one. This
approach was �rst proposed by Garcia and Stichtenoth in [37]. An advan-
tage of these constructions is that some properties of these families can be
analyzed more easily, and this will be important in Chapter 10.

Definition 2.94 (Algebraic extensions of function fields) A func-
tion �eld F′/K ′ is an algebraic extension of F/K if K ⊆ K ′, F ⊆ F′ and F′
is an algebraic �eld extension of F. The extension F′|K ′ is called a constant
�eld extension if F′ = FK ′ is the compositum of F and K ′.

Definition 2.95 (Towers of function fields) A tower of function
�elds over Fq is an in�nite family of function �elds over Fq, F(0) $ F(1) $ . . . ,
where limi→∞ g(F(i)) =∞ and for every i > 0, F(i+1)/Fq is an algebraic exten-
sion of F(i)/Fq such that the �eld extension F(i+1)|F(i) is �nite and separable.

Note that since the extensions F(i+1)|F(i) are �nite then they are also
algebraic. Furthermore, the fact that they are also separable implies, by the
primitive element theorem, that they are simple. Hence, F(i+1) = F(i)(xi) for
some xi ∈ F(i+1), algebraic over F(i).

Garcia and Stichtenoth constructed in [37], [38] (see also [75]), towers
of function �elds attaining the Drinfeld-Vl�aduµ bound. Their constructions
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are de�ned over all �nite �elds of square cardinality q. We will recall the
de�nitions of the tower in [37], which we will henceforth refer to as the First
Garcia-Stichtenoth tower.

Definition 2.96 (First Garcia-Stichtenoth tower) Let Fq be a �-
nite �eld with q square. The First Garcia-Stichtenoth tower of function �elds
over Fq is the tower F = {F(n)}n≥0, where F(0) = Fq(x0) where x0 ∈ F(0)

is trascendental over Fq and, for n ≥ 0, F(n+1) is recursively de�ned as

F(n+1) = F(n)(xn+1), where x
√
q−1

n x
√
q

n+1 + xn+1 = x
√
q

n .

Not only did Garcia and Stichtenoth prove that the tower achieves Drinfeld-
Vl�aduµ bound but they also show that the genus of all the function �elds in
the tower can be explicitly computed.

Theorem 2.97 Let F = {F(n)}n≥0 be the First Garcia-Stichtenoth tower of
function �elds over Fq. Then

1. The genus g(F(n)) of the function �eld F(n)/Fq is given by

g(F(n)) =


√
qn+1 +

√
qn −√qn/2+1 − 2

√
qn/2 + 1 if n even

√
qn+1 +

√
qn − 1

2

√
q(n+3)/2 − 3

2

√
q(n+1)/2−

−√q(n−1)/2 + 1 if n odd.

In particular, g(F(n))→∞ when n→∞.

2. The tower F attains the Drinfeld-Vl�aduµ bound, i.e., its Ihara's limit
A(F) is given by

A(F) =
√
q − 1.

Another example of a tower F of function �elds over any �nite �eld Fq
with q square, such that A(F) =

√
q−1 was given by Garcia and Stichtenoth

in [38].

2.11 Algebraic geometric codes

Algebraic geometric codes were introduced by V. Goppa [41] in 1981 and are
described next, together with some of their properties. More details can be
found in [75] or [77].
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Theorem 2.98 Let F/Fq be a function �eld. Let P0, P1, . . . , Pn ∈ P(1)(F)
with Pi 6= Pj for i 6= j. De�ne D =

∑n
i=0 Pi ∈ Div(F). Let G ∈ Div(F) such

that supp G ∩ supp D = ∅. The set

CL(D,G) := {(f(P0), f(P1), . . . , f(Pn)) : f ∈ L(G)}

is a linear code over Fq.

Note that, for all i = 0, . . . , n, f cannot have a pole in Pi because of
the condition supp G∩ supp D = ∅ and the evaluations f(Pi) indeed belong
to Fq by the fact that degPi = 1 and De�nition 2.15, Proposition 2.17 and
De�nition 2.18.

Definition 2.99 CL(D,G) is an algebraic geometric (AG) evaluation code
or Goppa function code2.

Remark 2.100 AG evaluation codes are in fact a generalization of Reed-
Solomon codes (De�nition 1.17). Any RSq[n, t]-code can be written as an AG
evaluation code CL(D,G) over the rational function �eld Fq(x)/Fq, where
G = tP∞ for a certain place P∞ ∈ P(1)(Fq(x)) and P0, P1, . . . , Pn are dis-
tinct (and di�erent from P∞) places in P(1)(Fq(x)). It can be seen that
|P(1)(Fq(x))| = q + 1 so we can indeed de�ne this linear code for any in-
tegers t, n with 0 ≤ t ≤ n < q.

The parameters of an AG evaluation code can be related to the Riemann-
Roch spaces of some divisors.

Proposition 2.101 Let CL(D,G) be an algebraic geometric evaluation code.
Then

� CL(D,G) ' L(G)/L(G−D) and hence

dimCL(D,G) = `(G)− `(G−D).

If degG < degD, then dimCL(D,G) = `(G).

� d(CL(D,G)) ≥ n+ 1− degG.

2Given a function �eld F/Fq and D,G as in Theorem 2.98 one can also de�ne another
linear code CΩ(D,G) over Fq known as Goppa residue code (see again [75] or [77]) but we
will not need these codes here.
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The dual code of an AG evaluation code CL(D,G) can also be written as
an algebraic geometric evaluation code.

Proposition 2.102 Let CL(D,G) be an algebraic geometric evaluation code.
There exists a canonical divisor W ∈ Div(F) such that

supp (W −G+D) ∩ supp D = ∅

and

CL(D,G)⊥ = CL(D,W −G+D).

Hence we can also give a bounds for d(CL(D,G)⊥) in terms of degG and
g.

Proposition 2.103 d(CL(D,G)⊥) ≥ degG− 2g + 2.

The proof of the lower bound for αq(δ) in Theorem 1.33 uses families
of algebraic-geometric codes de�ned on an asymptotically optimal family of
function �elds over Fq. Theorem 1.33 was stated for every �nite �eld Fq with
q square. Next we state the general version of the theorem and also include
for completion the proof, which can also be read in [75].

Theorem 2.104 Let Fq be a �nite �eld. Then for δ ∈ [0, 1− 1
A(q)

], we have

αq(δ) ≥ (1− 1

A(q)
)− δ.

Proof. Let F = {F(i)}i>0 be a family of function �elds with

lim
i→∞

g(F(i)) =∞

and

lim
i→∞

|P(1)(F(i))|
g(F(i))

= A(q).

For all i > 0, write ni = |P(1)(F(i))|, gi = g(F(i)) and select ri ∈ Z with
ri < ni and such that

lim
i→∞

ri
ni

= 1− δ.
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Let Di =
∑

P∈P(1)(F(i)) P and select any Gi ∈ Divri(F(i)). Consider the linear
code Ci = CL(Di, Gi) over Fq with k(Ci) = ni. By Proposition 2.101, we
have d(Ci) ≥ ni + 1− ri. Since

d(Ci)

k(Ci)
≥ 1− ri

ni
,

there exists δ̃ ≥ δ such that

lim sup
i→∞

d(Ci)

k(Ci)
= δ̃

and without loss of generality we can assume

lim
i→∞

d(Ci)

k(Ci)
= δ̃.

Again, by Proposition 2.101 and the de�nition of genus,

dimCi = `(Gi) ≥ ri − gi + 1,

so

lim sup
i→∞

dimCi
k(Ci)

≥ lim sup
i→∞

ri − gi + 1

ni
= 1− δ − 1

A(q)
.

Then αq(δ̃) ≥ 1− δ− 1
A(q)

and, since αq is decreasing and δ̃ ≥ δ, we also have

αq(δ) ≥ 1− δ − 1
A(q)

. 4
Finally, we show how to extend the construction of AG evaluation codes in

order to obtain generalized linear codes (see section 1.3). Note that, accord-
ing to De�nition 2.15, Proposition 2.17 and De�nition 2.18, the evaluation
of a function f of some function �eld F/Fq in a place P ∈ P(k)(F) (provided
f does not have a pole in P ) is an element of a certain extension of Fq of
degree k, that we can identify with Fqk . Therefore we have the following.

Theorem 2.105 Let F/Fq be a function �eld. Let P0, P1, . . . , Pn ∈ P(F)
with Pi 6= Pj for i 6= j. Let ki := degPi. De�ne D =

∑n
i=0 Pi ∈ Div(F). Let

G ∈ Div(F) such that supp G ∩ supp D = ∅. The set

CL(D,G) := {(f(P0), f(P1), . . . , f(Pn)) : f ∈ L(G)}

is a generalized linear code over Fq with space of de�nition

Fqk0 × Fqk1 × · · · × Fqkn .
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Definition 2.106 CL(D,G) is a generalized AG evaluation code.

Theorem 2.107 For any generalized AG evaluation code CL(D,G), we have
dimFq CL(D,G) = `(G)− `(G−D).





Chapter 3

Secret sharing

In this chapter we give formal de�nitions of the notion of secret sharing and
some related concepts and properties, including the properties of linearity
and t-strong multiplication.

3.1 Basic de�nitions

Secret sharing schemes will be de�ned in terms of random variables. We
�rst need to recall some notions and properties about entropies of random
variables. We will use the following terminology.

Definition 3.1 Let (R,Ω, P r) be a probability space, (E, µ) be a measurable
space and X : (R,Ω, P r) → (E, µ) a random variable. Then we say that X
is a random variable over the probability space R and with alphabet E. The
notation �X = x� is, as usual in information theory, a shorthand for the set
{r ∈ R : X(r) = x}. The support of X is

supp X = {x ∈ E : Pr(X = x) > 0}.
The entropy of a random variable X measures how many bits of informa-

tion are necessary on average to describe the values taken by X (see [24] for
more information about this aspect). Throughout this thesis we abbreviate
log2 x by log x.

Definition 3.2 Let X be a random variable with �nite alphabet E. H(X)
is the (Shannon) entropy of X, given by

H(X) := −
∑
x∈E

Pr(X = x) logPr(X = x).

61
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We have the following properties.

Proposition 3.3 Let X be a random variable with �nite alphabet E.

� 0 ≤ H(X) ≤ log |E|.

� H(X) = 0 if and only if there exists x ∈ E such that Pr(X = x) = 1.

� H(X) = log |E| is attained if and only if X has the uniform distribution
over E.

The conditional entropy measures the amount of information that a ran-
dom variable gives about another random variable de�ned over the same
probability space.

Definition 3.4 Let X, Y be two random variables over the same probabil-
ity space (R,Ω, P r) and with alphabets E, F respectively. The conditional
entropy of Y with respect to X is H(Y |X) :=

∑
x∈E Pr(X = x)H(Y |X = x)

where the variable Y |X = x has the probability distribution of Y conditioned
to the event X = x.

Proposition 3.5 Let X, Y be random variables over the same probability
space (R,Ω, P r) and with alphabets E, F respectively. Then

� 0 ≤ H(Y |X) ≤ H(Y ).

� If H(Y |X) = 0, then for every value x ∈ E, there exists y ∈ F such
that Pr(Y = y|X = x) = 1 (�the value of Y is fully determined by the
value of X�).

� H(Y |X) = H(Y ) if and only if X and Y are independent (Y gives no
information about X).

� H(Y |X) = H(X × Y )−H(X).

We will also need the following notation.

Definition 3.6 Let S1, . . . , Sn be random variables over the same probability
space (R,Ω, P r) and with alphabets E1, . . . , En respectively. For any subset
A = {i1, i2, . . . , it} ⊆ {1, . . . , n}, SA is the random variable

∏
i∈A Si, i.e., the

variable with alphabet
∏

i∈AEi such that for all (ai1 , . . . , ait) ∈
∏

i∈AEi,

Pr(SA = (ai1 , . . . , ait)) := Pr(Si1 = ai1 , . . . , Sit = ait).
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We can �nally give the general de�nition of secret sharing scheme.

Definition 3.7 (Secret sharing scheme) A secret sharing scheme is a
tuple Σ = (n,E0, E1, . . . , En, S0, S1, . . . , Sn) where n ≥ 2 is a positive inte-
ger and S0, S1, . . . , Sn are random variables over the same probability space
(R,Ω, P r) and with �nite alphabets E0, E1, . . . , En and the following proper-
ties are satis�ed:

� H(S0) 6= 0

� H(S0|S{1,...,n}) = 0

S0 is called the secret and S1, . . . , Sn are called the shares.

Two families of subsets of {1, . . . , n}, the access and adversary structures,
are associated to a secret sharing scheme.

Definition 3.8 (Access structure) Let Σ be a secret sharing
scheme. We de�ne its access structure Γ(Σ) ⊂ 2{1,...,n} (where 2{1,...,n} de-
notes the power set of {1, . . . , n}) as the following family of sets:

Γ(Σ) := {A ⊆ {1, . . . , n} such that H(S0|SA) = 0}.

A quali�ed set is a set A ∈ Γ(Σ).

Therefore Γ(Σ) contains all subsets A ⊆ {1, . . . , n} such that SA fully
determines S0. Note that {1, . . . , n} ∈ Γ(Σ) by de�nition.

Proposition 3.9 (Monotony of the access structure) If A ∈ Γ(Σ)
and A ⊆ B ⊆ {1, . . . , n}, then B ∈ Γ(Σ).

Definition 3.10 (Adversary structure) Let Σ be a secret sharing scheme.
We de�ne its adversary structure A(Σ) ⊂ 2{1,...,n} as the following family sets:

A(Σ) := {A ⊆ {1, . . . , n} such that H(S0|SA) = H(S0)} ∪ {∅}.

An unquali�ed set is a set A ∈ A(Σ).

Consequently, the adversary structure collects (in addition to the empty
set) all subsets A ⊆ {1, . . . , n} such that SA and S0 are independent ran-
dom variables, i.e., SA does not give any information about S0. Clearly the
following is satis�ed.



64 Part � I. Preliminaries

Proposition 3.11 (Antimonotony of the adversary structure) If
A ∈ A(Σ) and B ⊆ A ⊆ {1, . . . , n}, then B ∈ A(Σ).

Proposition 3.12 For any secret sharing scheme Σ, we have

Γ(Σ) ∩ A(Σ) = ∅.

We now de�ne the reconstruction and privacy thresholds of a secret shar-
ing scheme.

Definition 3.13 The reconstruction threshold r(Σ) of Σ is de�ned as the
smallest integer r such that every A ⊂ {1, . . . , n} with |A| = r is quali�ed,
i.e. A ∈ Γ(Σ). For any r′ ≥ r(Σ) we say that Σ has r′-reconstruction.

Definition 3.14 The privacy threshold t(Σ) of Σ is de�ned as the smallest
integer t such that every A ⊂ {1, . . . , n} with |A| = t is unquali�ed, i.e.
A ∈ A(Σ). For any t′ ≤ t(Σ) we say that Σ has t′-privacy.

Given an arbitrary secret sharing scheme Σ there may exist, in princi-
ple, three di�erent kinds of subsets of {1, . . . , n}. Apart from the quali�ed
and unquali�ed sets, there can also be subsets A ⊆ {1, . . . , n} such that
0 < H(S0|SA) < H(S0). However, there are examples of secret sharing
schemes where this does not happen.

Definition 3.15 A secret sharing scheme Σ is perfect if

Γ(Σ) ∪ A(Σ) = 2{1,...,n}.

An even stronger property is the following one.

Definition 3.16 A secret sharing scheme Σ is a threshold scheme if
t(Σ) = t and r(Σ) = t+ 1 for some 1 ≤ t < n.

There is an important limitation for perfect schemes, that we explain
next.

Definition 3.17 Let Σ be a perfect scheme. We say that an index
i ∈ {1, . . . , n} is dummy if i does not belong to any minimal quali�ed set,
that is, if there does not exist a set A ⊆ {1, . . . , n} \ {i} such that A /∈ Γ(Σ)
and A ∪ {i} ∈ Γ(Σ).
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Theorem 3.18 Let Σ be a perfect secret sharing scheme. If i is not a dummy
index then H(Si) ≥ H(S0).

It is a usually desirable for the applications that the share variables of
a secret sharing scheme have as small entropy as possible compared to the
secret. This is because the smaller the entropy is, the smaller the average
amount of information which is needed to encode the values taken by Si
according to its probability distribution. Typically one wants to store (or
send) the smallest possible amount of information for a secret of certain size.

Definition 3.19 Let Σ be a perfect secret sharing scheme. We say Σ is
pseudoideal if H(Si) = H(S0) for some i ∈ {1, . . . , n} and, whenever
H(Sj) 6= H(S0) for some j ∈ {1, . . . , n}, then j is dummy. If, in addition,
there are no dummy players, then Σ is ideal.

3.2 Linear secret sharing schemes

An important class of secret sharing schemes are linear secret sharing schemes.

Definition 3.20 Let Fq be a �nite �eld. Let

Σ = (n,E0, E1, . . . , En, S0, S1, . . . , Sn)

be a secret sharing scheme and denote S := S{0,1,...,n}. Then Σ is a linear
secret sharing scheme(LSSS) over Fq if Ei is a �nite dimensional vector space
over Fq for i = 0, 1, . . . , n, supp S ⊆

⊕n
i=0Ei is also a vector space over Fq

and the probability distribution of S is uniform on supp S.

Proposition 3.21 If Σ is a LSSS over Fq, then for every A ⊆ {0, . . . , n}
the support of every random variable SA is also a Fq-linear space and the
probability distribution of SA is uniform on supp SA. In particular, this
happens for S0, S1, . . . , Sn.

We can consider, without loss of generality, Ei := supp Si. More generally,

Definition 3.22 For every A ⊆ {0, . . . , n}, let EA := supp SA and
dA := dimEA. For every i ∈ {0, . . . , n}, let Ei := E{i} di := d{i}. Finally,
let E := supp S.
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One can now restate the properties of general secret sharing schemes given
before in the particular case that these are linear. Note �rst:

Lemma 3.23 For every A ⊆ {0, . . . , n}, we have H(SA) = log |EA| = dA log q.

Using the fact that for any two random variables X, Y , it holds that
H(Y |X) = H(X × Y )−H(X), one gets

Lemma 3.24 For every A,B ⊆ {0, . . . , n}, we have

H(SB|SA) = H(SA∪B)−H(SA) = (dA∪B − dA) log q

and in particular for every A ⊆ {1, . . . , n},

H(S0|SA) = H(SA∪{0})−H(SA) = (dA∪{0} − dA) log q.

Now we obtain the following characterization of the access and adversary
structures of Σ (see De�nitions 3.8 and 3.10).

Proposition 3.25 Let A ⊆ {1, . . . , n}. Then

A ∈ Γ(Σ) ⇐⇒ dA∪{0} = dA

and

A ∈ A(Σ) ⇐⇒ dA∪{0} = d0 + dA or A = ∅.

In other words, we have

Γ(Σ) = {A ⊆ {1, . . . , n} : EA∪{0} ' EA}

(where ' denotes an isomorphism of Fq-vector spaces) and

A(Σ) = {A ⊆ {1, . . . , n} : EA∪{0} = E0 × EA} ∪ {∅}.

Finally, we note that an ideal linear scheme is characterized by the fol-
lowing:

Proposition 3.26 A perfect LSSS Σ is ideal if there are no dummy indices
and di = d0 for all i = 1, . . . , n.
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3.3 Multiplication and strong multiplication

We introduce now the properties of multiplication of a linear secret sharing
scheme. These have found important applications in a number of works. The
main motivation for this property is the problem of multiparty computation.
The property was introduced by Cramer, Damgård and Maurer in [32].

In order to introduce these properties, we need to de�ne some product in
the supports E0, E1, . . . , En of the secret and share variables. We will consider
that these supports are Ei = Friq , for possibly diferent integers ri > 0, and
the products that we consider are Schur products, which are introduced next.

Definition 3.27 The Schur product (also known as Hadamard product or
coordinatewise product) of two vectors x = (x0, x1, . . . , xr−1) ∈ Frq and
y = (y0, y1, . . . , yr−1) ∈ Frq, is de�ned as the vector

x ∗ y := (x0y0, x1y1, . . . , xr−1yr−1) ∈ Frq.

Now we can de�ne the t-multiplication property as follows:

Definition 3.28 (t-multiplication) Let r0, r1, . . . , rn > 0 be integers and

Σ = (n,Fr0q ,Fr1q , . . . ,Frnq , S0, S1, . . . , Sn)

be a linear secret sharing scheme. Let t be an integer with 1 ≤ t ≤ n. We
say Σ has t-multiplication if the following holds:

� t(Σ) ≥ t.

� There exists a linear function Ψ :
⊕n

i=1 Friq → Fr0q such that for all
x, y ∈ E,

π0(x) ∗ π0(y) = Ψ (π1(x) ∗ π1(y), . . . , πn(x) ∗ πn(y))

where for x ∈ E ⊆
⊕n

i=0 Friq , if we write x = (x0, x1, . . . , xn) with
xi ∈ Friq for all i ∈ {0, . . . , n}, then πi(x) := xi.

Remark 3.29 In this thesis, we will be only interested in the case where
ri = 1 for all i ∈ {0, 1, . . . , n}. Hence the product ∗ is simply the ordinary
product in Fq.

Note also that the multiplication property can be de�ned with respect to
other types of products. For example, if the vector spaces Ei are seen as
extension �elds Fqri of Fq and we consider the �eld product in Fqri .
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The following fact can be found in [32].

Theorem 3.30 If Σ has t-multiplication for an integer t ≥ 1, then 2t < n.

Now one can generalize this notion and consider the case where it su�ces
to have some of the products πi(x)∗πi(y) in order to determine π0(x)∗π0(y).

Definition 3.31 Let Σ be a LSSS with t(Σ) ≥ 1. Let Γ̂ be a non-empty fam-

ily of subsets of {1, . . . , n}. We say that Σ has the Γ̂-product reconstruction

property if for any A ∈ Γ̂, there exists a linear function ΨA :
∏

i∈AEi → E0

such that for all x, y ∈ E,

π0(x) ∗ π0(y) = ΨA((πi(x) ∗ πi(y))i∈A)

Definition 3.32 Let Σ be a LSSS with t(Σ) ≥ 1. Let us de�ne Γ̂(Σ) as

the maximal family Γ̂ for which Σ has the Γ̂-product reconstruction property
(or Γ̂(Σ) := ∅ if there is no Γ̂ for which Σ has the Γ̂-product reconstruction
property ).

Note that Γ̂(Σ) is a monotone structure, that is if A ⊆ B and A ∈ Γ̂(Σ),
then B ∈ Γ̂(Σ). Consequently if Γ̂(Σ) 6= ∅, clearly {1, . . . , n} ∈ Γ̂(Σ). Now
note that it is straightforward that

Lemma 3.33 If t(Σ) ≥ t and Σ has the Γ̂-product reconstruction property for

Γ̂ = {{1, . . . , n}} then Σ has the t-multiplication property. In other words Σ

has the t-multiplication property if and only if t(Σ) ≥ t and Γ̂(Σ) 6= ∅.

The fundamental property for applications to multiparty computation is
the property of strong multiplication, which is de�ned next.

Definition 3.34 We say that a LSSS Σ has the strong multiplication prop-
erty with respect to Ã if:

� Ã ⊆ A(Σ), that is every set in Ã is in the adversary structure of Σ.

� For every set A ∈ Ã, we have Ac ∈ Γ̂(Σ), where Ac := {1, . . . , n} \ A.

As a particular case of great interest in this text, the concept of t-strong
multiplication is de�ned next.
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Definition 3.35 (t-strong multiplication) Let t ∈ Z with t ≥ 1. We
say that a LSSS Σ has t-strong multiplication if it has the strong multiplica-
tion property with respect to Ã, where Ã contains all sets
A ⊆ {1, . . . , n} of size t.

So a LSSS Σ has t-strong multiplication if and only if t(Σ) ≥ t and Σ has
�(n− t)-product reconstruction�, i.e., any set B ⊆ {1, . . . , n} of size n− t is
in Γ̂(Σ). Note that:

Lemma 3.36 If Σ has t-strong multiplication, then for any integer t′ with
1 ≤ t′ ≤ t, Σ has t′-strong multiplication.

Moreover the following facts are known:

Theorem 3.37 Let Σ be a LSSS with t-strong multiplication. Then we have
r(Σ) ≤ (n − 2t). Consequently 3t < n. In addition, if 3t = n − 1 then
t(Σ) = t and r(Σ) = t+ 1.

3.4 Speci�c examples

In this section, two examples of families of linear secret sharing schemes will
be presented.

3.4.1 Shamir's schemes

The following family of secret sharing schemes was proposed in the seminal
paper about secret sharing [72] and has been widely used in cryptography.

Definition 3.38 (Shamir's secret sharing scheme) Let Fq be a �nite
�eld. Let t,n be integers such that 1 ≤ t < n < q. Let x1, x2, . . . , xn be
distinct nonzero elements in Fq. Shamir's scheme ΣSh(Fq, t, n, x1, . . . , xn) is
the vector of n+ 1 random variables (S0, S1, . . . , Sn) which take values in Fq
(that is, E0 = E1 = · · · = En = Fq) according to the following probability
distribution: S0 = f(0) and Si = f(xi) for i = 1, . . . , n where f is sampled
uniformly at random from the set Fq[X]≤t.

The well known Lagrange interpolation Theorem, which we recall now,
can be used to show some properties about Shamir's scheme.
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Theorem 3.39 (Lagrange interpolation) Let x1, . . . , xt+1, y1, . . . , yt+1

be arbitrary elements in Fq, where xi 6= xj for any i 6= j. Then there exists a
unique polynomial f ∈ Fq[X]≤t such that f(xi) = yi for any i ∈ 1, . . . , t+ 1.
This polynomial is

f(X) =
t+1∑
i=1

yi ·
∏t+1

j=1,j 6=i(X − xj)∏t+1
j=1,j 6=i(xi − xj)

.

Theorem 3.40 Σ = ΣSh(Fq, t, n, x1, . . . , xn) is an ideal threshold linear se-
cret sharing scheme satisfying t(Σ) = t, r(Σ) = t+ 1.

Note that indeed, Σ is linear. In fact, the support of the product random
variable S is a RSq[n, t]-code. For every i ∈ {1, . . . , n}, Si has the uniform
distribution on Fq, and so does S0, and therefore H(Si) = H(S0). Lagrange's
theorem can be used to prove that Σ is threshold: for any A ⊂ {1, . . . , n}
with |A| = t + 1, the values of the variables Si, i ∈ A are the evaluations of
a polynomial f ∈ Fq[X]≤t in the t + 1 points xi with i ∈ A. By Lagrange's
Theorem, f is uniquely determined by these values, and hence so is f(0) and
consequently the value of S0. Therefore r(Σ) ≤ t+ 1. On the other hand for
any set B with |B| = t, any values (yi)i∈B ∈ F|B|q and any s ∈ Fq there exists
exactly one polynomial of degree at most t such that f(xi) = yi for all i ∈ B
and f(0) = s, again by the interpolation Lemma. So S0|SB = (f(xi))i∈B
has the uniform distribution and t(Σ) = t (so in addition r(Σ) = t + 1).
Therefore Σ is threshold and consequently perfect.

Theorem 3.41 ΣSh(Fq, t, n, x1, . . . , xn) has t-multiplication if and only if
2t < n. Moreover ΣSh(Fq, t, n, x1, . . . , xn) has t-strong multiplication if and
only if 3t < n.

This is due to the fact that for any f, g ∈ Fq[X]≤t and i ∈ {0, . . . , n},
we have f(xi)g(xi) = (fg)(xi) and fg ∈ Fq[X]≤2t. By Lagrange interpo-
lation Theorem, if 2t < n, the value fg(x0) is determined by the values
fg(xi), i = 1, . . . , n. In fact it is determined by any subset fg(xi), i ∈ B,
B ⊆ {1, . . . , n}, |B| = 2t + 1. If in addition 3t < n, then 2t + 1 ≤ n − t
and the interpolation Theorem proves that Σ has t-strong multiplication.
Theorems 3.30 and 3.37 state that these two facts cannot happen for larger
t.

Shamir's schemes can only be de�ned in the case n < q. But in fact, one
can slightly modify the de�nition of Shamir's scheme to cope with the case
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n = q. In this case, the shares are the evaluations of a polynomial randomly
chosen in Fq[X]≤t in all q points of Fq. The secret is now the coe�cient of
X t of this polynomial (in the case that the chosen polynomial has degree less
than t, the secret is then 0). Theorems 3.40 and 3.41 are still valid for these
modi�ed schemes.

3.4.2 Algebraic geometric secret sharing schemes

In [20], Cramer and Chen introduced algebraic geometric schemes, which
have strong multiplication but are not restricted by the condition n ≤ q.
These schemes are ideal LSSS based on algebraic geometric codes. Just as
algebraic geometric codes are a generalization of Reed-Solomon codes, so it
happens that algebraic geometric schemes are a generalization of Shamir's
scheme.

Definition 3.42 (Algebraic geometric scheme) Let n ≥ 2 be an in-
teger and F/Fq be a function �eld with |P(1)(F)| ≥ n+ 1.
Let P0, P1, . . . , Pn ∈ P(1)(F), with Pi 6= Pj for i 6= j and de�ne D =

∑n
i=0 Pi.

Let G ∈ Div(F) such that supp G ∩ suppD = ∅, `(G) > `(G − P0) and
`(G−

∑n
i=1 Pi) = `(G−

∑n
i=0 Pi).

The algebraic geometric linear secret sharing scheme ΣAG(F, G, P0, P1, . . . , Pn)
is the vector of random variables (S0, S1, . . . , Sn) which take the values
Si = f(Pi), i = 0, . . . , n, where f is selected uniformly at random in L(G).
In addition we write, for every set A ⊆ {1, . . . , n}, PA :=

∑
i∈A Pi ∈ Div(F).

Note that the sets E1, . . . , En are either the trivial space {0} or Fq. E0 = Fq
since `(G) > `(G− P0) and

supp S{0,1,...,n} = CL(D,G).

The following results were proved in [20].

Proposition 3.43 Let Σ = ΣAG(F, G, P0, P1, . . . , Pn). Then for every set
A ⊆ {1, . . . , n},

A ∈ Γ(Σ)⇔ `(G− PA − P0) = `(G− PA).

Moreover

`(2G− PA − P0) = `(2G− PA)⇒ A ∈ Γ̂(Σ)
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One can argue by simply considering the degrees of the divisors involved
and applying Lemma 2.51 and Corollary 2.67

Theorem 3.44 Let Σ = ΣAG(F, G, P0, P1, . . . , Pn). Then t(Σ) ≥ degG− 2g
and r(Σ) ≤ degG + 1. Moreover, assume that degG = 2g + t. Then Σ has
t-multiplication if 2t < n− 4g and t-strong multiplication if 3t < n− 4g.
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Chapter 4

A coding theoretic framework for
strongly multiplicative secret
sharing

In this chapter we explore the connection between ideal linear secret sharing
schemes and linear codes and introduce a coding theoretic framework for
the study of linear secret sharing schemes with t-strong multiplication. In
order to do this, we de�ne the notion of corruption tolerance of a linear code.
This framework has been published in [15], although some of the notions are
de�ned in a slightly di�erent language in this text.

In addition to this, we will establish some limitations of linear threshold
schemes by showing the connection to MDS codes and using the upper bounds
for the length of these codes stated in Chapter 1. This will motivate the
asymptotical study in next chapters.

4.1 Basic notions and properties

We �rst introduce the following notation.

Definition 4.1 Let C be a linear code over Fq of length k(C). We de�ne
n(C) := k(C)− 1.

For the rest of the chapter, C will denote a linear code over Fq with n(C) ≥ 2.

75
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Definition 4.2 Let n be an integer with n ≥ 2 and let Fq be a �nite �eld.
For a non-empty set B ⊂ {0, 1, . . . , n}, the Fq-linear projection map πq,n+1

B

is de�ned as
πq,n+1
B : C −→ F|B|q ,

(c0, c1, . . . , cn) 7→ (ci)i∈B.

When q and n are clear from the context, we write πB instead. Also, if
B = {i} for some index i, we write πi instead of π{i}.

Definition 4.3 Let C be a linear code over Fq. For all x ∈ Fq, i ∈ I(C),
we de�ne the set

Ci,x := {c ∈ C : πi(c) = x} ⊆ C.

In particular Ci,0 is a linear subcode of C. Moreover, for ∅ 6= A ⊆ I(C), and

x ∈ F|A|q we de�ne
CA,x := {c ∈ C : πA(c) = x}.

The notion of minimal weight at an index, which will be introduced next,
will be fundamental throughout this text.

Definition 4.4 (Minimal weight at an index) Let C be a linear code
over Fq and i ∈ I(C). The minimal weight of C at the index i is de�ned as

wi(C) :=

{
minc∈Ci,1

wHam(c) if Ci,1 6= ∅.
0 if Ci,1 = ∅.

In addition, let w⊥i (C) := wi(C
⊥) be the minimal weight of C⊥ at the index

i.

Remark 4.5 Let C be a linear code over Fq and i ∈ I(C). For all x 6= 0,
Ci,x 6= ∅ ⇐⇒ w⊥i (C) 6= 1. Moreover, if Ci,x 6= ∅ then Ci,x = c + Ci,0 for
some c ∈ Ci,x.

In fact, for all x ∈ Fq \ {0}, there exists a bijection between Ci,1 and Ci,x
(that is the scalar multiplication by x) that preserves the weight of every
word, so the combinatorial properties of both sets (regarding the distribution
of zeros in the words) are the same and the de�nition of wi(C) would not
di�er if we substitute the value 1 by any x ∈ Fq \ {0}.

The primal and dual distances of C can of course be related to the minimal
weights wi(C) as follows.
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Lemma 4.6 Let C be a linear code over Fq. If C 6= {0} then

d(C) = min{wi(C) : i ∈ I(C), wi(C) > 0}.

If C 6= Fk(C)
q then

d(C⊥) = min{w⊥i (C) : i ∈ I(C), w⊥i (C) > 0}.

Lemma 4.7 Let C be a linear code over Fq, i ∈ I(C). We have

� wi(C) = 0 ⇐⇒ C = Ci,0 ⇐⇒ ui ∈ C⊥ ⇐⇒ w⊥i (C) = 1

where ui ∈ Fn(C)+1
q denotes the i-th unit vector, i.e., the vector given

by πi(ui) = 1 and πj(ui) = 0 for all j ∈ I(C) \ {i}.

� By dualization wi(C) = 1 ⇐⇒ w⊥i (C) = 0.

� As a consequence of both facts wi(C) ≥ 2 ⇐⇒ w⊥i (C) ≥ 2.

In the following sections, we will consider linear codes over Fq in certain
class, which we will introduce next.

Definition 4.8 Let C be a linear code over Fq. An index i ∈ I(C) is called
good if wi(C) > 1. The set of all good indices of C is written I(C).

On account of Lemma 4.7, if we replace the condition wi(C) > 1 by
w⊥i (C) > 1 we get an equivalent de�nition. Moreover, I(C) = I(C⊥). Now,
we de�ne the class of codes which have at least one good index.

Definition 4.9 C(Fq) is the set of all linear codes over Fq with I(C) 6= ∅.

In the next section we will describe how to construct a LSSS from a
pair (C, i) with C ∈ C(Fq) and i ∈ I(C). First we give de�nitions of some
notions associated to these pairs (C, i). These are combinatorial de�nitions
that do not contain any reference to secret sharing. However, they will later
be associated to known concepts related to the corresponding LSSS, which
we introduced in Chapter 3.

Definition 4.10 For C ∈ C(Fq), i ∈ I(C), we denote P(C, i) := I(C)\{i}.
For any A ⊆ P(C, i), let Ac denote the complement of A within P(C, i), that
is Ac := P(C, i) \ A.
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Definition 4.11 Let C ∈ C(Fq), i ∈ I(C).
The access structure of the pair (C, i) is de�ned as

Γ(C, i) := {A ⊆ P(C, i) : ∃c ∈ C⊥ with πi(c) = 1, πAc(c) = 0} ∪ {P(C, i)}.

The adversary structure of the pair (C, i) is

A(C, i) := {A ⊆ P(C, i) : ∃c ∈ C with πi(c) = 1, πA(c) = 0} ∪ {∅}.

Since for any i ∈ I(C), we know that both wi(C), w⊥i (C) > 1, it is not
di�cult to check that:

Lemma 4.12 For any C ∈ C(Fq) and any i ∈ I(C), we have ∅ /∈ Γ(C, i),
P(C, i) ∈ Γ(C, i), ∅ ∈ A(C, i) and P(C, i) /∈ A(C, i).

Note that P(C, i) ∈ Γ(C, i), ∅ ∈ A(C, i) are only stated here for comple-
tion, since both hold by de�nition.

The following properties follow directly from the de�nitions of the access
and adversary structures.

Lemma 4.13 For any C ∈ C(Fq) and any i ∈ I(C),

� Γ(C, i) is monotone, i.e., for any A ⊆ B ⊆ P(C, i), if A ∈ Γ(C, i) then
B ∈ Γ(C, i).

� A(C, i) is antimonotone, i.e., for any A ⊆ B ⊆ P(C, i), if B ∈ A(C, i)
then A ∈ A(C, i).

We now prove some useful results involving these notions.

Theorem 4.14 Let C ∈ C(Fq), i ∈ I(C). We have the following properties:

1. Γ(C, i)qA(C, i) = 2P(C,i) (where q denotes the disjoint union).

2. A ∈ Γ(C, i) ⇐⇒ Ac /∈ Γ(C⊥, i).

Proof. 1) We prove �rst A(C, i) ∩ Γ(C, i) = ∅. Suppose there exists
A ∈ A(C, i)∩Γ(C, i). Clearly A 6= ∅ and A 6= P(C, i) because of Lemma 4.12.
Then A ∈ A(C, i) implies that there exists a word c ∈ Ci,1 with πA(c) = 0.
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On the other hand, A ∈ Γ(C, i) implies that there exists w ∈ (C⊥)i,1 with
πAc(w) = 0. Then, since I(C) = {i} ∪ A ∪ Ac,

0 =< c,w >= πi(c)πi(w)+ < πA(c), πA(w) > + < πAc(c), πAc(w) >=

= 1 · 1 + 0 + 0

which is a contradiction.
Now we prove A(C, i) ∪ Γ(C, i) = 2P(C,i). Assume A /∈ Γ(C, i). If

A = ∅, then A ∈ A(C, i) by de�nition. Otherwise apply the following rea-
soning. A /∈ Γ(C, i) implies A 6= P(C, i) and Ac 6= ∅ and that the vector
y ∈ F1+|Ac|

q de�ned by πi(y) = 1, πAc(y) = 0 is not in π{i}∪Ac(C⊥). Hence

π{i}∪Ac(C⊥) 6= F1+|Ac|
q . Therefore, the space (π{i}∪Ac(C⊥))⊥ must contain a

vector x 6= 0, such that < x,y >6= 0. Consequently πi(x) 6= 0. We may
assume without of loss of generality, πi(x) = 1. De�ne now the element
c ∈ Fn(C)+1

q given by πA(c) = 0 and π{i}∪Ac(c) = x. This element c is clearly
in (C⊥)⊥ = C and πi(c) = 1, πA(c) = 0. So by de�nition, A ∈ A(C, i).

2) First, note that if A = P(C, i) then A ∈ Γ(C, i) and Ac = ∅ /∈ Γ(C⊥, i)
(Lemma 4.12). Now, for all A 6= P(C, i), we have that A ∈ Γ(C, i) holds if
and only if there exists c ∈ (C⊥)i,1 with supp c ⊆ A ∪ {i} (by de�nition).
But this happens if and only if there exists c ∈ (C⊥)i,1 with πAc(c) = 0
which is equivalent by de�nition to Ac ∈ A(C⊥, i). Finally, by the �rst part
of the theorem this is equivalent to Ac /∈ Γ(C⊥, i). 4

Definition 4.15 Let C ∈ C(Fq), i ∈ I(C). The reconstruction threshold
r(C, i) is

r(C, i) := min{r ∈ {0, . . . , n(C)} : A ∈ Γ(C, i) ∀A ⊆ P(C, i) with |A| = r}.

The privacy threshold t(C, i) is

t(C, i) := max{t ∈ {0, . . . , n(C)} : B ∈ A(C, i) ∀B ⊆ P(C, i) with |B| = t}.

Note that, on account of Lemma 4.12, these thresholds are well de�ned
and 1 ≤ r(C, i) ≤ n(C) and 0 ≤ t(C, i) ≤ n(C) − 1 for all C ∈ C(Fq) and
i ∈ I(C). Also, due to Lemma 4.13, ∀r′ ∈ Z with r(C, i) ≤ r′ ≤ n(C) and
any A′ ⊆ P(C, i) with |A′| = r′, we have A′ ∈ Γ(C, i); and ∀t′ ∈ Z with
0 ≤ t′ ≤ t(C, i) and any B′ ⊆ P(C, i) with |B′| = t′, we have B′ ∈ A(C, i).

As a consequence of Theorem 4.14 we can state
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Proposition 4.16 Let C ∈ C(Fq), i ∈ I(C). Then r(C, i) > t(C, i) and
t(C⊥, i) = n(C)− r(C, i).

We can characterize r(C, i) and t(C, i) in terms of wi(C) and w⊥i (C):

Proposition 4.17 Let C ∈ C(Fq), i ∈ I(C). Then

r(C, i) = n(C)− wi(C) + 2.

Proof. By de�nition of the weight wi(C), every word w ∈ Ci,1 has at
most n(C) − wi(C) + 1 zeros and there exists w′ ∈ Ci,1 with exactly that
number of zeros. These two facts imply that n(C)−wi(C)+2 is the smallest
integer r for which every w ∈ Ci,1 has strictly fewer than r zeros. Therefore
n(C)−wi(C) + 2 is the smallest integer r such that for all A ⊆ P(C, i) with
|A| = r, we have that A /∈ A(C, i), and consequently (by Theorem 4.14)
A ∈ Γ(C, i). 4

Proposition 4.18 Let C ∈ C(Fq), i ∈ I(C). Then t(C, i) = wi(C
⊥)− 2.

Proof. By Proposition 4.16, t(C, i) = n(C)−r(C⊥, i). Applying Propo-
sition 4.17 to C⊥, t(C, i) = wi(C

⊥)− 2. 4
We state now some consequences of these two propositions. First, using

Proposition 4.18, we can bound the dimension of the code.

Proposition 4.19 Let C ∈ C(Fq) and i ∈ I(C). We have

dimC ≥ w⊥i (C)− 1 = t(C, i) + 1 and d(C) ≤ wi(C).

Proof. By de�nition of t(C, i), there is a set A ⊆ P(C, i) of size
|A| = t(C, i) + 1 such that A /∈ A(C, i). However for any index j ∈ A,
we have |A \ {j}| = t(C, i), so A \ {j} ∈ A(C, i). By de�nition of A(C, i)
there exists cj ∈ Ci,1 with πA\{j}(cj) = 0 but there does not exist any word
w ∈ Ci,1 with πA(w) = 0. Therefore πj(cj) 6= 0. Then the set {cj : j ∈ A}
is clearly a set of linearly independent words in C and contains t(C, i) + 1
words, so dimC ≥ t(C, i) + 1. The second claim is trivial, since wi(C) > 0.

4
The following result states that given any linear code C over Fq an any

index i ∈ I(C), wi(C) and w⊥i (C) cannot be very large simultaneously.
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Proposition 4.20 Let C be a linear code over Fq, i ∈ I(C). Then

wi(C) + w⊥i (C) ≤ n(C) + 3

Proof. If w⊥i (C) = 0 or w⊥i (C) = 1, then

wi(C) + w⊥i (C) = 1 ≤ n(C) + 3.

So suppose wi(C) ≥ 2, i.e., C ∈ C(Fq) and i ∈ I(C). Then Proposi-
tions 4.16, 4.17 and 4.18 imply that

w⊥i (C)− 2 = t(C, i) < r(C, i) = n(C)− wi(C) + 2.

Hence wi(C) + w⊥i (C) < n(C) + 4. 4
In Chapter 7, new limitations to wi(C) and w⊥i (C) will be obtained not

only in terms of k(C) but also of the cardinality of the �eld Fq over which C
is de�ned. This is analogous to what happens for the upper bounds on the
distance and dimension of a linear code. The Singleton bound gives an upper
bound for the sum of these two parameters that depends on the length of
the code, while more elaborated bounds like Hamming and Plotkin bounds
also take into account the size of the underlying �eld.

4.2 A coding view on ideal linear secret sharing

The possibility to obtain secret sharing schemes from linear codes was �rst
proposed by J. Massey in [56]. We recall this construction next.

Definition 4.21 Let C ∈ C(Fq) and i ∈ I(C). The secret sharing scheme
Σ(C, i), de�ned on the set of players P(C, i), consists of the random variables
Si, the secret, and (Sj)j∈P(C,i), the vector of shares, where each variable Sk,
k ∈ I(C) takes the value πk(c) where c is selected uniformly at random in
C.

We use the notations introduced in Chapter 3. For A ⊆ I(C), SA denotes
the random variable SA =

∏
i∈A Si. S denotes the variable SI(C).

We now prove that Σ(C, i) is indeed a linear secret sharing scheme and
state some properties of the scheme.

Theorem 4.22 Let C ∈ C(Fq) and i ∈ I(C). We have:
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1. Σ(C, i) is a linear secret sharing scheme.

2. Γ(Σ(C, i)) = Γ(C, i) and A(Σ(C, i)) = A(C, i).

3. Σ(C, i) is perfect, and pseudoideal. Moreover, if I(C) = I(C) it is
ideal.

4.
r(Σ(C, i)) = n(C)− wi(C) + 2 ≤ n(C)− d(C) + 2

and
t(Σ(C, i)) = w⊥i (C)− 2 ≥ d(C⊥)− 2.

Proof.
1) We �rst need to verify the two properties required in the de�nition of

secret sharing scheme (De�nition 3.7): First, H(Si) 6= 0 because wi(C) > 0
implies that πi(C) = Fq. On the other hand H(Si|SP(C,i)) = 0 is proved as
follows. Since wi(C⊥) > 1, there exists a word c∗ ∈ C⊥ with πi(c∗) = 1. Fix
one such word c∗. Then for any c ∈ C,

0 =< c, c∗ >= πi(c)πi(c
∗)+ < πP(C,i)(c), πP(C,i)(c

∗) > .

This implies πi(c) = − < πP(C,i)(c), πP(C,i)(c
∗) >. So the value πi(c) is de-

termined by πP(C,i)(c).
The linearity is obvious since for all j ∈ I(C), we have supp Sj = πj(C) and
either πj(C) = Fq (if wj(C) > 0) or πj(C) = 0 (if wj(C) = 0). Furthermore
supp S = C (which is a vector space over Fq) and the distribution of S is the
uniform on C.

2) Assume A ∈ Γ(C, i). Then there exists a word c ∈ (C⊥)i,1 with
supp c ⊆ A ∪ {i}. Hence for any word w ∈ C, we have

0 =< c,w >= πi(c)πi(w)+ < πA(c), πA(w) >

and since πi(c) = 1, it holds that πi(w) = − < πA(c), πA(w) >. Hence the
function

ρA : F|A|q → Fq
x 7→ − < πA(c),x >

satis�es πi(w) = ρA(πA(w)) for every word w ∈ C. Therefore the value
of πi(w) is uniquely determined by πA(w) for all w ∈ C. Consequently
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the value of Si is determined by the value of SA. So A ∈ Γ(Σ(C, i)) and
Γ(C, i) ⊆ Γ(Σ(C, i)).

On the other hand if A ∈ A(C, i), either A = ∅ ∈ A(Σ(C, i)) (see Def-
inition 3.10) or A 6= ∅. In the latter case there exists a word c ∈ Ci,1 with
πA(c) = 0. Then for any y ∈ πA(C), and any two elements x, x′ ∈ Fq, we
have that |Ci,x ∩ CA,y| = |Ci,x′ ∩ CA,y| since the map

φ : Ci,x ∩ CA,y → Ci,x′ ∩ CA,y

w 7→ w + (x′ − x)c

is a bijection. This means that

P (Si = x|SA = y) = P (Si = x′|SA = y) = |Ci,x′ ∩ CA,y|/|CA,y|.

Therefore the variable Si|SA = y has the uniform distribution over Fq for
any y ∈ πA(C). Since Si also has the uniform distribution over Fq, we
conclude that H(Si|SA) = H(Si) and therefore A ∈ A(Σ(C, i)). Hence
A(C, i) ⊆ A(Σ(C, i)).
Recall that Γ(C, i) q A(C, i) = 2P(C,i) (Theorem 4.14). Since we have
proved that Γ(C, i) ⊆ Γ(Σ(C, i)) and A(C, i) ⊆ A(Σ(C, i)) and we know
Γ(Σ(C, i)) ∩ A(Σ(C, i)) = ∅ by Proposition 3.12, the only possibility is that
Γ(Σ(C, i)) = Γ(C, i) and A(Σ(C, i)) = A(C, i).
We can now combine 2) with the results proved for Γ(C, i) and A(C, i) in
the previous section in order to prove the remaining claims.

3) By Theorem 4.14, we have 2P(C,i) = Γ(Σ(C, i))qA(Σ(C, i)), and there-
fore Σ(C, i) is perfect. Once we have established that, we can prove it is pseu-
doideal. Note that Si has the uniform distribution in Fq and for j ∈ P(C, i),
Sj has the uniform distribution in Fq if wj(C) > 0 and is identically zero
if wj(C) = 0. In the �rst case H(Si) = H(Sj) = log q and in the second
case j is clearly a dummy index. But this second case cannot happen when
I(C) = I(C).

4) From the De�nitions 3.13, 3.14 and 4.15, and again property 2), we
deduce r(Σ(C, i)) = r(C, i) and t(Σ(C, i)) = t(C, i). We can then apply
Propositions 4.17, 4.18 and 4.19 to obtain

r(Σ(C, i)) = n(C)− wi(C) + 2 ≤ n(C)− d(C) + 2
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and
t(Σ(C, i)) = w⊥i (C)− 2 ≥ d(C⊥)− 2.

4

4.3 Capturing strong multiplication

Our goal now is to study t-strong multiplication of ideal linear secret sharing
schemes using the coding theoretic framework explained in this chapter.

4.3.1 Schur-product transforms of codes

We introduce the notion of Schur-product transforms of a linear code C.
Recall that x ∗ y denotes the Schur product of two vectors x and y (De�ni-
tion 3.27).

Definition 4.23 Given a generalized Fq-linear code C, the k-th order Schur-
product transform of C is the generalized Fq-linear code

C~k := Fq < {x1 ∗ · · · ∗ xk : x1, . . . ,xk ∈ C} >

where for a set S ⊆ Frq, for some integer r > 0, Fq < S > denotes the Fq-
vector space spanned by the elements of the set S. We write Ĉ := C~2 and
call this code Schur square of C.

In this thesis, we will be mostly concerned about the Schur squares of
given codes. We can state some basic properties about Ĉ for codes C ∈ C(Fq).

Proposition 4.24 Let C ∈ C(Fq). Then:

1. n(C) = n(Ĉ).

2. ∀i ∈ I(C), wi(Ĉ) ≤ wi(C) (and consequently d(Ĉ) ≤ d(C) ).

3. ∀i ∈ I(C), wi(C) > 0⇔ wi(Ĉ) > 0.

4. I(Ĉ) ⊆ I(C). In fact, it may happen that I(Ĉ) = ∅.
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Proof. Claim 1 is obvious. For Claim 2, assume �rst that wi(C) > 0.
Note that for all c ∈ Ci,1, c ∗ c ∈ (Ĉ)i,1. Then the claim is a consequence
of wHam(c) = wHam(c ∗ c). If wi(C) = 0, every word in C is in Ci,0 and
therefore every word in Ĉ is in (Ĉ)i,0 so wi(Ĉ) = 0. This completes the proof
of Claim 2 and proves one implication in Claim 3. The other implication is
again a consequence of the fact that for all c ∈ Ci,1, we have c ∗ c ∈ (Ĉ)i,1.
The claim I(Ĉ) ⊆ I(C) is then a consequence of the previous ones. An
example of a code C ∈ C(F2) where I(Ĉ) = ∅ is the following: Take

C = F2 < (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1) > .

It is easy to check that C ∈ C(F2), in fact I(C) = I(C). However Ĉ = F4
2,

so wi(Ĉ) = 1 for all i ∈ I(Ĉ) and I(Ĉ) = ∅. 4

4.3.2 The class C†(Fq)
We de�ne now the following class of linear codes over Fq.

Definition 4.25 C†(Fq) denotes the set of all linear codes C over Fq such

that I(Ĉ) 6= ∅.

Remark 4.26 C†(Fq) ⊆ C(Fq) because I(Ĉ) ⊆ I(C) for any C ∈ C(Fq).

We might wonder at this point if codes in C†(Fq) are rare. In the proof of
Proposition 4.24 we gave an example of a code in C(F2) \ C†(F2). However,
a large class of codes studied in the literature, self-orthogonal codes, can be
seen to be in C†(Fq).

Proposition 4.27 Let {0} 6= C be a self-orthogonal linear code over Fq.
Then C ∈ C†(Fq).

Proof. Let 0 6= c ∈ C. Take any i ∈ supp c. Without loss of generality,
we may assume πi(c) = 1. Then i ∈ I(Ĉ) is proved as follows. First,
wi(Ĉ) > 0 because c ∗ c ∈ Ĉ and πi(c ∗ c) = 1. On the other hand,
for all w,w′ ∈ C, < w,w′ >= 0 because C is self-orthogonal. This is
equivalent to < (1, 1, . . . , 1),w ∗w′ >= 0 for all w,w′ ∈ C and, by linearity,
(1, 1, . . . , 1) ∈ (Ĉ)⊥ so w⊥i (Ĉ) 6= 0 and this implies wi(Ĉ) 6= 1. In fact, it has
been proved that if C is self-orthogonal, wi(C) > 0 implies i ∈ I(Ĉ). 4
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4.3.3 Corruption tolerance of a code

We de�ne now, for every code in C†(Fq), two parameters that, as we will later
prove, give information about strong multiplication of a LSSS de�ned from
C.

Definition 4.28 For C ∈ C†(Fq), we de�ne:

t̂(C) := max
i∈I(Ĉ)

min{w⊥i (C)− 2, wi(Ĉ)− 2}.

The LSSS Σ(C) is by de�nition Σ(C, i) where i is chosen as the smallest
index where this maximum is attained. This index is denoted is.

We introduce now the notion of corruption tolerance of a code, which is
a relative measure of t̂(C) against n(C).

Definition 4.29 (Corruption tolerance) Let Fq be a �nite �eld. The
corruption tolerance of C ∈ C†(Fq), is the real number

τ̂(C) :=
3t̂(C)

n(C)− 1
.

4.3.4 Strong multiplication as a code property

Recall that Γ̂(Σ(C, i)) denotes the family of subsets of I(C)\{i} with product
reconstruction (De�nition 3.32). We have:

Theorem 4.30 Let C ∈ C†(Fq) and i ∈ I(Ĉ), such that w⊥i (C) ≥ 3. Then

Γ(Ĉ, i) ⊆ Γ̂(Σ(C, i))

Proof. First note that w⊥i (C) ≥ 3 implies t(Σ(C, i)) ≥ 1. Therefore
Γ̂(Σ(C, i)) is well de�ned.

Let A ∈ Γ(Ĉ, i). We need to prove that there exists a function
ΨA : F|A|q → Fq such that for any two words c, c′ ∈ C,

πi(c)πi(c
′) = ΨA((πj(c)πj(c

′))j∈A).

But note that if A ∈ Γ(Ĉ, i) = Γ(Σ(Ĉ, i)), there exists a function
ρA : F|A|q → Fq with

πi(w) = ρA(πA(w))
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for all w ∈ Ĉ and in particular any word of the form w = c ∗ c′ for c, c′ ∈ C.
For all j ∈ I(C), πj(c ∗ c′) = πj(c)πj(c

′) so we can take ΨA = ρA and the
theorem is proved. 4

As a consequence of this proposition, the codes in C†(Fq) give rise to
linear secret sharing schemes with multiplication, if these schemes have at
least 1-privacy.

Corollary 4.31 Let C ∈ C†(Fq). Assume there exists i ∈ I(Ĉ) such that
w⊥i (C) ≥ 3 and let t be an integer such that 1 ≤ t ≤ w⊥i (C)−2. Then Σ(C, i)

has t-multiplication (i.e. t(Σ(C, i)) ≥ t and P(C, i) ∈ Γ̂(Σ(C, i)).

Proof. First, we have t(Σ(C, i)) = w⊥i (C) − 2 ≥ t ≥ 1 by Propo-
sition 4.18 and Theorem 4.22. Now note that P(C, i) = P(Ĉ, i). Since
C ∈ C†(Fq) we have that Ĉ ∈ C(Fq) and by Lemma 4.12, P(Ĉ, i) ∈ Γ(Ĉ, i).
Finally Theorem 4.30 implies the result. 4

Now we state the main result of this section: we show the relationship
between the parameter t̂(C) and the strong multiplication of the LSSS Σ(C)
(see De�nition 4.28).

Theorem 4.32 Let C ∈ C†(Fq). Assume t̂(C) ≥ 1 and let t be an integer
with 1 ≤ t ≤ t̂(C). Then Σ(C) has t-strong multiplication.

Proof. It has been proved (Proposition 4.18 and Theorem 4.22) that

t(Σ(C)) = t(C, is) = w⊥is(C)− 2 ≥ t.

On the other hand, since C ∈ C†(Fq) and is ∈ I(Ĉ), applying Proposition 4.17
we have that r(Ĉ, is) = n(C) − wis(Ĉ) + 2 ≤ n(C) − t so any A ⊆ P(C, is)

with |A| = n(C) − t belongs to Γ(Ĉ, is) . Moreover, by Theorem 4.30, any
such set A belongs to Γ̂(Σ(C, is)). This proves the property. 4

In particular t̂(C) is a lower bound for t(Σ(C)). But, interestingly, we
can also obtain an upper bound for r(Σ(C)) in terms of t̂(C).

Proposition 4.33 Let C ∈ C†(Fq) and assume t̂(C) ≥ 1. Then

r(C, is) ≤ n(C)− 2t̂(C)

(and consequently r(Σ(C)) ≤ n(C)− 2t̂(C) ).
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Proof. Write t̂(C) = t. Assume r(C, is) ≥ n(C) − 2t + 1. Then, by
de�nition of r(C, is) (see De�nition 4.15) there exists a set A ⊆ P(C, is) with
|A| = n(C)− 2t such that A /∈ Γ(C, is) and consequently (by Theorem 4.14)
A ∈ A(C, is). By de�nition there is a word cA ∈ Cis,1 with πA(cA) = 0.
Now take any set B ⊆ I(C) \ {is} with |B| = t, A ∩ B = ∅. Then t ≤ t̂(C)
implies w⊥is(C) ≥ t + 2 and by Proposition 4.18 B ∈ A(C, is). Then there
exists a word cB ∈ Cis,1 with πB(cB) = 0.
The Schur product c = cA ∗ cB ∈ Ĉis,1 satis�es πA∪B(c) = 0. But, since
|A∪B| = n(C)− t, we know wHam(c) ≤ t+ 1. Therefore wis(Ĉ) ≤ t+ 1 and
consequently by De�nition 4.28, t̂(C) ≤ t− 1, which is a contradiction. 4

This implies the following bound for t̂(C).

Corollary 4.34 Let C ∈ C†(Fq). Then 3t̂(C) ≤ n(C) − r(C, is) + t(C, is)
and in fact 3t̂(C) ≤ n(C)− 1.

Proof. We have proved that t(C, is) ≥ t̂(C) and r(C, is) ≤ n(C)−2t̂(C).
This implies that 3t̂(C) ≤ n(C)−r(C, is)+t(C, is). But r(C, is) ≥ t(C, is)+1
(Proposition 4.16) and this leads to the result. 4

We can now give bounds on the corruption tolerance of any code.

Proposition 4.35 For all C ∈ C†(Fq), 0 ≤ τ̂(C) ≤ 1. If τ̂(C) = 1, then
Σ(C) is a threshold LSSS and t(Σ(C)) = t̂(C).

Proof. Since t̂(C) ≥ 0, τ̂(C) ≥ 0. From 3t̂(C) ≤ n(C) − 1 (Corollary
4.34) it is straightforward that τ̂(C) ≤ 1.

Assume now τ̂(C) = 1. Then 3t̂(C) = n(C) − 1. But in fact Corollary
4.34 also states 3t̂(C) ≤ n(C) − r(C, is) + t(C, is) so 3t̂(C) = n(C) − 1
only happens in the case r(C, is) = t(C, is) + 1. This means that Σ(C) is a
threshold LSSS.

In addition, by Proposition 4.33, r(C, is) ≤ n(C)− 2t̂(C), so

t(C, is) ≤ n(C)− 2t̂(C)− 1 =
n(C)− 1

3
.

On the other hand, by Proposition 4.18,

t(C, is) = w⊥is(C)− 2 ≥ t̂(C) =
n(C)− 1

3
.
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Consequently

t(Σ(C)) = t(C, is) =
n(C)− 1

3
= t̂(C).

4
The last part of the theorem motivates the analysis of threshold LSSS,

that we will carry on in the next section.
As an aside, we remark an interesting error correcting property of linear

secret sharing schemes with t-strong multiplication.
Let C ∈ C†(Fq) be such that t̂(C) ≥ t ≥ 1 and assume without loss of

generality that is = 0. Write n = n(C). Note �rst that

Proposition 4.36 Let x = (x1, x2, . . . , xn) ∈ Fnq . Assume there exist

c = (s, c1, c2, . . . , cn) and c′ = (s′, c′1, c
′
2, . . . , c

′
n) ∈ C

with
d((c1, c2, . . . , cn),x) ≤ t and d((c′1, c

′
2, . . . , c

′
n),x) ≤ t.

Then s = s′.

Proof. Note that wHam(c − c′) ≤ 2t + 1. But since we have proved in
Proposition 4.33 that r(C, 0) ≤ n − 2t̂(C), then w0(C) ≥ 2t + 2, so c − c′

belongs to Ci,0 and therefore s = s′.
Note however that c and c′ can be di�erent, as long as their 0-th coordi-

nate is the same. 4
Therefore, the LSSS Σ(C, 0) has the property that if a secret s is shared

using this scheme, the full vector of n shares determines the secret even if t
of these shares are corrupted.

Furthermore, Cramer et al. showed in [28] that under the conditions
above, the secret s can be e�ciently reconstructed.

Theorem 4.37 There exists an e�cient algorithm that takes as input a vec-
tor (x1, x2, . . . , xn) ∈ Fnq such that there is a word c = (s, c1, c2, . . . , cn) ∈ C
with d((c1, c2, . . . , cn), (x1, x2, . . . , xn)) ≤ t and outputs the only s satisfying
this property.

The recovery algorithm can be seen as a generalization of the well known
Berlekamp-Welch error-correcting algorithm for Reed-Solomon codes and
also bears some similarity with the error correcting algorithm proposed by
Pellikaan in [64].
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4.4 Limitations of threshold schemes

It is a known fact, already proved in [50] (see also [13]), that MDS codes and
threshold LSSS are equivalent. We now give an alternative proof of this fact
and at the same time characterize the dimension and distance of these codes
in terms of the minimal weights at the indices of the codes.

Proposition 4.38 Let C be a linear code over Fq. The following are equiv-
alent

1. wi(C) + w⊥i (C) = n(C) + 3 for some i ∈ I(C).

2. C is an MDS code with C 6= {0},Fk(C)
q .

3. wi(C) + w⊥i (C) = n(C) + 3 for all i ∈ I(C).

4. For some i ∈ I(C), Σ(C, i) is a threshold LSSS.

5. I(C) = I(C) and for all i ∈ I(C), Σ(C, i) is a threshold LSSS.

If these conditions hold, then for all i ∈ I(C), we have dimC = w⊥i (C)− 1,
d(C) = wi(C) and d(C⊥) = w⊥i (C).

Proof. We will show the implications 1) ⇒ 2) ⇒ 3) ⇒ 1), 1) ⇐⇒ 4)
and 3) ⇐⇒ 5).

1)⇒ 2): Take an index i ∈ I(C) satisfying

wi(C) + w⊥i (C) = n(C) + 3.

Note that wi(C) > 1 and w⊥i (C) > 1 since otherwise wi(C) +w⊥i (C) = 1 (by
Lemma 4.7). Let t = t(C, i) and r = r(C, i). Now wi(C)+w⊥i (C) = n(C)+3
implies r − t = 1 by Propositions 4.17 and 4.18. By de�nition of t, for all
A ⊆ P(C, i) with |A| = t, there exists cA ∈ Ci,1 with πA(cA) = 0. But since
r = t + 1 this word cannot have t + 1 zeros, that is πj(cA) 6= 0 for j /∈ A.
Hence all the cA, |A| = t are di�erent.

Then d(C) = wi(C) because of the following: By Proposition 4.19,
d(C) ≤ wi(C). Now suppose d(C) < wi(C). There exists 0 6= w ∈ C
such that its weight is wHam(w) = d(C). Note that πi(w) = 0 (otherwise we
have wi(C) = d(C)). Applying Proposition 4.18 we have

d(C) + t < wi(C) + wi(C
⊥)− 2 = n(C) + 1
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and therefore we can select a set B ⊆ P(C, i) with B ∩ supp w = ∅ and
|B| = t. We take the word cB ∈ Ci,1 as de�ned above, which has zeros
exactly in B. Note that supp w ⊆ supp cB. Now the existence of w and cB
implies that there is a word c′ ∈ Ci,1 of weight smaller than wi(C), which is
constructed as follows: Take an index j ∈ supp w ⊆ supp cB. Take

λ = −πj(cB)

πj(w)
,

(clearly λ 6= 0) and let c′ = cB + λw. This word is in Ci,1 and, since
πj(c

′) = 0, supp c′ ⊆ supp cB′ \ {j}, so

wH(c′) ≤ wi(C)− 1

which is a contradiction. Therefore d(C) = wi(C).
Hence by the previous and Proposition 4.19,

d(C) + dimC ≥ wi(C) + (w⊥i (C)− 1) = k(C) + 1.

By Singleton's bound, d(C) + dimC = k(C) + 1, so C is an MDS code and
dimC = w⊥i (C) − 1 in this case. The condition wi(C) > 0 guarantees that
C 6= {0} and w⊥i (C) > 0 ensures C 6= Fk(C)

q .

2) ⇒ 3): If C is an MDS code, C⊥ is an MDS code. Therefore we have
d(C) + dimC = k(C) + 1 and d(C⊥) + dimC⊥ = k(C) + 1. In addition to
this, dimC = k(C)− dimC⊥. These three equations imply

d(C) + d(C⊥) = k(C) + 2.

Take any index i ∈ I(C). If wi(C) = 0, then d(C⊥) = 1. Note that this
would imply dimC⊥ = k(C) and dimC = 0 by the fact that C⊥ is MDS.
Similarly, if w⊥i (C) = 0, dimC = k(C) so C = Fk(C)

q .
Hence wi(C), w⊥i (C) 6= 0 and therefore, wi(C) ≥ d(C), w⊥i (C) ≥ d(C⊥)

by Lemma 4.6. Therefore

wi(C) + w⊥i (C) ≥ d(C) + d(C⊥) = k(C) + 2 = n(C) + 3

so wi(C) + w⊥i (C) = n(C) + 3 by Proposition 4.20.

3)⇒ 1): Obvious.
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1) ⇐⇒ 4): Note �rst that wi(C) +w⊥i (C) = n(C) + 3 for some i ∈ I(C)
implies i ∈ I(C). So assume i ∈ I(C). Then, since r(C, i) = n(C)−wi(C)+2
and t(C, i) = w⊥i (C)− 2 we have

Σ(C, i) is threshold ⇐⇒ r(C, i) = t(C, i)+1 ⇐⇒ wi(C)+w⊥i (C) = n(C)+3

3) ⇐⇒ 5): This is proved repeating the arguments of the proof of
1) ⇐⇒ 4) for all indices i ∈ I(C).

Note that in the proof of the implication 1)⇒ 2), it has been shown that
if C satis�es the equivalent conditions of the statement, then for any index
i ∈ I(C) we have d(C) = wi(C) and dimC = w⊥i (C)− 1.

4
Even though in the case of MDS codes we have wi(C) = d(C) and

w⊥i (C) = dimC + 1 for all i ∈ I(C), in general for an arbitrary code there
may exist indices for which the bounds in Proposition 4.19 are far from sharp.
An important example of the fact that a weight wi(C) may be far from the
minimal distance d(C) of the code will be given in Chapter 6. Note now that
in the conditions above if dimC = 1, then w⊥i (C) = 2 (and consequently
t(C, i) = 0) and if dimC = k(C) − 1, then wi(C) = 2 and consequently
r(C, i) = n(C). Hence we have a very convenient characterization of non-
trivial MDS codes (see De�nition 1.15).

Corollary 4.39 Let C be a linear code over Fq. The following are equiva-
lent

1. For some i ∈ I(C), wi(C) + w⊥i (C) = n(C) + 3, and wi(C) ≥ 3,
w⊥i (C) ≥ 3.

2. C is a non-trivial MDS code.

3. For all i ∈ I(C), wi(C) + w⊥i (C) = n(C) + 3, and wi(C) ≥ 3,
w⊥i (C) ≥ 3.

4. For some i ∈ I(C), Σ(C, i) is a threshold LSSS with t(Σ(C, i)) ≥ 1,
r(Σ(C, i)) ≤ n(C)− 1.

5. I(C) = I(C) and for all i ∈ I(C), Σ(C, i) is a threshold LSSS with
t(Σ(C, i)) ≥ 1, r(Σ(C, i)) ≤ n(C)− 1.
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The upper bound on the length of nontrivial MDS codes has important
consequences to the existence of threshold LSSS. Indeed combining Theo-
rem 1.19 and Corollary 4.39:

Corollary 4.40 If C ∈ C(Fq), i ∈ I(C) are such that Σ(C, i) is a threshold
LSSS with t(Σ(C, i)) = t ≥ 1, r(Σ(C, i)) = t+ 1 ≤ n(C)− 1, then

q ≥ max{t+ 2, n(C)− t+ 1}.

In particular n(C) ≤ 2q − 3.

However, note that for every �nite �eld Fq and every integer n > 1, there
exists C ∈ C†(Fq) with n(C) = n such that Σ(C, i) is a threshold linear
secret sharing scheme with t(C, i) = 0 for some i ∈ I(C). Indeed, take
the code C = Fq < (1, 1, . . . , 1) >⊆ Fn+1

q . On the other hand, there also
exists C ′ ∈ C†(Fq) with n(C ′) = n and such that Σ(C ′, i) is threshold with
r(C ′, i) = n (and hence t(C ′, i) = n− 1). For example, we can take the code
C ′ = Fq < (1, 1, . . . ,−1, . . . , 1) >⊥ (where the −1 is in the i-th position).

In Theorem 4.35, we proved that τ̂(C) = 1 may only happen for codes
C ∈ C†(Fq) such that Σ(C) is threshold. We can now use the results of this
section to �nd new restrictions for the codes such that τ̂(C) = 1.

Theorem 4.41 Let C ∈ C†(Fq) and assume τ̂(C) = 1. Then C is a non-

trivial MDS code with dimC = n(C)−1
3

+ 1.

Proof. By Proposition 4.35, τ̂(C) = 1 implies Σ(C) is a threshold
scheme with t(C, is) = t(Σ(C)) = t̂(C). But Proposition 4.38 ensures C is
an MDS code and dimC = w⊥is(C)− 1.

Since in addition t(C, is) = w⊥is(C)− 2 (by Proposition 4.18), we have

dimC = w⊥is(C)− 1 = t(C, is) + 1 = t̂(C) + 1.

Now if τ̂(C) = 1, we have t̂(C) = n(C)−1
3

and therefore dimC = n(C)−1
3

+1.
It is easy to check that C is then a nontrivial MDS code. 4

Therefore we know that τ̂(C) = 1 can not happen for C ∈ C†(Fq) of
arbitrary length, due to the upper bounds for the length of nontrivial MDS
codes over Fq (Theorem 1.19). More precisely,

Corollary 4.42 Let C ∈ C†(Fq) with τ̂(C) = 1. Then n(C) ≤ 3q−4
2

.
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Proof. Theorem 1.19 states q ≥ max{dimC + 1, k(C) − dimC + 1}.
Since dimC = n(C)−1

3
+ 1, it is easy to check that q ≥ 2n(C)+4

3
and this in

turn implies n(C) ≤ 3q−4
2

. 4
It is not true however that if C is a nontrivial MDS code then τ̂(C) = 1.

Note that in fact this cannot happen unless dimC = n(C)−1
3

+ 1. Even if that
is the case in principle we cannot ensure that τ̂(C) = 1. However, for some
�nite �elds, τ̂(C) = 1 is achievable. In order to prove this, we �rst determine
the corruption tolerance of Reed-Solomon codes.

Theorem 4.43 Let Fq be a �nite �eld with q > 2, t, n ∈ Z with n > 1 and
0 ≤ t ≤ n < q. Let C be an RSq[n, t]-code. If 2t ≤ n − 1 then C ∈ C†(Fq)
and

t̂(C) = min{t, n− 2t− 1}.

Proof. We know (Proposition 1.18) C is an MDS code with n(C) = n,
dimC = t+ 1 and d(C) = n− t+ 1. We can use Theorem 4.38 to determine
that w⊥i (C) = dimC + 1 = t+ 2 for all i ∈ I(C).

Note that

C = {(f(x0), f(x1), . . . , f(xn)), f ∈ Fq[X]≤t},

for distinct x0, x1, . . . , xn ∈ Fq. Then

Ĉ = {(h(x0), h(x1), . . . , h(xn)), h ∈ Fq[X]≤2t}

since Fq[X]≤2t = Fq < {fg : f, g ∈ Fq[X]≤t} >.
If 2t ≤ n− 1, then Ĉ is also an RSq[n, 2t]-code. Note d(Ĉ) = n− 2t+ 1.

Again applying Theorem 4.38, we deduce wi(Ĉ) = n − 2t + 1 ≥ 2 for all
i ∈ I(C) so C ∈ C†(Fq) and by de�nition t̂(C) = min{t, n − 2t − 1}. This
implies the result. 4

Hence we have:

Proposition 4.44 Let Fq be a �nite �eld, and 1 < n < q an integer such
that n = 1 (mod 3). If C is a RSq[n,

n−1
3

]-code, then τ̂(C) = 1.

We can recast the results for Shamir's threshold scheme, given in Chap-
ter 3, in the framework introduced in this chapter. Let Fq be a �nite �eld
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and t, n ∈ Z with 1 ≤ t < n < q and select x1, . . . , xn ∈ Fq \{0} with xi 6= xj
for i 6= j. Consider the RSq[n, t]-code

C = {(f(x0), f(x1), . . . , f(xn)) : f ∈ Fq[X]≤t}.

Then Σ(C, 0) is Shamir's scheme ΣSh(Fq, t, n, x1, . . . , xn) (see De�nition 3.38).
We can now prove the known result about strong multiplication of Shamir's
scheme (Theorem 3.41). Assume 3t < n. Then also 2t < n and we can
apply Theorem 4.43. We obtain t̂(C) = min{t, n− 2t− 1}, but since 3t < n,
we have t ≤ n − 2t − 1 so t̂(C) = t. Therefore the LSSS Σ(C) (see De�ni-
tion 4.28), has t-strong multiplication by Theorem 4.32. But in fact it is easy
to see that Σ(C) = Σ(C, 0) since C⊥ and Ĉ are MDS codes and therefore
w⊥0 (C) = w⊥i (C) and w0(Ĉ) = wi(Ĉ) for all i ∈ I(C).

Summary of the chapter: For every linear code C over Fq we have
de�ned the set of good indices I(C). We have introduced the class C(Fq)
of all codes with I(C) 6= ∅. For every code C ∈ C(Fq) and every i ∈ I(C),
we have constructed an ideal linear secret sharing scheme Σ(C, i) for n(C)
players, where n(C) = k(C) − 1. We have introduced the minimal weight
wi(C) of C at an index i and related wi(C) and wi(C⊥) to the privacy and
reconstruction thresholds of Σ(C, i). For every linear code C we have de�ned
its Schur product square Ĉ. We have de�ned the class C†(Fq) of all codes
with I(Ĉ) 6= ∅. For any code C ∈ C†(Fq) we have introduced the parameter
t̂(C) as the largest integer t for which some scheme Σ(C, i) has t-strong

multiplication and the corruption tolerance τ̂(C) = 3t̂(C)
n(C)−1 . We have shown

that 0 ≤ τ̂(C) ≤ 1 for every C ∈ C†(Fq) and that τ̂(C) = 1 can only hold if
Σ(C, i) is a threshold scheme for some i ∈ I(C). We have shown that Σ(C, i)
is threshold if and only if C is an MDS code. Using the known bounds for
the length of a MDS code, we have found limitations on the length of the
codes C ∈ C†(Fq) with τ̂(C) = 1.





Chapter 5

The asymptotical optimal
corruption tolerance τ̂ (q)

In this chapter we de�ne the asymptotical corruption tolerance τ̂(q) of a
�nite �eld Fq. This is a measure of how large the corruption tolerance of
linear codes over Fq can be asymptotically, that is, when we consider in�nite
families of such codes. In this chapter we will de�ne this parameter and
recast the results of Chen and Cramer [20], which implied non-trivial lower
bounds for τ̂(q) for in�nitely many �nite �elds, in our framework.

5.1 De�nition and motivation

We will de�ne now the asymptotical optimal corruption tolerance of a �nite
�eld.

Definition 5.1 Let Fq be a �nite �eld. For all integer n > 1, de�ne

Tq(n) := max
C∈C†(Fq)
n(C)=n

τ̂(C)

Note that Tq(n) is well de�ned because for any �xed integer n > 1 there
are only a �nite number of codes C ∈ C†(Fq) with n(C) = n.

Definition 5.2 (Asymptotical optimal corruption tolerance) Let
Fq be a �nite �eld. The asymptotical optimal corruption tolerance of Fq is

τ̂(q) := lim sup
n→∞

Tq(n).

97
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This parameter will be central in this thesis.
From Proposition 4.35 we can immediately derive the following result:

Lemma 5.3 0 ≤ τ̂(q) ≤ 1 for any �nite �eld Fq.

Question 5.4 Is τ̂(q) > 0 possible for some q?. And if so, is τ̂(q) = 1
possible?

In Chapter 4 we studied the corruption tolerance of Reed-Solomon codes.
We showed that some of these codes even achieve the optimal corruption
tolerance τ̂(C) = 1. However, the length of a Reed-Solomon code is bounded
by the size of the �eld. Consequently, we do not have an in�nite family
of Reed-Solomon codes over a �xed �nite �eld. Therefore, we cannot use
Proposition 4.44 to show τ̂(q) > 0, at least in a straightforward manner.

Moreover, we proved that if τ̂(C) = 1 then C is an MDS code (Propo-
sition 4.35) and in fact n(C) ≤ 3q−4

2
(Corollary 4.42). Consequently, for a

�xed �nite �eld Fq, Tq(n) < 1 for all n > 3q−4
2

. Still, this a priori does not
rule the possibility that τ̂(q) = 1 for some �nite �eld Fq, because there could
exist an in�nite family of codes whose corruption tolerance converges to 1.

A possible alternative could be to combine Reed-Solomon codes over a
tower of extension �elds over the base �eld Fq with a concatenation method
which would allow us to map these codes into codes over the base �eld, in a
way that the corruption tolerances �do not degrade too much�. In Section 6.5
of next chapter we give a construction of this type. However it does not enable
us to prove τ̂(q) > 0.

We will completely resolve the open question in the following two chap-
ters. But �rst, we note that the algebraic geometric results in [20] already
o�ered partial answers: these results implied that τ̂(q) > 0 for in�nitely
many �nite �elds and provided some lower bounds for this parameter. In
the next section we recast the results of [20] in our code-theoretic framework.

5.2 Known bounds for τ̂ (q)

The linear secret sharing schemes introduced in [20] (see Chapter 3) can be
reinterpreted in our notation as the LSSS Σ(C, i) associated to some algebraic
geometric evaluation code C whose parameters satisfy certain conditions.

The properties of the schemes are summarized in the following proposi-
tions. First, the bounds on the distance of algebraic geometric codes (Propo-
sitions 2.101 and 2.103) imply the following.
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Proposition 5.5 Let t ≥ 1 be an integer and let F/Fq be a function �eld of
genus g with at least n+ 1 di�erent places P0, P1, . . . , Pn of degree 1. De�ne
D =

∑n
i=0 Pi. Let G ∈ Div2g+t(F), such that supp D ∩ supp G = ∅. Let

C = CL(D,G).
Then n(C) = n, d(C⊥) ≥ t+ 2 and d(C) ≥ n− 2g − t+ 1.

Note that d(C⊥) ≥ 2 automatically implies that I(C) 6= ∅ and therefore
C ∈ C(Fq). Therefore:

Corollary 5.6 Under the conditions above, C ∈ C(Fq). Moreover, for all
i ∈ I(C), we have w⊥i (C) ≥ t + 2, wi(C) ≥ n− 2g − t + 1 and consequently
t(C, i) ≥ t, r(C, i) ≤ 2g + t+ 1.

The multiplication properties are analyzed in the following proposition.

Proposition 5.7 (Chen and Cramer, [20]) Under the conditions above,

Ĉ ⊆ CL(D, 2G). Furthermore, assume that n > 4g+ 3t. Then d(Ĉ) ≥ t+ 2,
C ∈ C†(Fq) and t̂(C) ≥ t.

Proof. If we take two (possibly equal) words c, c′ ∈ C, then

c = (f(P0), f(P1), . . . , f(Pn)),

c′ = (g(P0), g(P1), . . . , g(Pn))

for some f, g ∈ L(G). Then

c ∗ c′ = (fg(P0), fg(P1), . . . , fg(Pn)).

Note that fg ∈ L(2G). Hence Ĉ ⊆ CL(D, 2G)1.
Again by the known bounds on the distance of AG codes,

d(Ĉ) ≥ k(C)− deg 2G = n+ 1− 4g − 2t > t+ 1

so d(Ĉ) ≥ t+ 2 and by Proposition 5.5 d(C⊥) ≥ t+ 2.
Now, d(Ĉ) ≥ 2 implies I(Ĉ) 6= ∅, so C ∈ C†(Fq). For any i ∈ I(Ĉ),

Proposition 4.19 implies

wi(Ĉ) ≥ d(Ĉ) ≥ t+ 2,

1In this general case (unlike the particular case of Reed-Solomon codes, which are also
AG codes) we cannot prove the equality: there can be elements in L(2G) which cannot
be expressed as a linear combination of products of pairs of functions in L(G)
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and since i ∈ I(C) (because I(Ĉ) ⊆ I(C), see Proposition 4.24), it also
implies that

w⊥i (C) ≥ d(C⊥) ≥ t+ 2.

Therefore t̂(C) ≥ t. 4
This means that:

Theorem 5.8 (Chen and Cramer, [20]) Let t ≥ 1 be an integer. Sup-
pose there exists a function �eld F/Fq with genus g and such that
|P(1)(F)| ≥ 4g + 3t+ 2.
Then there exists a code C ∈ C†(Fq) with n(C) = 4g + 3t + 1 and t̂(C) ≥ t
and consequently

τ̂(C) ≥ 3t

4g + 3t
.

The asymptotical consequence is the following:

Theorem 5.9 (Chen and Cramer, [20]) Let Fq be a �nite �eld. If
A(q) > 4, then

τ̂(q) ≥ 1− 4

A(q)
> 0.

Proof. By de�nition of A(q) (De�nition 2.84) there exists an in�nite
family of natural numbers {gm}m∈N with gi < gj for i < j such that for any
ε > 0, there exists M with Nq(gm) > (A(q) − ε)gm for all m > M . This
means (see De�nition 2.83) that for every m > M there exists a function
�eld F(m) over Fq with g(F(m)) = gm and |P(1)(F(m))| > (A(q)− ε)gm. Set

tm = b(A(q)− 4− ε)gm − 2

3
c.

We have that
|P(1)(F(m))| ≥ 4g(F(m)) + 3tm + 2.

By Theorem 5.8, there exists C(m) ∈ C†(Fq) with n(C(m)) = 4gm + 3tm + 1
and

τ̂(C(m)) ≥ 3tm
4gm + 3tm

.

Since
(A(q)− 4− ε)gm − 3 ≤ 3tm ≤ (A(q)− 4− ε)gm − 2
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we have

τ̂(C(m)) ≥ (A(q)− 4− ε)gm − 3

(A(q)− ε)gm − 2
= 1− 4gm

(A(q)− ε)gm − 2

Finally

lim sup
m>M

τ̂(C(m)) ≥ 1− 4

A(q)− ε
.

Then

τ̂(q) ≥ 1− 4

A(q)− ε
and since this is valid for any ε > 0,

τ̂(q) ≥ 1− 4

A(q)

4
Now one can plug in the known results for A(q). Theorem 2.86 implies:

Theorem 5.10 Let q be a square prime power, with q ≥ 49. Then

τ̂(q) ≥ 1− 4
√
q − 1

> 0.

On the other hand Serre's theorem (Theorem 2.87) implies:

Theorem 5.11 There exists Q ∈ Z+, such that for all q > Q, τ̂(q) > 0.

Remark 2.88 implies this is true for Q = 24·96 = 2384.
These two results imply that the asymptotical optimal corruption toler-

ance of certain �nite �elds is strictly positive. However this still does not
prove that τ̂(q) > 0 for all q. There are �elds for which it is not known
whether A(q) ≤ 4 or A(q) > 4. And in fact, Drinfeld-Vladut bound (The-
orem 2.85) states that A(q) ≤ √q − 1 and consequently A(q) ≤ 4 for all
q ≤ 25. In particular, the case q = 2 is not covered by these results.





Chapter 6

τ̂ (q) > 0 for all q

In this chapter, we prove that τ̂(q) > 0 for all �nite �elds Fq.
The proof of this result relies on the combination of the results in sec-

tion 5.2 and a dedicated �eld descent technique. This is a tool which allows
us to map a code C ∈ C†(Fqk), where k is an integer with k ≥ 2, into another
code D ∈ C†(Fq) in such a way that t̂(D) ≥ t̂(C), at the cost of increasing
n(C) by some factor. This factor only depends, however, on q and k, but not
on n(C). The technique consists in the application of a special map, which
we will call multiplication-friendly embedding, to every coordinate of a word
in C, except the one in the special index allocating the secret.

Many of the de�nitions and results of this chapter were published in [15].

6.1 Multiplication-friendly embeddings

The �eld descent technique consists in the application of certain maps, which
were named multiplication-friendly embeddings in [15]. As it will be re-
marked afterwards, the notion was however not new.

A multiplication-friendly embedding is a representation of elements in
Fqk as elements of (Fq)r for some integer r, which �behaves su�ciently nicely
with respect to multiplication�. More precisely,

Definition 6.1 A multiplication-friendly embedding of the extension �eld
Fqk over Fq is a triple (r, σ, ψ) where r is a positive integer and where
σ : Fqk → Frq and ψ : Frq → Fqk are Fq-linear maps such that the follow-

103
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ing diagram commutes:

Fqk × Fqk
(σ,σ)
> Frq × Frq

∗
> Frq

Fqk

ψ

<

·

>

(where (σ, σ)(x, y) := (σ(x), σ(y)) for x, y ∈ Fqk , ∗ is the Schur product in
Frq and · is the usual product in the �eld Fqk)

Or in other words, xy = ψ(σ(x) ∗ σ(y)) for all x, y in Fqk . The integer r
is called the expansion.

The following lemma (which justi�es the use of the name embedding) will
be helpful in the sequel.

Lemma 6.2 Let (r, σ, ψ) be a multiplication-friendly embedding. Then σ is
injective.

Proof. σ is a linear map so we only need to prove that Ker σ = {0}. But
x = 1 ·x = ψ(σ(1)∗σ(x)), by de�nition of multiplication-friendly embedding,
so if σ(x) = 0, then x = ψ(σ(1) ∗ 0) = ψ(0) = 0 by linearity of ψ. 4

In the sequel we will be interested in multiplication-friendly codes with
expansion as small as possible. We de�ne the following notion:

Definition 6.3 Let Fq be a �nite �eld, k ≥ 2 an integer. For every integer
r ≥ 1, let M(q, k, r) denote the class of multiplication-friendly embeddings
of Fqk over Fq with expansion r (if there is no such multiplication-friendly
embedding, then let M(q, k, r) = ∅). We de�ne

m(q, k) := min{r ≥ 1 : M(q, k, r) 6= ∅}.

It will be helpful to de�ne a certain class of generalized Fq-linear codes,
from which we can construct multiplication-friendly embeddings.

Definition 6.4 Let r, k > 1 be integers. An (r, k)-multiplication-friendly
code C over Fq is a generalized Fq-linear code C ⊆ Fqk × (Fq)r such that

π0(C) = Fqk , and (x,0) /∈ Ĉ for all x ∈ Fqk \{0} where π0 : Fqk×(Fq)r → Fqk
is the projection onto the 0-th coordinate.
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There is a correspondence between multiplication-friendly codes satisfying
a certain property and multiplication-friendly embeddings.

Proposition 6.5 There is a one-to-one correspondence between M(q, k, r)
and the set of (r, k)-multiplication-friendly codes C over Fq with |C| = qk.

Proof.
Let C be a (r, k)-multiplication-friendly code with |C| = qk. Then

π0(C) = Fqk implies that for any x ∈ Fqk , there exists a unique word c(x) in
C such that π0(c(x)) = x. Therefore we can de�ne the Fq-linear mapping

σ : Fqk → (Fq)r

x 7→ πI∗(c(x))

where I∗ := {1, . . . , r}. Next we note the following fact: given two words
c, c′ ∈ Ĉ such that πI∗(c) = πI∗(c

′), it holds that πI∗(c − c′) = 0. Since
c−c′ ∈ Ĉ and C is a multiplication-friendly code, by De�nition 6.1, we have
π0(c− c′) = 0, so π0(c) = π0(c

′). This guarantees that the following map is
well de�ned: let

ψ : πI∗(Ĉ) ⊆ (Fq)r → Fqk

v 7→ x

where x ∈ Fqk is the only element such that (x,v) ∈ Ĉ.
Moreover, this map is clearly Fq-linear. One can linearly extend this map

to a map ψ : (Fq)r → Fqk . Finally we need to verify xy = ψ(σ(x) ∗ σ(y)) for
all x, y in Fqk . Now σ(x) = πI∗(c(x)) and σ(y) = πI∗(c(y)) imply

σ(x) ∗ σ(y) = πI∗(c(x) ∗ c(y)).

Note that c(x) ∗ c(y) ∈ Ĉ so the vector v = πI∗(c(x) ∗ c(y)) is in πI∗(Ĉ).
Then ψ(σ(x) ∗ σ(y)) = π0(c(x) ∗ c(y)) = xy by construction. Consequently
(r, σ, ψ) ∈M(q, k, r).

On the other hand suppose (r, σ, ψ) ∈ M(q, k, r). Then consider the
generalized Fq-linear code C = {(x, σ(x)), x ∈ Fqk}. Note that |C| = qk and
π0(C) = Fqk . Suppose (x,0) ∈ Ĉ for some x ∈ Fqk . Then

(x,0) =
m∑
`=1

λ`c` ∗ c′`
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for some words c` = (x`, σ(x`)), c′` = (y`, σ(y`)) for ` = 1, . . . ,m. Then
x =

∑m
`=1 λ`x`y` and 0 =

∑m
`=1 λ`σ(x`) ∗ σ(y`). But since ψ is linear

0 = ψ(
m∑
`=1

λ`σ(x`) ∗ σ(y`)) =
m∑
`=1

λ`ψ(σ(x`) ∗ σ(y`)) =
m∑
`=1

λ`x`y`

so x = 0. Hence C is a multiplication-friendly code. 4
In fact, given a multiplication-friendly code, one can always consider a

subcode which satis�es the condition in the statement of the theorem and
consequently construct a multiplication-friendly embedding from it.

Lemma 6.6 Every (r, k)-multiplication-friendly code C over Fq contains a
(r, k)-multiplication-friendly code C ′ over Fq such that |C ′| = qk.

Proof. Let C be an (r, k)-multiplication-friendly code and {e1, . . . , ek}
be a basis of Fqk over Fq. Since π0(C) = Fqk , there exist c1, . . . , ck with
π0(cj) = ej, j = 1, . . . , k. The words generate another multiplication-friendly
code C ′ = Fq < c1, c2, . . . , ck > with C ′ ⊆ C and |C ′| = qk. 4

We can now formulate upper bounds for the quantities m(q, k).

Theorem 6.7 Let Fq be a �nite �eld and k ≥ 2 be an integer with q ≥ 2k−2,
then m(q, k) ≤ 2k − 1.

Proof. We need to prove that in the conditions above there exists a
(2k − 1, k)-multiplication-friendly code C over Fq.

Let e ∈ Fqk be a primitive element in Fqk . Let x0, x1, . . . , xq−1 be all the
elements of Fq. For an integer r ≥ 0 and f ∈ Fq[X]≤r, denote γr(f) the
coe�cient of Xr in f . De�ne the generalized linear code

C = {(f(e), f(x0), f(x1), . . . , f(x2k−3), γk−1(f)) : f ∈ Fq[X]≤k−1}.

Note that this is well de�ned, since q− 1 ≥ 2k− 3 by assumption. The map
Fq[X]≤k−1 → Fqk given by f 7→ f(e) is a bijection, so π0(C) = Fqk . On the
other hand, the code Ĉ is given by

Ĉ = {(h(e), h(x0), h(x1), . . . , h(x2k−3), γ2k−2(h)) : h ∈ Fq[X]≤2k−2}.
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Given a word of the form c = (x,0) ∈ Ĉ, where x ∈ Fqk , one can see that
x = 0 as follows: let I∗ denote the set of the last 2k − 1 indices of Ĉ. Then
πI∗(c) = 0 implies that

c = (h(e), h(x0), h(x1), . . . , h(x2k−3), γ2k−2(h)),

for h ∈ Fq[X]≤2k−2 a multiple of
∏2k−3

i=0 (X−xi) such that γ2k−2(h) = 0. This
implies h = 0 and consequently π0(c) = h(e) = 0. Hence (x,0) /∈ Ĉ for all
x ∈ Fqk \ {0} and all the conditions in De�nition 6.4 have been veri�ed, so
C is a multiplication-friendly code.

4
Two particular cases will be especially interesting.

Corollary 6.8 m(q, 2) ≤ 3 for all �nite �eld Fq. Moreover m(4, 3) ≤ 5

In order to obtain the results of Section 6.5 we will need a construction of
multiplication-friendly embeddings of Fqk over Fq without any constraint on
q and k. The expansion in this case is worse, as it is quadratic in k, although
for the particular case k = 2 it is exactly the same as above.

Theorem 6.9 For every �nite �eld Fq, and any integer k ≥ 2, there ex-
ists a multiplication-friendly embedding of Fqk over Fq with expansion

(
k+1
2

)
.

Therefore m(q, k) ≤
(
k+1
2

)
.

Proof. Let α ∈ Fqm such that 1, α, . . . , αm−1 is a basis of Fqm as an
Fq-vector space. Consider the map

σ : Fqm → (Fq)r
x 7→ (x0, . . . , xm−1, x0 + x1, . . . , x0 + xm−1, . . . , xm−2 + xm−1),

where x =
∑m−1

i=0 xiα
i. Given two elements x, y ∈ Fqm , the coordinates

of σ(x) ∗ σ(y) precisely exhaust all possible expressions xiyi, as well as all
possible expressions xiyi + xjyj + xiyj + xjyi for i 6= j. Hence, for each
pair of indices (i, j) with i 6= j, there exists an Fq-linear map φi,j such that
φi,j(σ(x) ∗ σ(y)) = xiyj + xjyi. Since

xy =
2m−2∑
k=0

(
∑
i+j=k

xiyj)α
k =

m−1∑
i=0

xiyiα
2i +

2m−2∑
k=0

(
∑

i+j=k,i<j

xiyj + xjyi)α
k,
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it follows that there exists an Fq-linear map ψ such that xy = ψ(σ(x)∗σ(y)).
4

Note that this construction does not rely on algebraic geometric tech-
niques. In Chapter 12 we will see that we can obtain multiplication-friendly
embeddings of Fqk over Fq for �xed q and arbitrarily large k with much better
expansion than the one given in this theorem. However, those results will
require the existence of asymptotically good families of function �elds over
Fq.

6.2 Dedicated �eld descent technique

In the next theorem, we state the main technical tool of this chapter.

Theorem 6.10 Let (r, σ, ψ) be a multiplication-friendly embedding of Fqk
over Fq. Then there exists a transformation ϑr,σ : C†(Fqk) → C†(Fq) such

that for all C ∈ C†(Fqk), n(ϑr,σ(C)) = r · n(C) and t̂(ϑr,σ(C)) ≥ t̂(C) and
consequently

τ̂(ϑr,σ(C)) ≥ 1

r
τ̂(C)

(
1− r − 1

rn(C)− 1

)
.

Proof. Let C ∈ C†(Fqk). Write n = n(C). After permuting I(C), if
necessary, we may assume without loss of generality that is = 0 (see De�-
nition 4.28), i.e., t̂(C) is attained for i = 0 (so in particular 0 ∈ I(Ĉ)). As
usual we denote P(C, 0) = I(C) \ {0}.

Consider the Fq-generalized linear code G = C ∩ (Fq
⊕

(Fqk)n), i.e., the
elements of C whose 0-th coordinate is in Fq.

De�ne the map
χ : Fq

⊕
(Fqk)n → (Fq)1+rn

(c0, c1, . . . , cn) 7→ (c0, σ(c1), . . . , σ(cn)).

Note that this map is Fq-linear. Now de�ne D = χ(G) ⊂ Frn+1
q , and note

that D is an Fq-linear code with n(D) = rn.
For the sake of notation, denote the set of indices of D as

I(D) := {(0, 0)} ∪ {(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ r}.

Let P(D, (0, 0)) = I(D) \ {(0, 0)}. Let π′(i, j) denote the projection to the
index (i, j) ∈ I(D) of a word in D. The notation for the indices of I(D)
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highlights the fact that every �parent� index i ∈ P(C, 0) has r �children�
indices (i, j), j = 1, . . . , r of P(D, (0, 0)), while 0 ∈ I(C) has as only child
(0, 0) ∈ I(D). That is, the indices of I(D), are denoted in such a way
that for a word in D of the form w = χ(c), with c = (c0, c1, . . . , cn) ∈ G,
π′(0,0)(w) := π0(c) = c0 and for 1 ≤ i ≤ n, 1 ≤ j ≤ r, π(i,j)(w) denotes the
j-th coordinate of σ(ci).

Moreover, if A ⊂ P(D, (0, 0)) is a non-empty set, then β(A) ⊂ P(C, 0)
denotes the set of parent indices of the indices in A. Note that |β(A)| ≤ |A|.
Finally, α(A) ⊂ P(D, (0, 0)) denotes the set of all children of the elements in
β(A) (the set of �siblings� of the indices in A). Note that A ⊂ α(A).

Next it is shown that w⊥(0,0)(D) ≥ w⊥0 (C) and w(0,0)(D̂) ≥ w0(Ĉ). That

will prove D ∈ C†(Fq) and t̂(D) ≥ t because C ∈ C†(Fq) and t̂(C) ≥ t.

In order to prove w⊥(0,0)(D) ≥ w⊥0 (C) we �rst prove (0, 0) ∈ I(D) and
t(D, (0, 0)) ≥ t(C, 0). Note that by de�nition, 0 ∈ I(C) and therefore
w0(C) > 1. By construction of D, and the fact that Ker σ = {0} clearly
w(0,0)(D) > 1 so (0, 0) ∈ I(D) and t(D, (0, 0)) is well de�ned. Now, let
A ⊆ P(D, (0, 0)) with |A| = t(C, 0). Since |β(A)| ≤ t(C, 0) and we have that
β(A) ∈ A(C, 0) and there exists c ∈ C0,1 such that πβ(A)(c) = 0. Note that,
since π0(c) = 1, c belongs to G. Then π′0(χ(c)) = 1, π′α(A)(χ(c)) = 0, so
α(A) ∈ A(D, (0, 0)). Since A ⊂ α(A), we have A ∈ A(D, (0, 0)). Since this
is valid for any set A ⊆ P(D, (0, 0)) with |A| = t(C, 0), we conclude that
t(D, (0, 0)) ≥ t(C, 0). Finally, applying Proposition 4.18 we �nd out that
w⊥(0,0)(D) ≥ w⊥0 (C).

Now we prove that w(0,0)(D̂) ≥ w0(Ĉ). Let w ∈ (D̂)(0,0),1. Then we can
write this word as w =

∑
λ`y` ∗y′`, with λ` ∈ Fq, y`,y′` ∈ D. Let y` = χ(x`)

and y′` = χ(x′`), with x`,x
′
` ∈ G ⊆ C. Then the word c =

∑
λ`x`∗x′` belongs

to Ĉ as λ` ∈ Fq ⊆ Fqk . It is immediate to see from the de�nition of χ that
π0(c) = π(0,0)(w) = 1 so c ∈ (Ĉ)0,1.

Next we prove wHam(w) ≥ wHam(c). For this we prove that for all
indices i ∈ P(C, 0), such that πi(c) 6= 0, there exists 1 ≤ j ≤ r such that
π′(i,j)(w) 6= 0. Suppose on the contrary that π′(i,j)(w) = 0 for all 1 ≤ j ≤ r

or, in the notation above, π′α({(i,j)})(w) = 0. Note that by de�nition of w,
this is the same as saying

0 =
∑
`

λ`σ(πi(x`)) ∗ σ(πi(x
′
`))
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and by De�nition 6.1,

ψ(σ(πi(x`)) ∗ σ(πi(x
′
`))) = πi(x`)πi(x

′
`)

and as ψ is linear,

πi(c) =
∑
`

λ`πi(x`)πi(x
′
`) =

∑
`

λ`ψ(σ(πi(x`)) ∗ σ(πi(x
′
`))) =

= ψ(
∑
`

λ`σ(πi(x`)) ∗ σ(πi(x
′
`))) = ψ(0) = 0,

which is a contradiction. Summing up, it has been proved that for all
w ∈ (D̂)(0,0),1 we can associate a word c ∈ (Ĉ)0,1 with wHam(c) ≤ wHam(w).
Hence w(0,0)(D̂) ≥ w0(Ĉ).

We have proved D ∈ C†(Fq) and t̂(D) ≥ t̂(C). Therefore

τ̂(D) ≥ 3t̂(D)

n(D)− 1
=

3t̂(C)

rn(C)− 1
=

1

r
τ̂(C)

(
1− r − 1

rn(C)− 1

)
.

Therefore we can de�ne a map ϑr,σ : C†(Fqk) → C†(Fq) satisfying the
properties of the statement. For C ∈ C†(Fqk), ϑr,σ(C) := D where D is
constructed from C as we have described at the beginning of this proof.

4

6.3 Explicit lower bounds

Finally, we are prepared to prove that τ̂(q) > 0 for all �nite �elds Fq. First
note the following fact.

Theorem 6.11 For any �nite �eld Fq and any integer k ≥ 2,

τ̂(q) ≥ 1

m(q, k)
τ̂(qk).

Proof. There is an in�nite family of codes {C(`)}`>0 ⊆ C†(Fqk) such that
n(C(i)) < n(C(j)) for i < j and τ̂(C(`)) → τ̂(qk). Applying Theorem 6.10 to
C(`) using a multiplication-friendly embedding (m(q, k), σ, ψ) (which exists
by de�nition of m(q, k)) gives a code D(`) = ϑm(q,k),σ(C(`)) ∈ C†(Fq) with



Chapter � 6. τ̂(q) > 0 for all q 111

τ̂(D(`)) ≥ 1
m(q,k)

τ̂(C(`))
(

1− m(q,k)−1
m(q,k)n(C(`))−1

)
. Note n(D(`)) = m(q, k)n(C(`))

so n(D(i)) < n(D(j)) for i < j.
Finally, even though lim`→∞ τ̂(D(`)) might not exist, we can ensure that

lim sup
`→∞

τ̂(D(`)) ≥ 1

m(q, k)
lim
`→∞

τ̂(C(`))

(
1− m(q, k)− 1

m(q, k)n(C(`))− 1

)
=

=
1

m(q, k)
τ̂(qk)

since τ̂(C(`)) → τ̂(qk) and n(C(`)) → ∞. This is enough to verify the state-
ment of the theorem. 4

In particular, in the case of square extensions we can apply Corollary 6.8
and we have:

Corollary 6.12 For any �nite �eld Fq, τ̂(q) ≥ 1
3
τ̂(q2)

It is useful to de�ne now the following function:

Definition 6.13 For every �nite �eld Fq, let ν(q) be as follows:

ν(q) :=



1/35 ≈ 2.86% if q = 2

1/18 ≈ 5.56% if q = 3

3/35 ≈ 8.57% if q = 4

5/54 ≈ 9.26% if q = 5

1− 4√
q−1 if q square, q ≥ 49

1
3
(1− 4

q−1) in all the other cases (5 < q < 49 or

q ≥ 49, q non-square)

And �nally we prove the main result of this chapter.

Theorem 6.14 Let Fq be a �nite �eld. Then τ̂(q) ≥ ν(q) > 0.

Proof. The result for q square, q ≥ 49 is Theorem 5.10. From these
bounds and the descent method one can derive the results for the rest of
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cases. First, applying Corollary 6.12 to any Fq such that q ≥ 7 and noticing
q2 ≥ 49 gives

τ̂(q) ≥ 1

3
τ̂(q2) ≥ 1

3

(
1− 4√

q2 − 1

)
=

1

3

(
1− 4

q − 1

)
.

For the cases q = 3, 5 one uses the descent method again, this time on the
results for F9 and F25 obtained above. This gives

τ̂(q) ≥ 1

3
τ̂(q2) ≥ 1

9

(
1− 4

q2 − 1

)
which corresponds to the bounds above. In the case q = 4 we could ap-
ply the descent method to F16 but in fact it is better to apply it to F64.
Then τ̂(4) ≥ 1

m(4,3)
τ̂(64) and as remarked above m(4, 3) ≤ 5 so one obtains

τ̂(4) ≥ 3/35. Finally applying once more the descent technique to F2 and F4

one gets τ̂(2) ≥ 1
3
τ̂(4) ≥ 1/35. 4

6.4 A remark on the dual distance

In this section we address a limitation of the dedicated �eld descent method.
As we have seen, if we apply this technique to a code C ∈ C†(Fqk), we obtain
another code ϑr,σ(C) ∈ C†(Fq) such that t̂(ϑr,σ(C)) ≥ t̂(C) and in particular
w⊥j (ϑr,σ(C)) ≥ w⊥i (C) for some i ∈ I(C), j ∈ I(ϑr,σ(C)). However in this
section, we will see that the �eld descent technique �does not preserve the
dual distance�. In fact the dual distance of ϑr,σ(C) is upper bounded by a
constant independent of the length of C.

We �rst need the following observation

Lemma 6.15 If (r, σ, ψ) is a multiplication-friendly embedding of Fqk over
Fq, k ≥ 2, then σ : Fqk → (Fq)r cannot be surjective.

Proof. Assume σ were a surjection, then it would also be bijective by
Lemma 6.2. Then r = k. Note however that when considering (Fq)k as a
ring with the multiplication given by Schur's product ∗, when k ≥ 2, (Fq)k
has divisors of zero, so there exist 0 6= x,y ∈ (Fq)k with x ∗ y = 0. Then, if
x′, y′ are the only elements in Fqk with σ(x′) = x, σ(y′) = y. Then we have
x′y′ = ψ(σ(x′) ∗ σ(y′)) = ψ(x ∗ y) = ψ(0) = 0 but then either x′ = 0 (and in
that case x = 0) or y′ = 0 (so y = 0). So we get a contradiction. 4
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Remark 6.16 As an aside remark, this means that for all �nite �eld Fq and
any k ≥ 2, we have m(q, k) > k. In particular, if we combine this with
Corollary 6.8, we deduce that m(q, 2) = 3 for any �nite �eld Fq.

Now we prove the fact that the �eld descent technique does not preserve
dual distances, even though it preserves the minimal weight at some index
of the dual code.

Proposition 6.17 Let k ≥ 2, C ∈ C†(Fqk), and (r, σ, ψ) be a multiplication-
friendly embedding of Fqk over Fq and ϑr,σ : C†(Fqk) → C†(Fq) be as in
Theorem 6.10. Then w⊥(0,0)(ϑr,σ(C)) ≥ w⊥0 (C) and d(ϑr,σ(C)⊥) ≤ r.

Proof. The �rst part was proved in Theorem 6.10. As for the second
part, Im σ 6= (Fq)r(by Lemma 6.15) so (Im σ)⊥ 6= ∅. Let 0 6= v ∈ (Im σ)⊥.
Then by construction of ϑr,σ(C), it holds that c = (0,v,0, . . . ,0) ∈ ϑr,σ(C)⊥

and wHam(c) ≤ r. 4
We can now examine the asymptotical consequences of this. It is not

surprising that there exist families of linear codes C over a �nite �eld such
that w⊥i (C)−d(C⊥) can be made arbitrarily large for some i ∈ I(C) (one can
come up with trivial examples of this fact). But we can now prove that this
also holds for families of codes with asymptotically good corruption tolerance.

Proposition 6.18 For every �nite �eld Fq, there exists an in�nite family
of codes {D(m)}m>0 ⊆ C†(Fq) with n(D(m))→∞ such that

τ̂(D(m))→ τ > 0

but
d((D(m))⊥)

n(D(m))
→ 0.

Proof. Let k ≥ 2. As we know that τ̂(qk) > 0, there exists an in�nite
sequence of codes C(m) ∈ C†(Fqk) such that n(C(m))→∞ and

τ̂(C(m))→ τ̂(qk) > 0.

Let (r, σ, ψ) be a multiplication-friendly embedding of Fqk over Fq and for
all m de�ne D(m) = ϑr,σ(C(m)) ∈ C†(Fq). Note that n(D(m)) = r · n(C(m)).
By Theorem 6.10, we can assume without loss of generality that

τ̂(D(m))→ τ ≥ 1

r
τ̂(qk) > 0.
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On the other hand, by Proposition 6.17, d((D(m))⊥) ≤ r for all m. There-

fore d((D(m))⊥)

n(D(m))
→ 0. 4

In Chapter 7, we will prove non-trivial upper bounds for τ̂(q). Proposi-
tion 6.18 tells us, however, that in order to do that we cannot use, at least
in a straightforward manner, the asymptotical upper bounds for the relative
distance of codes stated in Chapter 1.

Another consequence is that these families of codes are not suitable for
one of the applications mentioned in the Introduction to this thesis, namely
the constructions of correlation extractors of [47], since one of the conditions
required by these constructions is that the relative distance of the family of
linear codes used is asymptotically non-vanishing.

6.5 Note on elementary constructions

We have shown that a combination of strong methods from algebraic
geometry with a dedicated �eld-descent method leads to asymptotically good
schemes over any �nite �eld.

We now show an elementary construction of families of codes that we can
de�ne for any �nite �eld Fq. It is asymptotically bad. Yet it gives t-strong
multiplication for t = Ω(n/((log log n) log n)).

The construction is as follows:
For every integer k > 0 de�ne rk = (qk)b

qk

2
c. De�ne tk = b1

3
(rk − 2)c.

Consider a RSrk [rk − 1, tk]-code Ck. Since 3tk < rk, we can show, using the
arguments as in Theorem 4.43, that Ck ∈ C†(Frk) and t̂(Ck) = tk.

We apply now the descent technique (Theorem 6.10). Note that we cannot
use the multiplication-friendly embeddings in Theorem 6.7 to descend from
Frk to Fq since it is not true in general that q ≥ 2kbqk/2c − 2. We could use
the construction in Theorem 6.9 but instead what we do is combining both
approaches.

First, we apply Theorem 6.10 to descend from Frk to Fqk using the

multiplication-friendly embedding (r
(1)
k , σ

(1)
k , ψ

(1)
k ) from Theorem 6.7, which

we can construct because qk ≥ 2b qk
2
c − 2. Note that r(1)k = 2b qk

2
c − 1. This

yields a code C ′k := ϑ
r
(1)
k ,σ

(1)
k

(Ck) ∈ C†(Fqk) with

n(C ′k) = (2bq
k

2
c − 1)n(Ck)
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and
t̂(C ′k) ≥ tk.

Then we descend from Fqk to Fq applying again Theorem 6.10 but now using

the multiplication-friendly embedding (r
(2)
k , σ

(2)
k , ψ

(2)
k ) in Theorem 6.9, where

r
(2)
k =

(
k+1
2

)
. This gives us a code Dk = ϑ

r
(2)
k ,σ

(2)
k

(C ′k) ∈ C†(Fq) with

n(Dk) =

(
k + 1

2

)
n(C ′k) =

(
k + 1

2

)
(2bq

k

2
c − 1)n(Ck) =

=

(
k + 1

2

)
(2bq

k

2
c − 1)(rk − 1)

and

t̂(Dk) ≥ tk = b1
3

(rk − 2)c.

Consequently

t̂(Dk) = Ω(n(Dk)/((log log n(Dk)) log n(Dk)).

Unfortunately, we cannot prove τ̂(q) > 0 for any �eld Fq using this con-
struction. In fact, we still do not know if we can prove this fact without
the use of asymptotically good families of function �elds. A well known re-
sult of coding theory, proved by Pellikaan, Shen and van Wee ([65]) states
that every linear code over Fq is an AG-code de�ned over some function �eld
F/Fq. Therefore for any in�nite family of codes {C(m)}m>0 ⊆ C†(Fq) with
n(C(m))→∞ there exists an in�nite family F = {F(m)}m>0 of function �elds
F(m)/Fq such that C(m) is an AG-code de�ned over the function �eld F(m)/Fq
and consequently |P(1)(F(m))| → ∞ and g(F(m)) → ∞. Assume now that
in addition the codes satisfy τ̂(C(m)) → τ > 0. An interesting question is
whether this implies A(F) > 0, i.e., if it is a necessary condition that these
codes are de�ned over an asymptotically good family of function �elds.

We can compare this aspect of our problem with the code-theoretic prob-
lem of asymptotically good codes. Xing [82] proved that given a �nite �eld
Fq and any real number 0 < a ≤ A(q) there exist families of AG-codes de-
�ned over a family F of function �elds over Fq with A(F) = a and attaining
the Gilbert-Varshamov bound. And in fact, if we examine the arguments
given in [82], the same result is true if one uses asymptotically bad families
F = {F(m)}m>0 (i.e. A(F) = 0) as long as |P(1)(F(m))| → ∞. So A(F) > 0
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is not a necessary condition for the construction of families of linear codes
attaining the Gilbert-Varshamov bound.

However the techniques in [82] do not seem to yield a similar result for
our problem.

Summary of the chapter: We have proved that τ̂(q) > 0 for all �nite
�elds Fq. In order to do this we have introduced multiplication-friendly
embeddings (r, σ, ψ) with expansion r of an extension �eld Fqk over Fq and the
parameterm(q, k) as the smallest expansion among all these embeddings. We
have proved that for every C ∈ C†(Fqk) we can construct a code D ∈ C†(Fq)
with τ̂(D) ≥ 1

m(q,k)
τ̂(C). After that we have combined this with the results

by Chen and Cramer [20] and found explicit lower bounds for τ̂(q) for every
�nite �eld Fq. We have remarked that although the descent method does not
degrade the parameter t̂(C), it does not behave so well with d(C⊥). Finally
we have shown an elementary construction of families of LSSS with t-strong
multiplication, where t = Ω(n/((log log n) log n)).



Chapter 7

τ̂ (q) < 1 for all q

In this chapter we prove that τ̂(q) < 1 for all �nite �elds Fq and give explicit
upper bounds for τ̂(q). We already know from Chapter 4 that τ̂(C) ≤ 1 for
every code C ∈ C†(Fq) (which trivially implies τ̂(q) ≤ 1) and that Tq(n) < 1
for all integers n > 3q−4

2
(Corollary 4.42). But, in principle, this fact does

not rule out the possibility that there exists an in�nite family of linear codes
{Cm}m∈N ⊆ C†(Fq) with n(Cm) → ∞ and τ̂(Cm) → 1 and, therefore, the
equality τ̂(q) = 1 might still be attained for some �nite �eld Fq.

However, we will show in this chapter that this is indeed impossible, so
τ̂(q) < 1 for all �nite �elds Fq. In fact, we will derive explicit (non-trivial)
upper bounds for τ̂(q).

Many of the results in this chapter appeared in [17].

7.1 Upper bounding wi(C) as a function of n, q

and w⊥i (C)

In Proposition 4.20, we stated an upper bound for wi(C) as a function of n(C)
and w⊥i (C). This led to the fact that τ̂(C) ≤ 1 for every code C ∈ C†(Fq)
(Proposition 4.35) and implied τ̂(q) ≤ 1 for any �nite �eld Fq. The proof
of this result combined the aforementioned bound for the weights wi(C)
with the fact that there exists some index i ∈ I(C) such that not only
w⊥i (C) ≥ t̂(C) + 2 and wi(Ĉ) ≥ t̂(C) + 2, but also, by Propositions 4.17 and
4.33, wi(C) ≥ 2t̂(C) + 2.

In order to �nd non-trivial upper bounds for τ̂(q) we will �rst obtain, for
any C ∈ C†(Fq), upper bounds for wi(C) involving not only the parameters

117
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n(C) and w⊥i (C) but also q. More concretely, in this section, we prove the
following result:

Theorem 7.1 Let C ∈ C(Fq), i ∈ I(C). Assume that t(C, i) > 0 and
r(C, i) < n(C). Then r(C, i)− t(C, i) ≥ 1

2q−1(n(C) + 2).

Note that by Propositions 4.17 and 4.18, we have r(C, i) = n(C)−wi(C) + 2
and t(C, i) = w⊥i (C) − 2, so the bound above is indeed an upper bound for
wi(C) in terms of n(C), w⊥i (C) and q. But the statement highlights the
fact that it is also an upper bound for the �gap� between the thresholds of
the LSSS Σ(C, i). The theorem implies that this threshold gap must grow
linearly with n(C). This bound is valid for any C ∈ C(Fq), not only for
C ∈ C†(Fq), and the results of this section do not assume any multiplication
property of the corresponding LSSS. We need to state �rst the following
technical lemma.

Lemma 7.2 Let C be a linear code over Fq, ∅ 6= A ⊆ I(C). Then

πA(C) = F|A|q ⇐⇒ @c∗ ∈ C⊥ \ {0} such that supp c∗ ⊆ A.

Moreover, for all x ∈ πA(C), |CA,x| = |C|
|πA(C)| .

Proof. Note that πA(C) ⊆ F|A|q is also a linear code over Fq. Hence its
dual code (πA(C))⊥ is well de�ned, and (πA(C))⊥ ⊆ F|A|q , too. We have

πA(C) 6= F|A|q ⇐⇒ (πA(C))⊥ 6= {0} ⇐⇒ ∃x ∈ (πA(C))⊥ \ {0}.

Now note that if there exists x ∈ (πA(C))⊥\{0} then the vector c∗ ∈ Fn(C)+1
q

de�ned by πA(c∗) = x, πI(C)\A(c∗) = 0 belongs to C⊥ \{0} and supp c∗ ⊆ A.
On the other hand if there exists c∗ ∈ C⊥ \ {0} such that supp c∗ ⊆ A then
de�ne x = πA(c∗). We have x 6= 0 and x ∈ (πA(C))⊥ since c∗ is in C⊥ and
is zero outside A. This proves the �rst part.

The second is a consequence of the fact that, if CA,x is non-empty (which
happens if and only if x ∈ πA(C)), then it is a coset of CA,0 and conse-
quently |CA,x| = |CA,0| for all x ∈ πA(C). Therefore |CA,x| = |C|

|πA(C)| for all
x ∈ πA(C).

4
We proceed now to determine upper bounds for wi(C).
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Definition 7.3 Write θ(q) := q−1
q

Theorem 7.4 If C is a linear code over Fq with w⊥i (C) 6= 2, then

wi(C) ≤ 1 + bθ(q) · n(C)c.

Proof. If w⊥i (C) ≤ 1, then, by Lemma 4.7, wi(C) = 1−w⊥i (C). There-
fore, wi(C) ≤ 1 ≤ 1 + bθ(q) · n(C)c. So assume w⊥i (C) ≥ 3.

Let S =
∑

c∈Ci,1
wHam(c). On the one hand S ≥ wi(C)·|Ci,1| = wi(C)· |C|

q
.

On the other hand we can rewrite S as a sum of the �contribution� of
every coordinate j ∈ I(C): S =

∑
j∈I(C) |{c ∈ Ci,1, πj(c) 6= 0}|.

In order to compute the summands we separate several cases:
If an index j ∈ I(C) \ {i} satis�es w⊥j (C) = 1, then wj(C) = 0 and every

c ∈ C satis�es πj(c) = 0 so

|{c ∈ Ci,1, πj(c) 6= 0}| = 0.

Fix now j ∈ I(C) \ {i} with w⊥j (C) 6= 1 and de�ne A = {i, j}. We will
apply now Lemma 7.2. Assume there existed c∗ ∈ C⊥\{0} with supp c∗ ⊆ A.
Since w⊥j (C) 6= 1, πi(c∗) 6= 0, and we could choose this word c∗ such that
c∗ ∈ (C⊥)i,1. But then w⊥i (C) ≤ 2 which is a contradiction. Consequently,
such word c∗ does not exist, and therefore by the �rst part of Lemma 7.2,
πA(C) = F2

q. Now, by the second part of the same lemma,

|{c ∈ Ci,1, πj(c) = 0}| = |C|
q2
.

It is easy to see, using the same reasoning based on Lemma 7.2 applied now
to B = {i} and considering the fact that w⊥i (C) > 1, that |Ci,1| = 1

q
· |C|.

Therefore

|{c ∈ Ci,1, πj(c) 6= 0}| = (q − 1)

q2
· |C|.

So, for any j ∈ I(C) \ {i},

|{c ∈ Ci,1, πj(c) 6= 0}| ≤ (q − 1)

q2
· |C|.

Finally, we have

|{c ∈ Ci,1, πi(c) 6= 0}| = |Ci,1| =
1

q
· |C|.
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Therefore S ≤ (q−1)
q2
· |C| · n(C) + 1

q
· |C|.

Therefore both inequalities for S imply

wi(C) ≤ 1 +
(q − 1)

q
· n(C)

and now considering wi(C) must be an integer we get the result.
It should be remarked, however, that if w⊥i (C) = 2, the result might

not hold. For example, given any �nite �eld Fq, take an integer n > 1 and
consider the code C = Fq < (1, 1, . . . , 1) > such that n(C) = n. Then
wi(C) = n(C) + 1 > 1 + bθ(q) · n(C)c for any i ∈ I(C). Note however that
w⊥i (C) = 2 also for any i ∈ I(C).

4
This theorem and its proof bear some similarity with the Norse bounds

for covering radius from coding theory, see for instance [66].
In the next results, the bound obtained in the previous theorem is re�ned

by applying this same bound to shortened codes constructed from C instead
of the whole code C. Recall the de�nition of shortening C at the setA ⊆ I(C)
(see De�nition 1.10). We will assume, without loss of generality, that A is
the set of the |A| last indices of C. Then if D is the code that results from
shortening C at A, we have I(D) = I(C) \ A.

Lemma 7.5 Let C ∈ C(Fq) and i ∈ I(C) such that w⊥i (C) ≥ 3. Let
∅ 6= A ⊆ P(C, i), with |A| ≤ w⊥i (C) − 3. Let D be obtained from C by
shortening at A. Then D ∈ C(Fq) and w⊥i (D) ≥ w⊥i (C)− |A|.

Proof. By Proposition 4.18, t(C, i) = w⊥i (C) − 2. Hence A ∈ A(C, i)
and therefore there exists a word w ∈ Ci,1, such that πA(w) = 0. By
construction of the code D, the existence of w guarantees that Di,1 6= ∅, so
wi(D) 6= 0 and w⊥i (D) 6= 1.

Assume now that w⊥i (D) = 0. Then wi(D) = 1. That means there is
a word c ∈ D with πi(c) = 1 and πj(c) = 0 for all j ∈ I(D) \ {i}. But
by construction of D, there exists a word w ∈ C, with πA(w) = 0 and
πI(C)\A(w) = c. But then wi(C) = 1, and this contradicts the fact that
i ∈ I(C).

Hence w⊥i (D) > 1 and therefore i ∈ I(D), so D ∈ C(Fq). We can
de�ne t(D, i) and again by Proposition 4.18, t(D, i) = w⊥i (D) − 2, so we
need to prove t(D, i) ≥ t(C, i) − |A|. Fix any B ⊆ I(D) \ {i}, such that
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|B| = t(C, i)−|A| ≥ 1. The set A∪B ⊆ I(C), satis�es |A|+ |B| = t(C, i) so
A∪B ∈ A(C, i). Consequently, there exists c ∈ Ci,1 with πA∪B(c) = 0. This
implies the existence of w ∈ Di,1 with πB(w) = 0 and hence B ∈ A(D, i).
This proves t(D, i) ≥ t(C, i)− |A|. 4

Theorem 7.6 Let C be a linear code over Fq such that w⊥i (C) 6= 2. Then

wi(C) ≤ 1 + bθ(q) · (n(C)− w⊥i (C) + 3)c

Proof. Again we can assume w⊥i (C) ≥ 3, since otherwise wi(C) ≤ 1
holds trivially (and bθ(q) · (n(C)− w⊥i (C) + 3)c ≥ 0 always).

In fact, if w⊥i (C) = 3, the statement is exactly that of Theorem 7.4. So
we can assume then that w⊥i (C) > 3. Select a set ∅ 6= A ⊆ P(C, i), with
|A| ≤ w⊥i (C) − 3. Let D be obtained from C by shortening at A. Then
w⊥i (D) ≥ w⊥i (C)− |A| ≥ 3 by Lemma 7.5.

Now, since w⊥i (D) 6= 2, one can apply Theorem 7.4 to D. Then

wi(D) ≤ 1 + bθ(q) · n(D)c = 1 + bθ(q) · (n(C)− w⊥i (C) + 3)c.

But clearly, wi(C) ≤ wi(D), since, by construction of the code D, for any
word w ∈ Di,1 there is a word in Ci,1 that coincides with w in the indices of
I(D) and has zeros in the rest of the indices. 4

In fact we can use this theorem to give an straightforward proof of the fact
that, for a �xed �eld Fq, there do not exist threshold LSSS Σ(C, i) with arbi-
trary number of shares n(C) (except in the trivial cases where t(C, i) = 0 or
t = n(C)− 1). Indeed, if for some C ∈ C(Fq) and i ∈ I(C), Σ(C, i) is thresh-
old and t(C, i) = t with t 6= 0 and t 6= n(C) − 1 then w⊥i (C) = t + 2 6= 2
and wi(C) = n(C) − t + 1 6= 2. Therefore one can apply Theorem 7.6 to
both C and C⊥. One obtains the bound q ≥ max{n(C) − t + 1, t + 2},
which is precisely Corollary 4.40. Note that so far the only way to prove
this result was using the equivalence between �non-trivial� threshold LSSS
and non-trivial MDS codes (Corollary 4.39) and then use the bounds on the
length of non-trivial codes (Theorem 1.19). Actually, one can also give an
alternative proof of Theorem 1.19 by applying Theorem 7.6 to an MDS code
and its dual (which is also an MDS code).

Proposition 7.7 Let C ∈ C(Fq), i ∈ I(C), such that wi(C) > 2 and
w⊥i (C) > 2. Then

wi(C) + w⊥i (C) ≤ 2 + 2 · θ(q) · (n(C) + 3)

1 + θ(q)
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Proof. We can apply Theorem 7.6 to both C and C⊥. We obtain

wi(C) ≤ 1 + θ(q) · (n(C)− w⊥i (C) + 3)

and
w⊥i (C) ≤ 1 + θ(q) · (n(C)− wi(C) + 3)

Summing both inequalities, we achieve

(1 + θ(q))(wi(C) + w⊥i (C)) ≤ 2 + 2 · θ(q) · (n(C) + 3).

This leads to the result. 4
Now we can prove the main result of this section.
Proof. (Proof of Theorem 7.1) Propositions 4.17 and 4.18 state that

t(C, i) = w⊥i (C)− 2 and r(C, i) = n(C)− wi(C) + 2. Then

r(C, i)− t(C, i) = n(C)− wi(C)− w⊥i (C) + 4.

Furthermore note that t(C, i) > 0 implies w⊥i (C) > 2 and r(C, i) < n(C)
implies wi(C) > 2, so we can apply the previous bound for wi(C) + w⊥i (C)
and after some algebraic manipulation we get the result. 4

7.2 First non-trivial upper bounds for τ̂ (q)

The previous result also implies an upper bound for t̂(C).

Lemma 7.8 Let C ∈ C†(Fq) such that t̂(C) ≥ 1. Then

3t̂(C) ≤ (1− 1

2q − 1
)n(C)− 2

2q − 1
.

Proof. Let is be the index where the maximum in the de�nition of
t̂(C) is attained. Then t(C, is) ≥ t̂(C) and, by Proposition 4.33, we have
r(C, is) ≤ n(C)− 2 · t̂(C). Then r(C, is)− t(C, is) ≤ n(C)− 3t̂(C). Applying
Theorem 7.1 to (C, is), we get r(C, is)−t(C, is) ≥ 1

2q−1(n(C)+2). Considering
both inequalities we get the result. 4

This implies a �rst nontrivial upper bound for τ̂(q).

Theorem 7.9 τ̂(q) ≤ 1− 1
2q−1 < 1 for all �nite �eld Fq.
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In order to give a better upper bound for the parameter t̂(C), some bound
involving not only w⊥i (C) but also wi(Ĉ) is needed. In order to use the
previous results it is convenient to bound wi(Ĉ) in terms of wi(C) and w⊥i (C).
The �rst approach is the following.

Theorem 7.10 Let C ∈ C(Fq) with w⊥i (C) ≥ 3. Then:

� If wi(C) + 1 ≤ w⊥i (C), then wi(Ĉ) = 1.

� If wi(C) + 1 > w⊥i (C), then wi(Ĉ) ≤ wi(C)− w⊥i (C) + 2.

Proof. Let c ∈ Ci,1 of minimal weight, that is wHam(c) = wi(C). Write
B = supp c \ {i} and note |B| = wi(C)− 1.

If wi(C) + 1 ≤ w⊥i (C) (and consequently w⊥i (C) − 2 ≥ |B|), then by
Proposition 4.18, B ∈ A(C, i) and there exists a word w ∈ Ci,1 such that
πB(w) = 0. Take the word x = c ∗w ∈ Ĉ. Clearly πi(x) = 1 and πj(x) = 0
for all j ∈ P(C, i) (because either j /∈ B and in that case πj(c) = 0 or j ∈ B
and then πj(w) = 0). So wi(Ĉ) = wHam(x) = 1.

Otherwise if wi(C) + 1 > w⊥i (C), take A ⊆ B, with |A| = w⊥i (C) − 2.
By Proposition 4.18, A ∈ A(C, i) and therefore there exists a word w ∈ Ci,1
such that πA(w) = 0. Now the word x = c ∗w ∈ Ĉ satis�es πi(x) = 1, and
we have that πA(x) = 0 (because πA(w) = 0) and for any j ∈ P(C, i) \ B,
πj(x) = 0 because πj(c) = 0. So supp x ⊆ (B \ A) ∪ {i}. Then

wHam(x) ≤ 1 + |B| − |A| = wi(C)− w⊥i (C) + 2.

4

Remark 7.11 This result is in fact a generalization of Proposition 4.33
(more precisely, of the fact that t̂(C) ≥ t implies wi(C) ≥ 2t+ 2)

This approach leads to the following bounds:

Theorem 7.12 Let C ∈ C†(Fq) with w⊥i (C) ≥ 3. Then

wi(Ĉ) ≤ θ(q) · n(C)− (1 + θ(q))(w⊥i (C)− 3).

Moreover t̂(C) ≤ θ(q)·n(C)−θ(q)−1
2+θ(q)

.
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Proof. C ∈ C†(Fq) implies that wi(Ĉ) > 1 and hence the second case in
Theorem 7.10 must hold. So wi(Ĉ) ≤ wi(C)−w⊥i (C) + 2 and now applying
the bound in Theorem 7.6,

wi(Ĉ) ≤ θ(q) · (n(C)− w⊥i (C) + 3)− w⊥i (C) + 3 =

= θ(q) · n(C)− (1 + θ(q))(w⊥i (C)− 3).

If t̂(C) = t ≥ 1, then for the index is where the maximum in the de�nition
of t̂(C) is attained, w⊥is(C) ≥ t+ 2 ≥ 3. So

wis(Ĉ) ≤ θ(q) · n(C)− (1 + θ(q))(w⊥is(C)− 3).

Applying that wis(Ĉ) ≥ t+ 2 and w⊥is(C) ≥ t+ 2, we get

t+ 2 ≤ θ(q) · n(C)− (1 + θ(q))(t− 1).

The result follows from here. 4
The following theorem follows by immediate application of Theorem 7.12,

in combination with De�nition 5.2.

Theorem 7.13

τ̂(q) ≤ 3θ(q)

2 + θ(q)
= 1− 2

3q − 1

for all �nite �eld Fq.

7.3 Re�nement using code shortening

While the previous approaches lead to non trivial upper bounds for τ̂(q),
the following re�nement will yield better bounds. It consists in applying the
bounds in the previous results to a shortened code constructed from Ĉ.

Lemma 7.14 Let C ∈ C(Fq) with w⊥i (C) ≥ 3. Let c be a word of minimal
weight wi(C) in Ci,1. Let A = I(C) \ supp c. Let MA be obtained by

shortening Ĉ at A. Then

� n(MA) + 1 = wi(C).

� wi(M
A) ≥ wi(Ĉ).
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� If w⊥i (C) ≥ wi(C) + 1, then wi(Ĉ) = 1.

� If w⊥i (C) < wi(C) + 1, then w⊥i (MA) ≥ w⊥i (C).

Proof. The �rst claim is trivial. For the second, note that, if (MA)i,1 is
nonempty, then the claim can be easily veri�ed, since for every x ∈ (MA)i,1,
the word w ∈ Fk(C)

q given by πI(C)\A(w) = x and πA(w) = 0 is in (Ĉ)i,1 (by
de�nition of MA) and therefore wi(Ĉ) ≤ wi(M

A). Now note that (MA)i,1
is nonempty since we can construct the following word: Since c ∈ Ci,1,
πA(c) = 0, we have c ∗ c ∈ (Ĉ)i,1 and πA(c ∗ c) = 0. Then the vector
πI(C)\A(c ∗ c) belongs to (MA)i,1.

The third claim was proven in Theorem 7.10. As for the last one, �rst
note that w⊥i (C) − 2 < wi(C) − 1 = n(MA) and we can apply the follow-
ing reasoning. Since t(MA, i) = w⊥i (MA) − 2 and t(C, i) = w⊥i (C) − 2 by
Proposition 4.18, we need to prove that t(MA, i) ≥ t(C, i).

Let B ⊆ P(MA, i) with |B| = t(C, i). Since B ∈ A(C, i) there is a word
d in Ci,1 with πB(d) = 0B. Now take v′ = c ∗ d ∈ (Ĉ)i,1. Clearly this
word has zeros in A ∪ B. Therefore the vector v obtained by removing the
coordinates in A is a word in (MA)i,1 such that πB(v) = 0B and consequently
B ∈ A(MA, i). Therefore t(MA, i) ≥ t(C, i). 4

Theorem 7.15 Suppose C ∈ C(Fq) with w⊥i (C) ≥ 3. Then

� wi(Ĉ) = 1 if w⊥i (C) ≥ wi(C) + 1.

� wi(Ĉ) ≤ 1 + bθ(q) · (wi(C)− w⊥i (C) + 2)c if w⊥i (C) < wi(C) + 1.

So in particular if C ∈ C†(Fq) (and w⊥i (C) ≥ 3), then w⊥i (C) < wi(C) + 1

and wi(Ĉ) ≤ 1 + bθ(q) · (wi(C)− w⊥i (C) + 2)c.

Proof. The �rst case has already been proven. In the second case,
take A as in the previous theorem and then apply Theorem 7.6 to MA. By
Lemma 7.14, w⊥i (MA) ≥ w⊥i (C) ≥ 3 so Theorem 7.6 applied to MA gives

wi(M
A) ≤ 1 + bθ(q) · (n(MA)− w⊥i (MA) + 3)c.

Now Lemma 7.14 implies

wi(Ĉ) ≤ wi(M
A) ≤ 1 + bθ(q) · (n(MA)− w⊥i (MA) + 3)c ≤
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≤ 1 + bθ(q) · (wi(C)− w⊥i (C) + 2)c.

If C ∈ C†(Fq), by de�nition wi(Ĉ) > 1, so only the second case can hold.
4

Remark 7.16 Note that self-dual codes C ∈ C†(Fq) with wi(C) ≥ 3 must

satisfy wi(Ĉ) ≤ 1 + b2θ(q)c = 2. Therefore for any such code, we have
t̂(C) = 0.

Theorem 7.17 Let C ∈ C†(Fq) and suppose t̂(C) = t ≥ 1 and the maximum
is achieved in index is. Then

t+ 2 ≤ 1 + bθ(q) · (wis(C)− t)c.

Proof. By de�nition of t̂(C), we have that t + 2 ≤ wis(Ĉ) and
t + 2 ≤ w⊥is(C). Combining this and Theorem 7.15 (note w⊥i (C) ≥ 3),
we get

t+ 2 ≤ wis(Ĉ) ≤ 1 + bθ(q) · (wis(C)−w⊥is(C) + 2)c ≤ 1 + bθ(q) · (wis(C)− t)c.

4

Corollary 7.18 Let C ∈ C†(Fq) and suppose t̂(C) = t ≥ 1. Then

t+ 2 ≤ 1 + bθ(q) · (1 + bθ(q) · (n(C)− t+ 1)c − t)c.

Proof. The �rst bound is obtained using Theorem 7.17 and the bound
in Theorem 7.6 for wis(C), in addition to the fact that w⊥is(C) ≥ t+ 2. 4

So, �nally we have the following upper bound for τ̂(q).

Theorem 7.19 For all �nite �eld Fq,

τ̂(q) ≤ 3θ(q)

1 + θ(q) + (θ(q))2
= 1− 3q − 2

3q2 − 3q + 1
.

Proof. Let {C(m)}m>0 ⊆ C†(Fq) be an in�nite family of linear codes such
that nm = n(C(m)) −−−→

m→∞
∞ and τ̂(C(m)) −−−→

m→∞
τ̂(q). By Corollary 7.18, we

know that for every m, if we write tm = t̂(C(m)) it holds that either, tm = 0
or tm ≤ θ(q) · (1 + θ(q) · (nm− tm + 1)− tm)− 1. Since by the previous lower
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bounds on τ̂(q), we know this parameter is bigger than 0, tm = 0 can only
happen for a �nite number of m. For the rest of m, note that the inequality
above can also be written as tm(1+θ(q)+θ(q)2) ≤ θ(q)2nm+(θ(q)2+θ(q)−1).
Then for those m,

τ̂(C(m)) =
3tm

nm − 1
≤ 3(θ(q)2nm + θ(q)2 + θ(q)− 1)

(1 + θ(q) + θ(q)2)(nm − 1)
.

When m → ∞, nm → ∞, and the limit of the rightmost expression is
3θ(q)2

1+θ(q)+θ(q)2
. Hence

τ̂(q) ≤ 3θ(q)2

1 + θ(q) + θ(q)2
=

3(q − 1)2

3q2 − 3q + 1
= 1− 3q − 2

3q2 − 3q + 1

as can be checked by elementary algebraic manipulation. 4
Finally we collect the explicit bounds for some �nite �elds in the following

table.

q Upper bounds
2 0.429
3 0.632
4 0.730
5 0.787
7 0.850
9 0.885
16 0.936
25 0.959
49 0.979

Table 7.1: Upperbounds

Note that for small �elds Fq the upper bound for τ̂(q) is quite far away
from 1.

Summary of the chapter: We have proved that τ̂(q) ≤ 1− 3q−2
3q2−3q+1

< 1
for all �nite �elds Fq. The proof requires only combinatorial techniques, and
does not rely on any algebraic geometric result.
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Chapter 8

Riemann-Roch systems of
equations

In this chapter, Riemann-Roch systems of equations are introduced. Riemann-
Roch systems of equations consist of a �nite number of equations de�ned over
the class-group of a function �eld. There is a single indeterminate X for the
whole system, to be viewed as an unknown divisor class. In each such equa-
tion there is a �xed scalar mi ∈ Z, and two �xed divisor classes Ti and Yi.
The i-th equation is the condition that the dimension of the Riemann-Roch
space of the general a�ne combination miX + Yi does not change when the
�o�-set� Ti is added. More formally, `(miX + Yi + Ti)− `(miX + Yi) = 0.
This concept is not entirely new. Previously, Riemann-Roch systems of equa-
tions had been used in [54, 60, 79, 81, 82, 83, 85] to construct special types
of AG-codes. The desired properties of the codes are captured as a system of
equations: any solution to this system yields an AG-code with those proper-
ties. The systems that appear in all these works are however of a less general
type, namely mi = ±1 for all i. Equations of this form allow us to set condi-
tions on the code and its dual. The novelty of this work is that we will also
consider systems where mi can take (integer) values di�erent from ±1, for
some of the equations i. This enables us to impose conditions on the Schur
product transforms of the code as well.

In this chapter, we give a short indication of how solutions to special
kinds of Riemann-Roch equations yield linear codes with special combina-
torial properties (Theorem 8.5). In the sequel (Chapters 11 and 12) more
speci�c applications are studied.

The main results in this chapter concern su�cient conditions of solvability
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of Riemann-Roch systems of equations. There are di�erent ways to ensure
that a certain Riemann-Roch system of equations has a solution. For some
systems, we can prove that there exists r ∈ Z, such that any class of divisors
of degree r is a solution to the system. However, in order to be solvable in
this way, systems must satisfy certain somewhat strong properties. These
su�cient conditions will be stated in Theorem 8.6.

A di�erent approach consists on upper bounding, for each equation of
the system, the number of classes of divisors of certain degree that do not
satisfy that equation. This gives an upper bound on the total number of
classes that do not satisfy some of the equations. We can compare this
number with the number of classes of that degree (the class number) and if
the former is smaller than the latter, we know that there exists a class of
that degree that satis�es all of the equations. This argumentation leads to
weaker su�cient conditions of solvability, stated in the main result of this
chapter, Theorem 8.12.

Many of the de�nitions and results in this part of the thesis appeared
in [16].

8.1 De�nitions

Let Fq be a �nite �eld and let F/Fq be an algebraic function �eld.

Definition 8.1 For each T ∈ Cl(F), we de�ne the map

∆T : Cl(F)→ Z

X 7→ `(X + T )− `(X).

Remark 8.2 Given a divisor T ∈ Div(F), we can also de�ne the map ∆T

applied to divisors, i.e., ∆T : Div(F) → Z by X 7→ `(X + T ) − `(X). In
the following, both de�nitions of the function ∆T (applied to divisors and to
divisor classes) will be used indistintly.

Now a general type of systems of equations can be de�ned. From now
on, these will be known as Riemann-Roch systems of equations.

Definition 8.3 Let s > 0 an integer and let Ti, Yi ∈ Cl(F), mi ∈ Z\{0} for
i = 1, . . . , s. The Riemann-Roch system of equations in the indeterminate
X is the system

{∆Ti(miX + Yi) = 0}si=1
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determined by these data. A solution is some G ∈ Cl(F) which satis�es all
equations when substituted for X.

Remark 8.4 Again, Riemann-Roch systems of equations can be de�ned with
respect to divisors instead of classes of divisors (i.e., in the notation above,
Ti, Yi ∈ Div(F)). In this case the solutions are de�ned as divisors (but in
fact any divisor in the same class as a solution is a solution as well).

The applications of Chapters 11 and 12 will be based on the fact that if a
divisor G is a solution to a Riemann-Roch systems of equations of a certain
form, then this implies some conditions on the distribution of the zeros of an
algebraic geometric code CL(D,G). Although more will be explained later,
we can now state the following:

Theorem 8.5 Let P0, P1, . . . , Pn ∈ P(F) with Pi 6= Pj for i 6= j. Write
D =

∑n
i=0 Pi. Let G ∈ Div(F) be such that supp G ∩ supp D = ∅

and consider the (generalized) linear code C := CL(D,G) over Fq. For any
A ⊆ I(C), we write PA :=

∑
i∈A Pi ∈ Div(F).

Let A ⊆ I(C), B ⊆ I(C) \ A such that ∆PB
(G − PA − PB) = 0. Then for

any c ∈ C with πA(c) = 0, we have πB(c) = 0.

Proof. ∆PB
(G−PA−PB) = 0 means `(G−PA−PB) = `(G−PA) but,

since G− PA − PB ≤ G− PA, we have L(G− PA − PB) = L(G− PA). Then
for every f ∈ L(G) such that f(Pj) = 0 for all j ∈ A, it also happens that
f(Pi) = 0 for all i ∈ B. Therefore one gets the result. 4

8.2 Solving systems by reasoning with the de-

gree of divisors

There are several ways to ensure the existence of a solution to a given
Riemann-Roch system of equations. In some cases, the parameters of the
system are such that any class of divisors of a certain degree is a solution, as
we will see in this section.

Theorem 8.6 Consider the Riemann-Roch system of equations

{∆Ti(miX + Yi) = 0}si=1,
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Write di = deg Ti and d
′
i = deg Yi for i = 1, . . . , s. If there exists d ∈ Z such

that mid + d′i < 0 and mid + di + d′i < 0 for i = 1, . . . , s, then any class
G ∈ Cl(F) with degG = d is a solution to the Riemann-Roch system.

Proof. Let G ∈ Cl(F) with degG = d. Then

degmiG+ Yi + Ti = mid+ di + d′i < 0

and
degmiG+ Yi = mid+ d′i < 0

for every i = 1, . . . , s by assumption. Consequently `(miG+Yi+Ti) = 0 and
`(miG+ Yi) = 0 for every i = 1, . . . , s and

∆Ti(miX + Yi) = `(miG+ Yi + Ti)− `(miG+ Yi) = 0

for all i = 1, . . . , s so G is a solution to the system. 4
The Riemann-Roch systems that we will consider in the applications in

forthcoming chapters are of the kind considered in Theorem 8.5. In that case,
it holds that deg Ti > 0 for all the classes Ti, i = 1, . . . , s in the theorem
above and we can give a simpler version of the previous theorem.

Corollary 8.7 Consider the Riemann-Roch system of equations

{∆Ti(miX + Yi) = 0}si=1,

Write di = deg Ti and d
′
i = deg Yi for i = 1, . . . , s and assume di > 0 for all

i = 1, . . . , s. If there exists d ∈ Z such that mid+di +d′i < 0 for i = 1, . . . , s,
then any class G ∈ Cl(F) with degG = d is a solution to the Riemann-Roch
system.

8.3 Solvability based on the size of the torsion

group Cl0(F)[m] and the number of e�ective

divisors

In this section we show more general su�cient conditions for a Riemann-Roch
system to be solvable. The argumentation is the following: Given certain
degree r ∈ Z, we know |Clr(F)| = h. For each equation of the system, there
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may be a fraction of these classes in Clr(F) that do not satisfy the equation.
The crucial observation is that an upper bound (which depends on r) for this
number can be actually given. So the union bound can then be used to give
an upper bound for the number of classes that do not satisfy at least one of
the equations. If for some r, this number of �bad� classes is strictly smaller
than h, then there is a solution in Clr(F) to the system.

We need to introduce the following notation.

Definition 8.8 Let Cl+(F) := {Y : Y ∈ Cl(F) and ∃G ∈ Y,G ≥ 0}. For
any r ≥ 0, let Cl+r (F) := Cl+(F) ∩ Clr(F).

As we have remarked before, we are especially interested in the kind
of Riemann-Roch systems appearing in Theorem 8.5. In those cases we
have that Ti ∈ Cl+(F) for all i = 1, . . . , s, since the classes Ti contain sums
of places of the function �eld, which are e�ective divisors. The following
simpli�cation, which can be made in that case, will be useful. If T ∈ Cl+(F),
then `(mX + Y + T ) ≥ `(mX + Y ) ≥ 0. Hence:

Proposition 8.9 Consider the Riemann-Roch system of equations

{∆Ti(miX + Yi) = 0}si=1.

Suppose that Ti ∈ Cl+(F) for i = 1, . . . , s. Then any solution G ∈ Cl(F) to
the system of equations

{`(miX + Yi + Ti) = 0}si=1

is a solution to the above Riemann-Roch system.

Proof. Let i ∈ {1, . . . , s}. If Ti ∈ Cl+(F), then clearly

0 ≤ `(miX + Yi) ≤ `(miX + Yi + Ti)

for all X ∈ Cl(F). Therefore if `(miG+Yi +Ti) = 0 for G ∈ Cl(F), then also
`(miG+ Yi) = 0 and

∆Ti(miG+ Yi) = `(miG+ Yi + Ti)− `(miG+ Yi) = 0.

4
It follows from the de�nition of Riemann-Roch space that:



136 Part � III. Codes based on Riemann-Roch systems

Lemma 8.10 `(Y ) > 0 if and only if Y ∈ Cl+(F)

Proof. If Y ∈ Cl+(F) there exists G ∈ Y , G ≥ 0. Then for any
element f ∈ Fq \ {0} ⊆ F, we have (f) + G ≥ 0 (since (f) = 0) and this is
equivalent to saying that Fq ⊆ L(G), so `(Y ) = `(G) > 0. On the other hand
assume `(Y ) > 0, then given a divisor G ∈ Y , there exists 0 6= f ∈ L(G),
so (f) + G ≥ 0. But the divisor G′ = (f) + G is also in Y and G′ ≥ 0 so
Y ∈ Cl+(F). 4

Before we state the main result of this chapter, we introduce the following
notation.

Definition 8.11 For any m ∈ Z \ {0}, denote the m-torsion subgroup of
the group Cl0(F) as Cl0(F)[m] := {X ∈ Cl0(F),mX = 0}. When F is
clear by the context, we write Cl0[m] for the sake of notation. Note that
Cl0[m] = Cl0[−m].

Finally, we can state the general su�cient conditions for a Riemann-Roch
system of equations of a certain form to be solvable. The conditions are in
terms of the size of some of the torsion groups introduced in the previous
de�nition and of the numbers Ari (see De�nition 2.68).

Theorem 8.12 Consider the Riemann-Roch system of equations

{∆Ti(miX + Yi) = 0}si=1,

where Ti ∈ Cl+(F) for i = 1, . . . , s. Write di = deg Ti and d
′
i = deg Yi for

i = 1, . . . , s. Let d ∈ Z and de�ne ri = mid+ di + d′i for i = 1, . . . , s. If

h >
s∑
i=1

Ari · |Cl0[mi]|,

then the Riemann-Roch system has a solution G ∈ Cld(F).

Proof. By Proposition 8.9, it su�ces to prove it for the system

{`(miX + Yi + Ti) = 0}si=1.

For i = 1, . . . , s, argue in the following way. De�ne the maps

φi : Cld(F)→ Clmid(F)
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X 7→ miX

and
ψi : Clmid(F)→ Clri(F)

X ′ 7→ X ′ + Yi + Ti.

Then ψi is clearly a bijection and each image under φi has exactly |Cl0[mi]|
pre-images. This last claim is a consequence of the fact that φi is the restric-
tion to the set Cld(F) of the homomorphism

φi : Cl(F)→ Cl(F)

X 7→ miX.

The kernel of this homomorphism is Cl0[mi] (since any preimage of 0 must
have degree zero so it must be in Cl0(F)). Then every image under φi has ex-
actly |Cl0[mi]| pre-images and the same happens to the restriction φi because
any preimage under φi of an element in Clmid(F) is in Cld(F).

Write σi = ψi ◦ φi. Then, for any element Z ∈ Cl+ri(F),

|σ−1i ({Z})| ≤ |Cl0[mi]|.

Hence (using |Cl+ri(F)| ≤ Ari),

|σ−1i (Cl+ri(F))| ≤ Ari · |Cl0[mi]|.

Thus,

|
s⋃
i=1

σ−1i (Cl+ri(F))| ≤
s∑
i=1

Ari · |Cl0[mi]|.

Since

|Cld(F)| = h >

s∑
i=1

Ari · |Cl0[mi]|,

there is an element

[G] ∈ Cld(F) \
s⋃
i=1

σ−1i (Cl+ri(F)).

Since σi([G]) ∈ Clri(F) but σi([G]) /∈ Cl+ri(F), it follows (Lemma 8.10) that
`(σi([G])) = 0 for i = 1, . . . , s, as desired. 4
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Note that in the previous section we had already argued (Corollary 8.7)
that if ri < 0 for all i = 1, . . . , s then the Riemann-Roch system has a solution
in Cld(F) (and in fact any class in Cld(F) would be a solution in that case).
Note that we can also prove this fact as a particular case of Theorem 8.12.
Indeed, assume ri < 0 for all i = 1, . . . , s. Then Ari = 0 as there cannot be
positive divisors of negative degree. Since h > 0, the su�cient condition of
Theorem 8.12 always holds in this case and consequently the system has a
solution of degree d.

Remark 8.13 As it can be easily derived from the proof, the previous result
also holds if we substitute the condition by the possibly weaker following one:

h >
s∑
i=1

|Cl+ri | · |Cl0[mi]|

An open question is to determine if there are asymptotically stronger upper
bounds for |Cl+ri | than the ones that will be shown for Ari.

The following two chapters will be devoted to obtain upper bounds for
the size of the parameters Ari(F) and |Cl0(F)[mi]| for an algebraic function
�eld F/Fq, which only involve the parameters g(F), |P(1)(F)| and q.

Summary of the chapter: We have introduced Riemann-Roch systems
of equations. We have proved that a solution to a system of a certain form
yields an algebraic geometric code with certain combinatorial properties. We
have given su�cient conditions for a system to have a solution. First, we
give su�cient conditions for every class of divisors of a certain degree to be
a solution. Afterwards, we have given a more general su�cient condition for
the system to have a solution of certain degree. This last condition depends
on certain parameters of the function �eld F where the system is de�ned:
the number Ari of positive divisors of degree ri and |Cl0(F)[mi]|, the size of
the mi-torsion subgroup of the degree zero divisor class group of the function
�eld, for certain integers mi, ri dependant on the system.



Chapter 9

Upper bounds for e�ective
divisors of given degree

In this chapter, we provide upper bounds for the number Ar(F) of e�ective
of divisors of certain �xed degree r of a function �eld F/Fq. These upper
bounds depend on parameters of the function �eld such as the class number
and the genus and also on the size of the �nite �eld. The proof of these
bounds uses several properties of the zeta function and L-polynomial of a
function �eld and the Hasse-Weil Theorem. These techniques are not new,
since they have been used to state similar bounds in several works (see for
instance [51], [61], [81]), although the precise result stated here does not seem
to have been proved before.

Proposition 9.1 Let F/Fq be a function �eld with g ≥ 1. Then, for any
integer r with 0 ≤ r ≤ g − 1,

Ar/h ≤
g

qg−r−1(
√
q − 1)2

.

Proof. For i ≥ 2g − 1, Ai = h
q−1(qi+1−g − 1)(see Lemma 5.1.4 and

Corollary 5.1.11 in [75]). This has been exploited in Lemma 3 (ii) from [61],
to show that

g−2∑
i=0

AiT
i +

g−1∑
i=0

qg−1−iAiT
2g−2−i =

L(T )− hT g

(1− T )(1− qT )

where L(T ) is the polynomial associated to the zeta function of F (De�ni-
tion 2.76).
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The claim from Proposition 9.1 will be derived from a relation that is
obtained by taking the limit as T tends to 1/q on both sides of the equation
above, where l'Hôpital's Rule is applied on the right hand side, then �nding
an expression for L′(1/q) and substituting that back in.

Taking this limit,

g−2∑
i=0

Ai
qi

+

g−1∑
i=0

Ai
qg−1

= lim
T→1/q

L(T )− hT g

(1− T )(1− qT )
,

and applying l'Hôpital's rule ((f(T ))′|T=a denotes the derivative of f evalu-
ated at T = a), it follows that

(L(T )− hT g)′|T=1/q

((1− T )(1− qT ))′|T=1/q

=
L′(1/q)− gh/qg−1

−q(1− 1/q)
=
gh− qg−1L′(1/q)

(q − 1)qg−1
.

The term L′(1/q) can be evaluated as follows. By di�erentiation,

L′(T ) =

2g∑
i=1

L(T ) · −αi
1− αiT

,

and hence,

L′(
1

qT
) = L(

1

qT
) ·

2g∑
i=1

(qT ) · −αi
qT − αi

.

Evaluation of L(1/q) is straightforward by combining the Functional Equa-
tion (see Proposition 2.77) for L-polynomials and the fact that L(1) = h
(see [75]). Namely,

L(1/q) = qg(1/q)2gL(1) = h/qg.

Therefore,

L′(1/q) =
h

qg−1
·

2g∑
i=1

−αi
q − αi

.

Substituting the expression for L′(1/q) back in, it follows that

g−2∑
i=0

Ai
qi

+

g−1∑
i=0

Ai
qg−1

=
h

qg−1(q − 1)
· (g +

2g∑
i=0

αi
q − αi

).
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Note that, by writing it appropriately as a fraction of the other expressions
in the equation, the expression between brackets on the right-most side must
be a positive number. Using this and the fact |αi| =

√
q for i = 1, . . . , 2g

(this is Hasse-Weil Theorem, Theorem 2.80), it holds, for 0 ≤ r ≤ g−1, that

Ar
qr
≤

g−2∑
i=0

Ai
qi

+

g−1∑
i=0

Ai
qg−1

=
h

qg−1(q − 1)
· |g +

2g∑
i=0

αi
q − αi

| ≤

≤ h

qg−1(q − 1)
· (g +

2g∑
i=0

|αi|
q − |αi|

) =
gh

qg−1(q − 1)
· (1 +

2
√
q − 1

) =

=
gh

qg−1(q − 1)
· (
√
q + 1
√
q − 1

) =
gh

qg−1 · (√q − 1)2
.

and the claimed result follows. 4





Chapter 10

Asymptotic upper bounds for
r-torsion in Cl0(F)

In this chapter we obtain, for any function �eld F/Fq and any integer
r 6= −1, 0, 1, upper bounds for the size of the r-torsion subgroups Cl0(F)[r].
These numbers appeared in the su�cient condition for the existence of a
solution of a Riemann-Roch system of equations given in Theorem 8.12.

Moreover, since our goal in next chapters will be to ensure the solv-
ability of certain Riemann-Roch systems of equations in in�nite families F
of function �elds, we will de�ne and study a torsion limit that measures
asymptotically the size of Cl0(F)[r] against g(F) for the elements F ∈ F .

First we will de�ne the limit Jr(q, a) that measures how small can the
groups Cl0(F)[r] be asymptotically, for the function �elds F of a family F
of function �elds over Fq with Ihara's limit A(F) = a. In the next sections,
we will give upper bounds for Jr(q, a) in several cases. First, we will apply
classical results by Weil on the size of the torsion subgroups of abelian vari-
eties to derive some �rst bounds for any r. Afterwards, we use Weil Pairing
to derive tighter bounds in the case that r is a prime which does not divide
q − 1. Finally, we use a theorem by Deuring and Shafarevich to give some
improved bounds for Jr(q,

√
q − 1) when q is square (recall that in the case

that q is square, Ihara's constant A(q) of the �eld is exactly
√
q − 1) and r

equals the characteristic of Fq.
It should be remarked that for the applications in this thesis, the inter-

esting case is r = 2. In particular, the bound from Weil Pairing will not be
applied (since we can only obtain bounds for �elds of characteristic 2, but in
this case the bounds are not better than the ones we obtain with the more

143
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elementary approach), and the one from Deuring-Shafarevich will only be
used in the case that the characteristic of the �eld is 2. However, proving
bounds for other values of r may be interesting for future applications.

10.1 Torsion limits

In this section we will de�ne the notion of torsion limit and give some prop-
erties.

Definition 10.1 Let Fq be a �nite �eld and a > 0 a real number. Then
F(q, a) denotes the set of all asymptotically good families (see De�nition 2.93)
F over Fq with A(F) ≥ a.

We de�ne now the concept of r-torsion limit.

Definition 10.2 Let a > 0 a real number, r ∈ Z with r 6= −1, 0, 1. If
F(q, a) 6= ∅, then we de�ne

Jr(q, a) := inf
F∈F(q,a)

Jr(F),

where if F = {F(m)}m>0,

Jr(F) := lim inf
m→∞

logq(|Cl0(F(m))[r]|)
g(F(m))

.

For a given family F , Jr(F) measures (asymptotically) the logarithm of
the r-torsion against the genus. The corresponding constant Jr(q, a) mea-
sures, for a given Ihara limit and for given r, the �least possible r-torsion.�
Note that Jr(F) = J−r(F), so we only consider r > 1 from now on.

Also note that Jr(q, a) is de�ned (for any integer r 6= −1, 0, 1) if and only
if 0 < a ≤ A(q). Moreover by de�nition we have

Remark 10.3 Jr(q, a) ≤ Jr(q, A(q)) for any 0 < a ≤ A(q) and any integer
r > 1.

All the bounds proved in this chapter apply to the values Jr(q, A(q))
and hence are also upper bounds for Jr(q, a) for any 0 < a < A(q). It is
not known whether the actual values of Jr(q, a) coincide with Jr(q, A(q)) for
0 < a < A(q).
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Open question 10.4 Is there any �nite �eld Fq, any integer r > 1 and any
0 < a < A(q) for which Jr(q, a) < Jr(q, A(q))?

Moreover, we will only bound the values Jr(q, A(q)) for r prime (except
for the bounds in Section 10.2, which are easy to state for any integer r > 1).
In the following results, we show how to prove bounds for general r from the
case where r is prime.

Lemma 10.5 Let F be a function �eld over Fq and r > 1 and t ≥ 1 be
integers. Then |Cl0(F)[rt]| ≤ |Cl0(F)[r]|t

Proof. We prove this by induction on t. The result is true for t = 1.
Assume now that it is true for t − 1, |Cl0(F)[rt−1]| ≤ |Cl0(F)[r]|t−1. Clearly
Cl0(F)[r] ⊆ Cl0(F)[rt] and we can de�ne the group homomorphism

φ : Cl0(F)[rt]→ Cl0(F)[rt−1]

D 7→ rD

whose kernel is Cl0(F)[r]. Then

|Cl0(F)[rt]| = |Ker φ||Im φ| ≤ |Cl0(F)[r]||Cl0(F)[rt−1]| ≤ |Cl0(F)[r]|t

4

Theorem 10.6 Let r be an integer which factors as a product of primes as
r =

∏s
i=1 p

ei
i . Then |Cl0(F)[r]| ≤

∏s
i=1 |Cl0(F)[pi]|ei and consequently

Jr(q, A(q)) ≤
s∑
i=1

eiJpi(q, A(q))

Proof. This is a consequence of the fact that Cl0(F)[r] is isomorphic to⊕s
i=0 Cl0(F)[peii ] and of the previous Lemma. 4

10.2 Bounds from Weil's Torsion Theorem

For function �elds F over algebraically closed �elds, there are classical results
that allow for the computation of the size of these subgroups. We have the
following result by Weil([80], see also [59, 68]):
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Theorem 10.7 (A. Weil) Let E be a function �eld over an algebraically
closed �eld K of characteristic p > 0. Then for a positive integer r > 1,
|Cl0(E)[r]| = r2g if r is prime to p and |Cl0(E)[p]| = pγ, for some 0 ≤ γ ≤ g.

The following de�nition will be useful later

Definition 10.8 Let E be a function �eld over an algebraically closed �eld
K of characteristic p > 0. The p-rank of E, γ(E), is de�ned as the integer
γ such that |Cl0(E)[p]| = pγ.

We are interested in considering function �elds over �nite �elds. Let F/Fq
and �x Fq an algebraic closure of Fq. Then one can consider the constant
�eld extension E/Fq of F/Fq where E = FqF in order to apply Weil's results.

We have the following facts, that follow from [75], De�nition 3.1.8 and
Theorem 3.6.3:

Lemma 10.9 If F and E are de�ned as above,

1. There exists an injective homomorphism ConE/F : Cl(F) → Cl(E) that
preserves the degree of every element and consequently

|Cl0(F)[r]| ≤ |Cl0(E)[r]|

for any integer r > 1.

2. g(E) = g(F).

As a consequence of this and Weil's bounds:

Theorem 10.10 Let F be a function �eld over Fq and r > 1 be an integer.
Then |Cl0(F)[r]| ≤ r2g. Moreover, if r = char(Fq), then |Cl0(F)[r]| ≤ rg.

The bounds in Theorem 10.10 imply the following asymptotical fact:

Theorem 10.11 Let Fq be a �nite �eld of characteristic p and let r > 1. If
p 6= r, then Jr(q, A(q)) ≤ 2

logr q
. If p = r, then Jr(q, A(q)) ≤ 1

logr q
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10.3 Bounds from Weil Pairing

We use now properties of Weil Pairing in order to prove better bounds in
some cases1.

Let Fq be a �nite �eld of characteristic p. We can associate, to every
function �eld F over Fq, an abelian variety over the algebraic closure Fq, its
jacobian J . We know that, for an integer r, J [r] is isomorphic to (Z/rZ)2g

if r is co-prime to p; and J [p] is isomorphic to (Z/pZ)a for a non-negative
integer a ≤ g, where g is the dimension of J (see [80, 59]). This is in fact a
more general way to state Theorem 10.7.

The subgroup of Fq-rational points of this variety, J (Fq) is isomorphic as
a group to Cl0(F). Given an integer r which is prime to p, let Gr ' Z/rZ be
the group of r-th roots of unity in Fq. We can de�ne Weil Pairing

er : J [r]× J [r]→ Gr

which is a bilinear map which satis�es the following properties:

(i) er(S1 + S2, T ) = er(S1, T )er(S2, T ) for all S1, S2, T ∈ J [r]
er(S, T1 + T2) = er(S, T1)er(S, T2) for all S, T1, T2 ∈ J [r];

(ii) If there exists T ∈ J [r] such that er(S, T ) = 1 for all S ∈ J [r], then
T = 0;

(iii) er(Sσ, T σ) = er(S, T )σ for every σ ∈ Gal(Fq/Fq).

See [58] for more information about Weil Pairings on abelian varieties.
We examine now the consequence of these properties. Let

J (Fq)[r] = J [r] ∩ J (Fq)

be the m-torsion subgroup of the group of Fq-rational points of J . The fact
that er commutes with any element of the Galois group Gal(Fq/Fq) allows
us to derive the following fact.

Lemma 10.12 The image of the restriction of er to J (Fq)[r]×J (Fq)[r] is a
subgroup of Gr contained in F∗q = Fq \ {0}. In particular, if r is a prime not
dividing q − 1 then this image is the trivial subgroup.

1I would like to thank Bas Edixhoven for suggesting this idea in the �rst place
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Proof. For any S, T ∈ J (Fq)[r] and any σ ∈ Gal(Fq/Fq), we have that
S and T are �xed by the action of σ, i.e., Sσ = S and T σ = T , but by
Property (iii), er(S, T ) = er(S

σ, T σ) = er(S, T )σ so er(S, T ) is also �xed by
σ and, since this holds for any σ ∈ Gal(Fq/Fq), it implies er(S, T ) ∈ Fq.

Finally if r is a prime that does not divide q−1, the only r-th root of the
unity in Fq is 1. Indeed, assume that 1 6= x is a r-th root of the unity in Fq.
Then the subgroup of F∗q generated by x has order r (since r is prime) and
hence r divides the order of F∗q, which is q− 1, contradicting the hypothesis.

4
Now, if a certain bilinear form vanishes in certain subspace of its domain,

we can bound the dimension of such subspace.

Lemma 10.13 For a prime r, consider an Fr-vector space W of dimension
n and a non-degenerate bilinear map e from W ×W to Fr, i.e.,
(i) e(x + z,y) = e(x,y) + e(z,y), e(x,y + z) = e(x,y) + e(x, z) for all

x,y, z ∈ W ;

(ii) If e(x,u) = 0 for all x ∈ W , then u = 0.

If V is an Fr-subspace of W such that e(x,y) = 0 for all x,y ∈ V , then
dimFr V ≤ n

2
.

Proof. Without loss of generality we can write W = Fnr . Then, there is
a matrix A ∈ Matn×n(Fr), such that e(x,y) =< xA,y > for all x,y ∈ W .
Furthermore this matrix has rank n because e is non-degenerate, so the
following is a vector space isomorphism

φ : W → W
x 7→ xA.

Then φ(V ) is a vector subspace of V and dimFr φ(V ) = dimFr V because φ
is an isomorphism. Moreover, by the assumption on V , we have φ(V ) ⊆ V ⊥

where V ⊥ denotes, as it is usual in this text, the orthogonal space to V inside
W with respect to the inner product < ·, · >. Then we have

dimFr V = dimFr φ(V ) ≤ dimFr V
⊥ = n− dimFr V.

Therefore dimFr V ≤ n
2
.

Actually, if e is a re�exive (symmetric or alternate) non-degenerate bi-
lineal form, this is a well known result about the maximal dimension of
isotropic subspaces of (V, e), i.e., the Witt index of e. 4
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Corollary 10.14 Let r be a prime. If V is an Fr-subspace of J [r] such
that er(P,Q) = 1 for all P,Q ∈ V , then dimFr(V ) ≤ g.

Proof. Let ζ be a r-th primitive root of unity and consider the bilinear
map (P,Q) 7→ r ∈ Z/rZ, where r satis�es ζr = er(P,Q). The desired result
follows from Lemma 10.13 and the fact that dimFr J [r] = 2g. 4

Theorem 10.15 Assume that a prime r does not divide q − 1. Then

dimFr J (Fq)[r] ≤ g

Proof. If r is the characteristic of Fq, then it is trivial. Now assume
that r is not the characteristic of Fq. It is easy to verify that J (Fq)[r] is an
Fr-subspace of J [r]. By Lemma 10.12 er(S, T ) = 1 for any S, T ∈ J (Fq)[r]
and by Corollary 10.14 dimFr J (Fq)[r] ≤ g 4

We have proved

Theorem 10.16 Let F be a function �eld over Fq and r be a prime not
dividing q − 1. Then |Cl0(F)[r]| ≤ rg.

And as a consequence we have:

Theorem 10.17 Let r be a prime not dividing q − 1. Then

Jr(q, A(q)) ≤ 1

logr q
.

10.4 Bounds from Deuring-Shafarevich Theo-

rem

We can improve the results in the second case of Theorem 10.11 for speci�c
families (in fact towers) of function �elds2. For this we use a theorem by
Deuring and Shafarevich. We �rst need to recall some notions and results
about extensions of function �elds, which can also be found in [75].

2I would like to thank Alp Bassa and Peter Beelen for suggesting this approach



150 Part � III. Codes based on Riemann-Roch systems

10.4.1 Algebraic extensions of function �elds

Let F′|K ′ be an algebraic extension of F|K (recall De�nition 2.94).

Definition 10.18 We say that a place P ′ ∈ P(F′) lies above P ∈ P(F) (or
that P lies below P ′, or that P ′ is an extension of P ) if P ⊆ P ′. We write
P ′|P to denote this fact.

Proposition 10.19 For any P ′ ∈ P(F′), there is exactly one place of F
lying below P ′, and this is given by P = P ′ ∩ F. For any P ∈ P(F), there is
at least one but only �nitely many places of F′ lying above P .

Proposition 10.20 Given an extension P ′|P with P ′ ∈ P(F′), P ∈ P(F)
there exists an integer e ≥ 1 such that vP ′(x) = e · vP (x) for all x ∈ F ⊆ F′

Definition 10.21 The integer e in the previous proposition is called the
rami�cation index of the extension P ′|P and denoted e(P ′|P ). We say P ′|P
is rami�ed if e(P ′|P ) > 1, unrami�ed otherwise.

We say P is rami�ed if there exists at least one P ′ over P such that P ′|P
is rami�ed, and unrami�ed otherwise

Proposition 10.22 Let F′′|K ′′ be an algebraic extension of F′|K ′ and F′|K ′
be an algebraic extension of F|K. Let P ′′ ∈ P(F′′), P ′ ∈ P(F′) and P ∈ P(F)
such that P ′′|P ′ and P ′|P . Then e(P ′′|P ) = e(P ′′|P ′)e(P ′|P ).

10.4.2 Results

If F′/K is an algebraic extension of F/K such thatK is an algebraically closed
�eld and certain conditions are satis�ed, the theorem by Deuring and Sha-
farevich allows for the computation of the p-rank of F′ (see De�nition 10.8)
from that of F.

Theorem 10.23 (Deuring-Shafarevich) Let F′|F be a Galois extension
of function �elds over Fq of characteristic p. Suppose that the Galois group
of the extension is a p-group. Then

γ(F′)− 1 = [F′ : F](γ(F)− 1) +
∑

P∈P(F)

∑
Q∈P(F′)
Q|P

(e(Q|P )− 1).
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The towers for which we prove tighter bounds are in fact the Garcia-
Stichtenoth towers, which we introduced in De�nition 2.96. Recall (Theo-
rem 2.97) that these towers are optimal, that is, they attain the Drinfeld-
Vl�aduµ bound.

Assume q is a square, and let p be the characteristic of Fq. Consider the
�rst Garcia-Stichtenoth tower F over Fq.

All �elds F in this tower have as �eld of constants the same �nite �eld Fq
and hence, in order to apply Deuring-Shafarevich theorem it will be necessary
to consider constant �eld extensions of these elements over the algebraic
closure Fq. Consequently, for each n, we de�ne the function �eld E(n)/Fq
with E(n) = FqF(n). Then we have a family of function �elds E = {E(n)} over
Fq.

We prove the following theorem about this tower E .

Theorem 10.24 The p-rank of the function �eld E(n) is given by

γ(E(n)) =


(
√
qn/2 − 1)2 if n even,

(
√
q(n−1)/2 − 1)(

√
q(n+1)/2 − 1) if n odd.

In particular

lim
n→∞

γ(E(n))

g(E(n))
=

1
√
q + 1

Proof.
We will apply the theorem of Deuring-Shafarevich to every extension

E(n)|E(n−1). First, in order to apply Deuring-Shafarevich we need some data
about this extension and we can compute this from what we know of the
extension F(n)|F(n−1).

As F(n)|F(n−1) is an Artin-Schreier extension, it is Galois and its Ga-
lois group is a p-group (see [75], 3.7.8(a)). Then, E(n)|E(n−1) is also Galois
and, since F(n) and F(n−1) have the same �eld of constants Fq, we can apply
[75], 3.6.6. to deduce that |E(n) : E(n−1)| = |F(n) : F(n−1)|, and therefore
|E(n) : E(n−1)| = √q.

It remains to compute∑
P ′∈P(E(n−1))

∑
Q′∈P(E(n))

Q′|P ′

(e(Q′|P ′)− 1).
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In order to do this, we �rst prove some facts about the constant �eld
extensions E(n−1)|F(n−1) and E(n)|F(n), since we want to apply some results
about the extension F(n)|F(n−1) which appeared in [37].

For every P ′ ∈ P(E(n−1)) there exists exactly one place P ∈ P(F(n−1))
below it (Proposition 10.19), and e(P ′|P ) = 1 for all such P ′ above P (see
[75], 3.6.3(a)).

Moreover, for every P ∈ P(F(n−1)) there exist exactly degP places in
E(n−1) above P . To see this, �x P ∈ P(F(n−1)) and note that

degP =
∑

P ′∈P(E(n−1))
P ′|P

e(P ′|P ) degP

by [75], 3.6.3(c). But e(P ′|P ) = 1 and E(n−1) is a function �eld over an alge-
braically closed �eld so degP ′ = 1 for all P ′ ∈ P(E(n−1)) (recall Remark 2.20).
Therefore

|{P ′ ∈ P(E(n−1)) : P ′|P}| = degP.

All these results for E(n−1)|F(n−1) also hold for the extension E(n)|F(n), as
well.

Let P ∈ P(F(n−1)), P ′ ∈ P(E(n−1)), Q ∈ P(F(n)), Q′ ∈ P(E(n)) such that
Q′|Q, Q′|P ′, Q|P and P ′|P . Note Q′ is above P and we can compute e(Q′|P )
in two di�erent ways: on the one hand e(Q′|P ) = e(Q′|P ′)e(P ′|P ) and on
the other e(Q′|P ) = e(Q′|Q)e(Q|P ). But by the observation in the previous
parragraph e(Q′|Q) = e(P ′|P ) = 1 and therefore e(Q|P ) = e(Q′|P ′).

Therefore we have:∑
P∈P(E(n−1))

∑
Q′∈P(E(n))

Q′|P ′

(e(Q′|P ′)− 1) =
∑

P∈P(F(n−1))

∑
Q∈P(F(n))

Q|P

degP (e(Q|P )− 1)

This quantity was computed in [37] in order to obtain the genus of F(n)

from the genus of F(n−1) by the use of Hurwitz' Lemma (see again [75]). We
have ∑

P∈P(F(n−1))

∑
Q∈P(F(n))

Q|P

degP (e(Q|P )− 1) =
√
qb

n−1
2
c(
√
q − 1)

Therefore applying Deuring-Shafarevich,

γ(E(n))− 1 =
√
q(γ(E(n−1))− 1) +

√
qb

n−1
2
c(
√
q − 1)
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Now we use that γ(E(0)) = 0 because E(0) = Fq(x0) is the rational function
�eld over the algebraic closure of Fq and hence Cl0(E(0)) = {0}.

We apply induction and get the formula we stated for the p-rank of E(n).
The computation of the limit is straightforward. 4

Theorem 10.25 Let Fq be a �nite �eld of characteristic p. If q is square
then

Jp(q,
√
q − 1) ≤ 1

(
√
q + 1) logp q

.

Proof. If q is an square we may de�ne the Garcia-Stichtenoth tower
of function �elds F = {F(n)}n≥0 over Fq and the tower E = {E(n)}n≥0
over Fq containing the constant �eld extensions E(n) = FqF(n). We have
|Cl0(F(n))[p]| ≤ |Cl0(E(n))[p]| for every n.

Since |Cl0(E(n))[p]| = pγ(E
(n)), logq |Cl0(F(n))[p]| ≤ γ(E(n)) logq p. Note

that also g(E(n)) = g(F(n)) so

Jp(F(n)) = lim inf
n→∞

logq |Cl0(F(n))[p]|
g(F(n))

≤ lim
n→∞

γ(E(n))

g(E(n)) logp q
=

1

(
√
q + 1) logp q

and, since A(F(n)) =
√
q − 1,

Jp(q,
√
q − 1) ≤ 1

(
√
q + 1) logp q

.

4
To conclude, the bounds obtained in this chapter for Jr(q, A(q)) for r

prime are enumerated next.

Main Theorem 10.26 Let Fq be a �nite �eld and let r > 1 be a prime.

1. If r | (q − 1), then Jr(q, A(q)) ≤ 2
logr q

.

2. If r - (q − 1), then Jr(q, A(q)) ≤ 1
logr q

.

3. If q is square and r | q, then Jr(q,
√
q − 1) ≤ 1

(
√
q+1) logr q

.
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Summary of the chapter: We have de�ned the r-torsion limit Jr(q, a)
of a function �eld Fq and a real number a ∈ (0, A(q)] which measures the
ratio logq(|Cl0(F(m))[r]|)/g(F(m)) asymptotically, that is, for families F of
function �elds F(m) with g(F(m))→∞ and Ihara's limit A(F) ≥ a. Then we
have given upper bounds for the values Jr(q, a) in di�erent scenarios using
algebraic geometric results. First, we have used some classical results by Weil
to upper bound |Cl0(F)[r]| as a function of g(F) and derived upper bounds
for Jr(q, a) for any r, q, a from there. Afterwards we have used Weil Pairing
and the restriction of the dimension of a self orthogonal subspace to derive
bounds in the case where r is a prime and does not divide q − 1. Finally,
we have used Deuring-Shafarevich p-rank formula for algebraic extensions of
function �elds to prove bounds for speci�c families of function �elds (Garcia
Stichtenoth towers) which imply upper bounds for Jr(q, A(q)) in the case
that r is prime.



Chapter 11

Application 1: Improved lower
bounds on τ̂ (q) for q small

In this chapter we use the results of Chapters 8, 9 and 10 to deduce new
lower bounds for τ̂(q) which, for small values of q, are better than the ones
obtained in Part II. First, we show how to pose Riemann-Roch systems of
equations whose solutions yield algebraic geometric codes with large corrup-
tion tolerance. We �nd out that if we apply the degree based conditions for
the solvability of these systems that were explained in Chapter 8.2 we ob-
tain precisely the lower bounds for τ̂(q) of [20]. However, as we have seen in
Chapter 8.3, we can argue about the solvability of a Riemann-Roch system
in a more general way. We can then combine these results with the upper
bounds given in Chapters 9 and 10 and derive the new lower bounds τ̂(q).

11.1 Codes with large corruption tolerance from

solutions to Riemann-Roch systems

Given an AG-code C = CL(D,G) over Fq, a straightforward application of
Theorem 8.5 is that one can pose a Riemann-Roch system of equations such
that, if G is a solution for that system, then wi(C) is large. The same can
be done for the dual of this code (which is also an AG whose parameters
are known) and for Ĉ, using the fact that Ĉ ⊆ CL(D, 2G). Hence one has
a Riemann-Roch set of equations in such a way that, given a solution G,
the secret sharing scheme Σ(C) de�ned from the code C = CL(D,G) has
t-strong multiplication for large t. This is done in the next theorem.
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Theorem 11.1 Let F/Fq be an algebraic function �eld. Let t, N ∈ Z with
N > 1 and 1 ≤ t ≤ N . Suppose there are P0, P1, . . . , PN ∈ P(1)(F) with
Pi 6= Pj for i 6= j. Write D =

∑N
i=1 Pi + P0 ∈ Div(F) and I∗ = {1, . . . , N}.

For A ⊂ I∗ with A 6= ∅, de�ne PA =
∑

j∈A Pj. Let K ∈ Div(F) be a
canonical divisor. If the system

{∆P0(−X +K + PA) = 0, ∆P0(2X −D + PA) = 0}A⊂I∗,|A|=t

has some solution, then there is a solution G ∈ Div(F) such that
supp G∩ supp D = ∅, and that the code C = CL(D,G) satis�es C ∈ C†(Fq),
n(C) = N and t̂(C) ≥ t.

Proof. If there is a solution, then any divisor in its class of equivalence
is also a solution and by the Weak Approximation Theorem (Corollary 2.47)
such solution G ∈ Div(F) can be selected such that supp G ∩ supp D = ∅.

We can now de�ne C = CL(D,G). We show that w⊥0 (C) ≥ t + 2 and
w0(Ĉ) ≥ t+ 2.

The code C⊥ equals CL(D,G′) with G′ = K − G + D for a canonical
divisor K such that supp G′ ∩ supp D = ∅. We can assume that this is the
canonical divisor that appears in the de�nition of the system, as any other
canonical divisor is in the same class of equivalence and de�nes a system with
the same solutions.

Let A ⊆ I∗ with |A| = t. Let Ac = I∗ \ A (so we can write
D = PA + PAc + P0). Note that

∆P0(K −G+ PA) = ∆P0(K −G+D − PAc − P0) = ∆P0(G
′ − PAc − P0).

Hence, by Theorem 8.5 (applied to C⊥), ∆P0(K −G+PA) = 0 implies there
is no word c ∈ (C⊥)0,1 with πAc(c) = 0 so A /∈ Γ(C, 0) (see De�nition 4.11)
and consequently A ∈ A(C, 0). This holds for all A ⊆ I∗ with |A| = t. Hence
t(C, 0) ≥ t and Proposition 4.18 implies w0(C

⊥) ≥ t+ 2.
The proof that w0(Ĉ) ≥ t + 2 is obtained as follows. First, note that

Ĉ ⊂ CL(D, 2G), so it is enough to prove w0(CL(D, 2G)) ≥ t + 2. For all
A ⊆ I∗ with |A| = t, we can write the condition ∆P0(2G−D + PA) = 0 as

∆P0(2G− P0 −
∑
i∈Ac

Pi) = 0

and by Theorem 8.5 this means there is no word c ∈ (CL(D, 2G))0,1 with
πAc(c) = 0. This holds for any A ⊆ I∗ with |A| = t, and therefore we have
w0(CL(D, 2G)) ≥ t+ 2. 4
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In Chapter 8 we have given some su�cient conditions in order to ensure
the existence of solutions to general Riemann-Roch systems of equations. We
will now combine those conditions with Theorem 11.1 to obtain su�cient
conditions for the existence of codes with a certain corruption tolerance. We
start by applying the degree based reasoning in Section 8.2 (Corollary 8.7),
and we will �nd out that this leads to the lower bounds for τ̂(q) from [20],
which were described in Chapter 5.2.

Theorem 11.2 Let F/Fq be an algebraic function �eld. Let t, N ∈ Z with
N > 1 and 1 ≤ t ≤ N < |P(1)(F)|. If there exists d ∈ Z such that d > 2g+t−1
and 2d < N − t, then there exists C ∈ C†(Fq), with n(C) = N , t̂(C) ≥ t and
consequently τ̂(C) ≥ 3t

N−1 .

Now it is not hard to verify that there exists an integer d satisfying the
conditions of this theorem if and only if N ≥ 4g + 3t+ 1 (as in this case we
can take d = 2g+ t). If we take N = 4g+ 3t+ 1 we get exactly Theorem 5.8.
Note again that this imposes the restriction |P(1)(F)| ≥ 4g + 3t + 2 on the
parameters of the function �eld in order to be able to prove t̂(C) ≥ t.

Now we use Theorem 8.12, which provides more general su�cient con-
ditions for the existence of a solution to a general Riemann-Roch set of
equations, in the particular case of the system in Theorem 11.1. We get:

Theorem 11.3 Let F/Fq be an algebraic function �eld. Let t, N ∈ Z with
N > 1 and 1 ≤ t ≤ N . Suppose there are P0, P1, . . . , PN ∈ P(1)(F) with
Pi 6= Pj for i 6= j. Let d ∈ Z and de�ne r1 = 2g−d+t−1 and r2 = 2d−N+t.
If

h >

(
N

t

)
(Ar1 + Ar2 · |Cl0[2]|),

then there exists G ∈ Divd(F) such that C = CL(D,G) ∈ C†(Fq), n(C) = N ,
and t̂(C) ≥ t

The results of Theorem 11.2 are obtained if we impose that both r1 < 0
and r2 < 0. Note that in that case the condition h >

(
N
t

)
(Ar1 +Ar2 · |Cl0[2]|)

in Theorem 11.3 is automatically ful�lled since Ar1 = Ar2 = 0. But on the
other hand, in order to be able to select an integer d such that r1 < 0, r2 < 0,
we have to impose some restrictions on the parameters of the function �eld
and the integer t for which we prove t̂(C) ≥ t. Concretely, as we have said,
we need that |P(1)(F)| ≥ 4g + 3t+ 2.
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Alternatively, we can accept that r1 ≥ 0 or r2 ≥ 0 and then we eliminate
this restriction on |P(1)(F)|. However, this also means that the condition
h >

(
N
t

)
(Ar1 +Ar2 · |Cl0[2]|) may in principle not be satis�ed. Still, using the

upper bounds for Ar1 and Ar2 given in Chapter 9 and the ones for |Cl0[2]|
given in Chapter 10 we can in turn give some su�cient conditions for this to
hold.

11.2 The improved lower bounds

In this section we use the upper bounds given in Chapters 9 and 10 in order
to give su�cient conditions that imply the ones in Theorem 11.3 in the cases
where it does not hold that both r1, r2 < 0. As we shall see this leads to new
lower bounds for τ̂(q).

11.2.1 Results from the bounds in Chapter 9 and 10

We will assume now that both r1 ≥ 0 and r2 ≥ 0. The other two cases
r1 < 0, r2 ≥ 0 and r1 ≥ 0, r2 < 0 will be examined afterwards. In order to
impose new restrictions that imply the conditions of Theorem 11.3 we use the
bounds for the number of positive divisors of degrees r1 and r2 and torsion
bounds for |Cl0[2]| which were obtained in Chapters 9 and 10. We get:

Corollary 11.4 Let F/Fq be an algebraic function �eld. Let t, N ∈ Z with
N > 1 and 1 ≤ t ≤ N . Assume there are P0, P1, . . . , PN ∈ P(1)(F) with
Pi 6= Pj for i 6= j. Assume also that there exists d ∈ Z such that if we de�ne
r1 = 2g − d+ t− 1 and r2 = 2d−N + t, the following conditions hold:

1. 0 ≤ r1, r2 ≤ g − 1,

2.
(
N
t

)
g

qg−r1−1(
√
q−1)2 <

1
2
, and

3.
(
N
t

)
g

qg−r2−1(
√
q−1)2 · |Cl0[2]| < 1

2
.

Then there exists C ∈ C†(Fq) with n(C) = N and t̂(C) ≥ t.

Proof. If 0 ≤ r1 ≤ g − 1 and 0 ≤ r2 ≤ g − 1 then we can apply
the bounds in Proposition 9.1 to conclude that Ar1/h ≤ g

qg−r1−1(
√
q−1)2 and
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Ar2/h ≤ g
qg−r2−1(

√
q−1)2 . Then

(Ar1 + Ar2 · |Cl0[2]|) ≤ gh

qg−r1−1(
√
q − 1)2

+
gh

qg−r2−1(
√
q − 1)2

· |Cl0[2]|.

Using assumptions 2) and 3) we get
(
N
t

)
(Ar1 +Ar2 · |Cl0[2]|) < h. Finally we

apply Theorem 11.3 to get the result. 4

Remark 11.5 If 2g ≥ (
√
q− 1)2, then 2) and 3) imply 1) in Corollary 11.4.

We will now analyze the asymptotical implications of this result. The
following known lemma, which can be found in [53], will be helpful.

Lemma 11.6 Let n ∈ N and 0 < τ < 1
2
be a real number. Then(

n

bτnc

)
≤
bτnc∑
k=0

(
n

k

)
≤ 2H2(τ)n

where H2(·) denotes the binary entropy (see De�nition 1.29).

Now we can state the main theorem of this section, which provides new
lower bounds for τ̂(q) for some �nite �elds Fq. They depend on torsion limits
J2(q, A)(see De�nition 10.2) with 0 < A ≤ A(q). We can use the upper
bounds for these torsion limits given in Chapter 10 in order to state explicit
lower bounds for τ̂(q).

Theorem 11.7 Let Fq be a �nite �eld. If there exists 0 < A ≤ A(q) such
that A > 1 + J2(q, A), then τ̂(q) ≥ 3τ for any τ ∈ [0, 1] with

τ +
H2(τ)

log q
<

1

3
(1− 1 + J2(q, A)

A
).

Hence, if q is a square and q ≥ 9, then τ̂(q) ≥ 3τ for any τ such that

τ +
H2(τ)

log q
<

(
√
q − 2) log q − 2

3(
√
q − 1) log q

.

If, in addition, q = 4e, e ∈ Z>1, then τ̂(q) ≥ 3τ for any τ with

τ +
H2(τ)

log q
<

(q −√q − 2) log q − 1

3(q − 1) log q
.
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Proof. Let F = {F(m)}m>0 be an in�nite family of algebraic function
�elds over Fq with g(F(m)) → ∞ such that A(F) ≥ A and J2(F) = J2(q, A)
(recall De�nitions 2.93 and 10.2). Write J = J2(F). Fix some real number
τ satisfying the hypothesis. De�ne gm = g(F(m)), jm = logq(|Cl0(F(m))[2]|)
and dm = bδgmc, where δ = 1 + A−1−J

3
. Also de�ne Nm an integer with

Nm ≤ |P(1)(F(m))| − 1 to be determined later and tm = bτNmc. De�ne
(r1)m = 2gm− dm + tm− 1 and (r2)m = 2dm−Nm + tm. The goal is to prove
that for all su�ciently large m we can apply Corollary 11.4 to F(m), Nm and
dm. We only need to verify conditions 2) and 3) which can be written as

2) logq

(
Nm

tm

)
+ (r1)m − gm + 1 < logq(

(
√
q − 1)2

2gm
)

and

3) logq

(
Nm

tm

)
+ (r2)m − gm + jm + 1 < logq(

(
√
q − 1)2

2gm
).

We have δgm − 1 ≤ dm ≤ δgm and since τ < 1
2
(which is ensured by the

condition on τ), logq
(
Nm

tm

)
< H2(τ)

log q
Nm. Fix any 0 < ε ∈ R such that

H2(τ)

log q
+ τ <

1

3
− 1 + J

3A
− 4ε

A
.

For large enough m, by de�nition of J , jm < (J + ε)gm, and by elementary

calculus logq

(
(
√
q−1)2
2gm

)
> −εgm. Moreover by de�nition of A we can take

(A− ε)gm < Nm < Agm. Then

logq

(
Nm

tm

)
+ (r1)m − gm + 1 = logq

(
Nm

tm

)
+ gm − dm + tm <

< (
H2(τ)

log q
+ τ)Nm + (1− δ)gm < (

1

3
− 1 + J

3A
− 4ε

A
)Agm + (1− δ)gm

and using δ = 1 + A−1−J
3

,

logq

(
Nm

tm

)
+ gm − dm + tm < (

A

3
− 1 + J

3
− 4ε)gm −

A− 1− J
3

gm =

= −4εgm < logq

(
(
√
q − 1)2

2gm

)
.
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On the other hand,

logq

(
Nm

tm

)
+(r2)m−gm+jm+1 = logq

(
Nm

tm

)
+2dm−Nm+tm−gm+jm+1 <

< (
H2(τ)

log q
+ τ)Nm −Nm + 2δgm + (J + ε)gm − gm + 1 <

< (
1

3
− 1 + J

3A
− 4ε

A
)Agm − (A− ε)gm + 2δgm + (J + ε)gm − gm + 1 =

= (−2A

3
+

2J

3
+ 2δ − 4

3
− 2ε)gm + 1.

Since 2δ = 2 + 2(A−1−J)
3

= 4
3

+ 2A−2J
3

,

logq

(
Nm

tm

)
+ (r2)m − gm + jm + 1 < −2εgm + 1 < logq

(
(
√
q − 1)2

2gm

)
.

Then Corollary 11.4 can be applied, and there exists a sequence of codes C(m)

with n(C(m)) = Nm →∞ and t̂(C(m)) ≥ tm. Clearly this implies τ̂(q) ≥ 3τ .
This proves the �rst part of the theorem.

Now if A(q) > 1 + J2(q, A(q)), we have τ̂(q) ≥ 3τ for any τ ∈ [0, 1] with

τ +
H2(τ)

log q
<

1

3
(1− 1 + J2(q, A(q))

A(q)
).

Assume q is square. Applying that, in this case, A(q) =
√
q−1, and using

the upper bounds for J2(q,
√
q − 1) obtained in Chapter 10.4, we �nd that

A(q) > 1 + J2(q, A(q)) for all q square, q ≥ 9 and we can derive the explicit
bounds in the statement.

4

11.2.2 Combining the bound in Chapter 9 and the large

degree strategy

We examine now the intermediate case between the results in Chapter 5 and
Section 11.2.1 where we impose that one of the integers r1, r2 in the formula
of Theorem 11.3 is negative, while the other is positive. It turns out that
the case r1 < 0 and r2 ≥ 0 does not provide new lower bounds for τ̂(q) for
any �eld, at least with the techniques we use. Hence we will study the case
where r1 ≥ 0 and r2 < 0.

First we rewrite Theorem 11.3 in the case that we already assume r2 < 0.
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Theorem 11.8 Let t, N ∈ Z with N > 1 and 1 ≤ t ≤ N . Suppose there
exist P0, P1, . . . , PN ∈ P(1)(F) and let K be a canonical divisor. Let d ∈ Z. If

2d < N − t

and

h >

(
N

t

)
Ar1

where r1 = 2g − d+ t− 1 then the Riemann-Roch system of equations

{∆P0(−X +K + PA) = 0, ∆P0(2X −D + PA) = 0}A⊂I∗,|A|=t

has a solution G ∈ Cld

Proof. By Theorem 11.3, it is enough to verify that

h >

(
N

t

)
(Ar1 + Ar2 · |Cl0[2]|)

where r2 = 2d − N + t. But since now we are assuming 2d < N − t, we
have that r2 < 0 and Ar2 = 0. Since by assumption, h >

(
N
t

)
Ar1 , then also

h >
(
N
t

)
(Ar1 + Ar2 · |Cl0[2]|). Hence we apply Theorem 11.3. 4

We assume now also that r1 ≥ 0. A su�cient condition for the fact that
h >

(
N
t

)
Ar1 can be given by using the bounds for the number of positive

divisors of degree r1.

Theorem 11.9 Let t, N ∈ Z with N > 1 and 1 ≤ t ≤ N . Let d ∈ Z and
de�ne r1 = 2g − d+ t− 1. Suppose that

1. 0 ≤ r1 ≤ g − 1,

2.
(
N
t

)
g

qg−r1−1(
√
q−1)2 < 1, and

3. 2d < N − t.

Then there is a code C ∈ C†(Fq) such that n(C) = N , t̂(C) ≥ t

Therefore, we have again basically two conditions that we need to verify
in order to apply this theorem. Condition 2) (together with 1) ) implies
h >

(
N
t

)
Ar1 and Condition 3) implies r2 < 0. Note also that in this case we

do not need to use the upper bounds for |Cl0(F)[2]|.
Finally, using the same techniques as in Section 11.2.1, we derive lower

bounds for τ̂(q).
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Theorem 11.10 Let Fq be a �nite �eld with Ihara's constant A(q) > 2. For
any τ ∈ (0, 1] with

3τ + 2
H2(τ)

log q
< 1− 2

A(q)

we have τ̂(q) ≥ 3τ .
In particular, if q is a square, for any τ ∈ (0, 1] with

3τ + 2
H2(τ)

log q
< 1− 2

√
q − 1

we have τ̂(q) ≥ 3τ .

Proof. This result is proved in a similar way to Theorem 11.7. We can
prove that there exists a family F = {F(m)}m∈N of algebraic function �elds
over Fq such that g(F(m))→∞, A(F) = A(q) and that for any m su�ciently
large, if we take Nm = |P(1)(F(m))| − 1 (we know this value is asymptotically
close to A(F)g(F(m)) ) and tm = bτNmc, there exists an integer dm such that
the conditions in Theorem 11.9 are satis�ed.

4

Remark 11.11 The most remarkable di�erence between Theorems 11.7 and
11.10 is that in the latter, the bounds do not involve the value of the torsion
limits J2(q, A). However, note that in order to apply Theorem 11.10, we
require that A(q) > 2, while Theorem 11.7 requires the weaker condition
A(q) > 1 + J2(q, A(q)) (more precisely, we only require A > 1 + J2(q, A) for
some 0 < A ≤ A(q)). Moreover, as we will see next, Theorem 11.7 gives the
best lower bounds for τ̂(q) than Theorem 11.10 for many small �nite �elds
Fq and consequently, the best lower bounds on τ̂(q) given in this text depend
in many cases on the value of the torsion limit J2(q, A(q)).

11.3 Comparison with the lower bounds from

Part II

The �rst two columns of Table 11.1 collect the bounds for τ̂(q) for small �elds
that follow from Theorem 11.7 and Theorem 11.10, respectively. For very
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q New lower bounds New lower bounds Prev. lower bounds Upper
from Theorem 11.7 from Theorem 11.10 ([20], Th. 5.9) bounds

2 0.034(*) 0.033(*) 0.028(*) 0.429
3 0.057(*) 0.059(*) 0.056(*) 0.632
4 0.104(*) 0.099(*) 0.086(*) 0.730
5 0.107(*) 0.099(*) 0.093(*) 0.787
7 0.150(*) 0.149(*) 0.111(*) 0.850
9 0.172(!) 0.178(*) 0.167(*) 0.885
16 0.298 0.224(!) 0.244(*) 0.936
25 0.323 0.298 0.278(*) 0.959
49 0.450 0.449 0.333 0.979
64 0.521 0.498 0.429 0.984
81 0.520 0.536 0.500 0.988
121 0.568 0.592 0.600 0.990

Table 11.1: Lower bounds

small �elds Fq, we cannot use directly the theorems on Fq and the results
are a consequence of applying them in an extension �eld Fqk and then using
the descent method from Chapter 6. The entries of the two �rst columns
corresponding to these cases are denoted with the symbol (*). We always
descend from the extension Fq2 , except when q = 4, where we descend from
F64

In some special cases, even though direct application of Theorem 11.7
does give non trivial lower bounds, stronger ones are obtained if we apply
this result to an extension �eld and then use the �eld descent method. We
use the symbol (!) to mark these cases in the table. Again, we apply the
descent method to the extension Fq2 in these cases.

These bounds are compared with the ones in Theorem 6.14, which appear
in the third column of Table 11.1. Recall that these bounds result from
applying the more elementary reasoning in [20], as described in Chapter 5,
combined also with the �eld descent in some cases, which we also mark in
the table with the symbol (*).

The best bound obtained for each �nite �eld is highlighted in boldface.
Note that in the case of F121, the best bound is obtained via the �old� ap-
proach of [20] and in fact this happens for all larger �elds of square cardinality.
So the improvements of τ̂(q) in this section are achieved for small values of
q. Also note that the bounds in Theorem 11.7, which depend on the upper
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bounds for the torsion limit J2(q, A(q)), are tighter than the ones in Theo-
rem 11.10, which do not depend on the value of this torsion limit. Therefore,
proving better upper bounds for J2(q, A(q)) would improve the best known
lower bounds for τ̂(q) in many cases.

In the last column of Table 11.1 the upper bounds for τ̂(q) obtained in
Chapter 7 are enumerated in italics.

Note that the techniques in this chapter allow for the obtention of direct
algebraic geometric constructions over some �elds (q square, 9 ≤ q < 49) for
which it was previously necessary to use the �eld descent method.

Summary of the chapter: We have posed certain Riemann-Roch sys-
tems of equations whose solutions yield algebraic geometric code with a cer-
tain corruption tolerance. We have combined this fact with the conditions of
solvability of Riemann-Roch systems of equations found in Chapter 8 in or-
der to �nd su�cient conditions for the existence of linear codes with a given
corruption tolerance. We have found out that one of the two approaches in
Chapter 8, the �degree-based conditions of solvability� of Section 8.2 lead to
the results of [20]. We have then studied the application to this problem of
the more general conditions of system solvability in Section 8.3. Combining
them with the bounds in Chapters 9 and 10, we have found new lower bounds
for τ̂(q), which are better than the bounds of [20] for some �nite �elds. We
have compared all lower and upper bounds for τ̂(q) obtained in this thesis.





Chapter 12

Application 2: Complexity of
extension �eld multiplication

12.1 Motivation and previous work

Riemann-Roch systems of equations have another interesting application.
This is in the context of extension �eld multiplication. D.V. Chudnovsky
and G.V. Chudnovsky [23] �rst employed algebraic curves over �nite �elds
to construct low complexity algorithms for the multiplication of two elements
in an extension �eld Fqk of Fq. Later Shparlinski, Tsfasman and Vl�aduµ [73]
studied the asymptotic complexity of these algorithms.

We can describe the multiplication algorithm in terms of multiplication-
friendly embeddings, which were introduced in Chapter 6. Given a multi-
plication friendly embedding (r, σ, ψ) of Fqk over Fq, the algorithm for the
multiplication of two elements x,y in Fqk consists on the evaluation of

xy = ψ(σ(x) ∗ σ(y)).

The computation of this formula requires two evaluations of σ, r products in
Fq and a evaluation of ψ.

The complexity of such an algorithm is de�ned as the number of products
of elements in Fq that are calculated in the second step, which equals the
expansion of the multiplication-friendly embedding.

167
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Thus, for a given q,k, it is interesting to know the smallest possible ex-
pansion of a multiplication friendly embedding of Fqk over Fq. Recall that
this is the de�nition of the parameter m(q, k) (De�nition 6.3). The proof of
the upper bound in Theorem 6.7 made use of an algebraic-geometric code
de�ned over the rational function �eld. However this construction requires
that q ≥ 2k − 2. D.V. Chudnovsky and G.V. Chudnovsky considered this
construction generalized to other types of function �elds.

Shparlinski, Tsfasman and Vl�aduµ (see [73]) studied the complexity of
such construction asymptotically, that is, when the base �eld is �xed and
the degree k of the extension grows. They de�ned Riemann-Roch systems of
equations over the function �elds of asymptotically good towers and giving
conditions for solutions to exist asymptotically (in a similar way to The-
orem 11.7 does in the case of secret sharing with strong multiplication).
However, they make one unjusti�ed claim, when the role of the two torsion
subgroup Cl0(F)[2] is neglected.

Later, more authors, especially Ballet, contributed with more results in
the papers [1], [2], [3], [4], [5], [6], [7]. The results up to 2006 are summarized
in the survey [8] and do not su�er from this gap with the exception of the
aforementioned [73]. The result in [2] is not a�ected either, but the part
of the contribution regarding asymptotical results is based on a conjecture.
However, the more recent (2008) asymptotical results in [3] and [4] are af-
fected by the same problem as in [73].

In this chapter, the results are corrected, using the techniques presented
in the previous sections and obtaining the results below.

12.2 Multiplication-friendly embeddings from

Riemann-Roch systems

The following theorem summarizes part of the ideas of [23] and [73] in the
language of Riemann-Roch systems of equations. Recall that, as we have seen
in Chapter 6.1, multiplication-friendly embeddings are equivalent in certain
sense to special kinds of codes that we called multiplication-friendly codes
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(see Proposition 6.5). We show that we can obtain multiplication-friendly
codes from solutions to certain Riemann-Roch systems of equations.

Theorem 12.1 Let F/Fq be an algebraic function �eld, N, k > 1 inte-
gers. Suppose there exist P1, . . . , PN ∈ P(1)(F) with Pi 6= Pj (i 6= j) and

P0 ∈ P(k)(F). Let D =
∑N

i=1 Pi + P0 ∈ Div(F) and D− =
∑N

i=1 Pi ∈ Div(F).
Let K ∈ Div(F) be a canonical divisor.

If the Riemann-Roch system {∆P0(−X +K) = 0,∆P0(2X −D) = 0} has
some solution, then there exists a solution G ∈ Div(F) such that
supp G∩supp D = ∅, and C = CL(D,G) is an (N, k)-multiplication friendly
code over Fq.

Furthermore, write r = `(2G) − `(2G −D−). Then there exist r indices

i1, . . . , ir ∈ {1, . . . , N}, such that C̃ = CL(D̃, G) is a (r, k)-multiplication-

friendly code, where D̃ =
∑r

j=1 Pij + P0 ∈ Div(F). In particular, we have
m(q, k) ≤ `(2G).

Proof. If there exists a solution, any divisor in its class of equivalence
is also a solution. By the Weak Approximation Theorem (Corollary 2.47),
we can take an elementG of this class in such a way that suppG∩suppD = ∅.

Suppose G is a solution. We prove C = CL(D,G) is a multiplication-
friendly code. We need to verify π0(C) = Fqk and (x,0) 6∈ Ĉ for all
0 6= x ∈ Fqk .

∆P0(K − G) = 0 implies `(K − G + P0) = `(K − G). Since degP0 = k,
it follows by the Riemann-Roch Theorem that `(G) = `(G − P0) + k. This
is enough to ensure that π0(C) = Fqk , as follows: Consider the map

ρ : L(G)→ Fqk ,

f 7→ f(P0).

Its kernel is L(G− P0). So its image is isomorphic to L(G)/L(G− P0), and
this has dimension (over Fq) `(K−G+P0)− `(K−G) = k. So π0(C) = Fqk .

Second, as Ĉ ⊆ CL(D, 2G), it su�ces to prove that (x,0) 6∈ CL(D, 2G)
for any 0 6= x ∈ Fqk . Or equivalently, that any f ∈ L(2G) with f(Pi) = 0 for
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i = 1, . . . , N satis�es f(P0) = 0. But this is also equivalent to the equality
of Riemann-Roch spaces L(2G − D−) = L(2G − D), and this is precisely
the condition ∆P0(2G − D) = 0 which holds because G is a solution of the
system. We have proved C is a multiplication-friendly code.

Finally, consider the Fq-linear code CL(D−, 2G). It has dimension r by
de�nition. Let i1, . . . , ir ∈ {1, . . . , N} be such that the code CL(D̃−, 2G) of
length r equals Frq, where D̃− =

∑r
j=1 Pij . Note that C̃ = CL(D̃, G) satis�es

π0(C̃) = Fqk trivially, since π0(C) = Fqk as it is obtained from C by punc-
turing (�erasing coordinates�) outside the 0-th coordinate.

By construction, r = `(2G) − `(2G − D̃−). Since, by de�nition, it also
holds that r = `(2G)−`(2G−D−), it follows that L(2G−D−) = L(2G−D̃−).
So if f ∈ L(2G − D̃−), then f ∈ L(2G − D−). This implies f(P0) = 0, as
shown before. 4

Next we give su�cient conditions for the solvability of such systems. Re-
call that in Chapter 8.2 we showed that in some cases we can arrange the
parameters of the system in such a way that all divisors of some �xed degree
are solutions. If we do that, then we get the following result

Theorem 12.2 Let Fq be a �nite �eld and k > 1 an integer. If there exists
a function �eld F/Fq such that |P(k)(F)| > 0 and |P(1)(F)| ≥ 4g+2k−1, then
m(q, k) ≤ 3g + 2k − 1

Proof. Take P0 ∈ P(k)(F) and P1, . . . , PN ∈ P(1)(F) with N = |P(1)(F)|
and Pi 6= Pj for i 6= j. Take D =

∑N
i=1 Pi + P0.

We consider the Riemann-Roch system of equations

{∆P0(−X +K) = 0,∆P0(2X −D) = 0}.

We apply Corollary 8.7. The integer d = 2g + k − 1 satis�es that

−d+ degK + degP0 = −d+ 2g − 2 + k = −1 < 0

and
2d− degD + degP0 = 2d− (N + k) + k = 2d−N < 0

since N = |P(1)(F)| ≥ 4g + 2k − 1 > 2d. Consequently, by Corollary 8.7 any
divisor G ∈ Div2g+k−1(F) is a solution to the Riemann-Roch set of equations.
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Hence, by Theorem 12.1, m(q, k) ≤ `(2G). Note that

deg 2G = 4g + 2k − 2 ≥ 2g − 1,

so Riemann-Roch Theorem implies

`(2G) = deg 2G− g + 1 = 3g + 2k − 1.

So m(q, k) ≤ 3g + 2k − 1. 4
But instead, one can use the more general Theorem 8.12 in order to obtain

a su�cient condition for the solvability of the system in Theorem 12.1

Theorem 12.3 Let F/Fq be an algebraic function �eld. Let N, k > 1 be
integers. Suppose there are P1, . . . , PN ∈ P(1)(F) with Pi 6= Pj (i 6= j) Let
d ≥ 0 be an integer and de�ne r1 = 2g − 2− d+ k and r2 = 2d−N .

If
h > Ar1 + Ar2|Cl0[2](F)|

then the system {∆P0(−X + K) = 0,∆P0(2X −D) = 0} has some solution
G ∈ Div(F) with degG = d.

Proof. This is exactly Theorem 8.12 applied to the system

{∆P0(−X +K) = 0,∆P0(2X −D) = 0}.

4

Remark 12.4 (The gap in [73]) It is at this point when [73] takes an un-
justi�ed step, as it is claimed that the condition h > Ar1 + Ar2 (instead of
h > Ar1 + Ar2|Cl0[2]|) su�ces to ensure the existence of a solution to the
corresponding Riemann-Roch system of equations. This jeopardizes the cor-
rection of the asymptotical bounds.

We apply now the bounds in Chapter 9 in order to get a set of conditions
which imply h > Ar1 + Ar2|Cl0[2](F)| and consequently the existence of a
solution G of certain degree to the system in Theorem 12.1. When these
conditions are satis�ed we can give an upper bound for m(q, k).

Theorem 12.5 Let F/Fq be a function �eld and N, k > 1 be integers. Sup-
pose there are P1, . . . , PN ∈ P(1)(F) with Pi 6= Pj (i 6= j) and there is
P0 ∈ P(k)(F). Let d ∈ Z with d ≥ 0 and de�ne r1 = 2g − 2 − d + k and
r2 = 2d−N . Suppose the following conditions hold:
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1. 0 ≤ r1 ≤ g − 1,

2. 0 ≤ r2 ≤ g − 1,

3. g
qg−r1−1(

√
q−1)2 <

1
2
,

4. g
qg−r2−1(

√
q−1)2 · |Cl0[2]| < 1

2
.

Then m(q, k) ≤ 2d− g + 1.

Proof. By Proposition 9.1, the conditions imply h > Ar1 + Ar2|Cl0[2]|.
By Theorem 12.3, there is a solution G ∈ Divd(F) to the system

{∆P0(−X +K) = 0,∆P0(2X −D) = 0}.

Therefore, by Theorem 12.1, there is an (n, k)-multiplication friendly code
over Fq with n ≤ `(2G).

By condition i) and by the de�nition of r1, it holds that d ≥ g+k−1 > g.
Hence, deg 2G = 2d > 2g and by Riemann-Roch Theorem,

`(2G) = deg 2G− g + 1 = 2d− g + 1,

and the claim follows by the last statement in Theorem 12.1.
4

12.3 The asymptotical minimal multiplication

complexity µ(q)

12.3.1 De�nition and known results

We introduce now the asymptotical quantity µ(q) that we are interested to
upper bound.

Definition 12.6 µ(q) := lim infk∈N
m(q,k)
k

.

The results in [23] and [73] (the ones which do not su�er from the afore-
mentioned problem) imply the following facts 1:

1Note that there is a typo in the statement of [73] of the lower bound for µ(q), which
appears stated as µ(q) ≥ 2(1 + 1

(q−1) ), but the lower bound stated here is the one that

follows logically from the argument in that paper
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Theorem 12.7 We have:

� µ(2) ≥ 3.52 and µ(q) ≥ 2(1 + 1
2(q−1)) for any �nite �eld Fq with q > 2

� For any �nite �eld Fq with q square with q ≥ 25, µ(q) ≤ 2(1 + 1√
q−3)

� For any �nite �eld Fq and any integer k ≥ 2, µ(q) ≤ m(q,k)
k

µ(qk). In
particular µ(q) ≤ 3

2
µ(q2)

The two last assertions imply that µ(q) is �nite because, as we know,
m(q, 2) = 3.

The problematic bound from [73] states that µ(q) ≤ 2(1 + 1
A(q)−1) when

A(q) > 1 (and in particular µ(q) ≤ 2(1 + 1√
q−2) for q square, q ≥ 9).

On the other hand, the asymptotic results that follow from [8] improve
in certain cases the upper bounds in Theorem 12.7.

12.3.2 Upper bounds for µ(q)

In order to study the behaviour of µ(q), one �rst needs to ensure that given
an extension �eld of large enough degree there are function �elds over the
base �eld with at least one place of that degree. We need to use the following
known fact:

Theorem 12.8 ([75], 5.2.10(3)) If 1 < k ∈ Z satis�es

2g + 1 ≤ q
k−1
2 (
√
q − 1),

then P(k)(F) 6= ∅.

Next, the result of applying the simple argument in Theorem 12.2 is given.
This is stated merely as an example, as it does not improve any previously
known result.

Theorem 12.9 Let Fq be a �nite �eld. Suppose A(q) > 4. Then

µ(q) ≤ 2(1 +
3

A(q)− 4
).
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The proof of this theorem is similar to the following one and is omitted

Main Theorem 12.10 Let Fq be a �nite �eld. If there exists 0 < A ≤ A(q)
such that A > 1 + J2(q, A), then

µ(q) ≤ 2(1 +
1

A− J(q, A)− 1
).

Consequently, for any q square, q ≥ 9,

µ(q) ≤ 2(1 +
log q

(
√
q − 2)log q − 2

).

If in addition q = 4e, e ∈ Z>1, then

µ(q) ≤ 2(1 +
(
√
q + 1) log q

(q −√q − 2) log q − 1
).

Proof. Let F = {F(m)}m>0 be an in�nite family of function �elds over
Fq be an in�nite family of function �elds over Fq with g(F(m)) → ∞ and
such that A(F) ≥ A and J2(F) = J2(q, A). Write J = J2(F). De�ne
gm = g(F(m)), Nm = |P(1)(F(m))|, jm = logq(|Cl0(F(m))[2]|), and dm = dδgme,
km = bκgmc for some real numbers δ, κ > 0 to be determined next. Also
de�ne (r1)m = 2gm − 2 − dm + km and (r2)m = 2dm − Nm. The idea is to
apply Theorem 12.5 to F(m).

For all m selected large enough, we can argue as follows. First note
that P(km)(F(m)) 6= ∅ by Theorem 12.8 and because κ > 0. According to
Remark 11.5, all that remains to prove in order to apply Theorem 12.5 are
conditions iii) and iv). These can be written as

iii)(r1)m − gm + 1 ≤ logq

(
(
√
q − 1)2

2gm

)
and

iv)(r2)m − gm + 1 + jm ≤ logq

(
(
√
q − 1)2

2gm

)
.

Fix any 0 < ε ∈ R such that 4ε < A − (1 + J), which is possible by
the condition A − J > 1. De�ne δ = A−J+1

2
− ε and κ = δ − 1 − ε. The

condition 4ε < A − (1 + J) ensures δ > 1 and κ > 0. The de�nition of A
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ensures Nm > (A− ε
3
)gm. Moreover, by de�nition of J we might assume that

jm < (J + ε
3
)gm (otherwise we might take an in�nite subfamily where this

is satis�ed). By elementary calculus, we have logq

(
(
√
q−1)2
2gm

)
> − ε

3
gm. Now

note that

(r1)m − gm + 1 = gm − dm + km − 1 ≤ gm − dδgme+ bκgmc − 1.

Now, by substituting the value of κ,

(r1)m − gm + 1 ≤ −εgm − 1 < − ε
3
gm < logq

(
(
√
q − 1)2

2gm

)
.

On the other hand

(r2)m − gm + 1 + jm = 2dm −Nm − gm + 1 + jm <

< 2(δgm + 1)− (A− ε

3
)gm − gm + (J +

ε

3
)gm + 1

by applying the previous bounds on Nm and jm. Now, by de�nition of δ we
get

(r2)m − gm + 1 + jm ≤ −
4ε

3
gm + 3 < − ε

3
gm < logq

(
(
√
q − 1)2

2gm

)
.

Hence we have proved

(r1)m − gm + 1 < logq

(
(
√
q − 1)2

2gm

)
and

(r2)m − gm + 1 + jm < logq

(
(
√
q − 1)2

2gm

)
.

Application of Theorem 12.5 for large m shows that m(q, k) ≤ 2dm − gm + 1
and therefore µ(q) ≤ 2δ−1

κ
. If we substitute κ and δ by the values given before,

we get

mq ≤ 2
A− J − 2ε

A− J − 1− 4ε
.

This holds for any ε > 0 small enough so by letting ε→ 0,

µ(q) ≤ 2
A− J

A− J − 1
= 2(1 +

1

A− J − 1
).
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The concrete bounds are obtained by applying the bounds for J2(q, A(q)) in
the previous section. 4

Hence we have that µ(q) ≤ 2(1+ 1
A(q)−J2(q,A(q))−1) if A(q) > 1+J2(q, A(q)).

This improves the results in Theorem 12.7. It also improves many cases of
the bounds that follow from [8]. It is always worse however than the prob-
lematic statement in [73] (we could only reach this bound if we could prove
that J2(q, A(q)) = 0).

12.3.3 Table of explicit upper bounds on µ(q) and com-

parison with previous results

In the following Table we compare the upper bounds for µ(q) implied by
Main Theorem 12.10 with the best previous bounds stated in [8] for some
�nite �elds Fq.

Remark 12.11 Note that the improvement that we get in characteristic 2 by
applying the bounds of Main Theorem 12.10 which are speci�c for powers of 4
(which use the theorem by Deuring-Shafarevich) is signi�cant. If we did not
use this improvement, we would only be able to prove the bounds µ(16) ≤ 3.33
and µ(64) ≤ 2.35.

q New bounds Previous bounds
9 7.419 9
16 3.026 3.924
25 2.779 4
49 2.431 3
64 2.335 2.800
81 2.300 2.667

Bounds for smaller �nite �elds Fq can be obtained applying for example
that µ(q) ≤ 3

2
µ(q2) or the more general version µ(q) ≤ m(q,k)

k
µ(qk) for any

k ≥ 2 (Theorem 12.7).

Summary of the chapter: We have studied the problem of complex-
ity of multiplication in extension �elds, �rst considered by Chudnovsky and
Chudnovsky. We have explained how to pose a Riemann-Roch system of
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equations whose solutions yield a multiplication algorithm. We have de�ned
the asymptotical best multiplication complexity µ(q) of a �nite �eld Fq. We
have identi�ed a gap in one of the proofs of [73] that implied incorrect (or
at least unjusti�ed) upper bounds for this value. We used the results of
solvability about Riemann-Roch systems of equations in Chapter 8 together
with the bounds in Chapters 9, 10 in order to obtain new upper bounds for
µ(q).
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In this thesis the asymptotical behaviour of families of ideal linear secret
sharing schemes with strong multiplication has been analyzed. The problem
has been studied from a code-theoretic perspective. We have introduced the
notion of minimal weight wi(C) at an index i of a linear code C and the
class C(Fq) of linear codes over Fq such that one can de�ne a linear secret
sharing scheme Σ(C, i) from any index i ∈ I(C). We have characterized
the privacy and reconstruction thresholds of Σ(C, i) in terms of wi(C) and
w⊥i (C). In order to study the multiplication of Σ(C, i), we have introduced
the notion of Schur square Ĉ of a linear code C as the linear span of the set
of Schur products of every pair of words in C. We have de�ned a subclass
C†(Fq) ⊆ C(Fq) that contains all codes C such that some LSSS Σ(C, i) has
t-strong multiplication for some integer t. We have introduced the corruption
tolerance τ̂(C) of a code C ∈ C†(Fq). This is the ratio τ̂(C) = 3t

n−1 where
t is the largest integer for which there exists a linear secret sharing scheme
constructed from C which has t-strong multiplication and n shares. It is
immediate to verify that 0 ≤ τ̂(C) ≤ 1 for any C ∈ C†(Fq). We have
introduced the asymptotical optimal corruption tolerance τ̂(q) of the �eld Fq
which represents the best possible limit for the corruption tolerance of an
in�nite family of codes C ∈ C†(Fq). We have recast the results of Chen and
Cramer [20] in our language. These results stated that τ̂(q) > 1 − 4

A(q)
> 0

for an in�nite number of �nite �elds Fq, concretely those such that Ihara's
constant A(q) satis�es A(q) > 4.

The �rst main result of this thesis assures that τ̂(q) > 0 for every �nite
�eld Fq. In the LSSS terminology this means that for any �nite �eld Fq there
is an in�nite family of ideal LSSS such that the number of shares n tends
to in�nity and they have t-strong multiplication for t = Ω(n). In particular
it has been shown that τ̂(2) ≥ 0.034 so, for an arbitrarily large n, there
exist ideal binary linear secret sharing schemes with n shares and t-strong
multiplication for t = 0.01n. In order to show this we have introduced a
dedicated �eld descent technique, which allowed us to prove τ̂(q) ≥ 1

3
τ̂(q2)

and then we have combined it with the results of Chen and Cramer.

On the other hand, we have also proved τ̂(q) < 1. It was easy to verify
that the optimal value τ̂(C) = 1 could only be achieved for the case of MDS
codes. Since the length of these codes is bounded by some function of q, the
size of the �eld, it is not possible to have τ̂(C) = 1 for codes of arbitrary
length over a �xed �nite �eld Fq. But, by proving τ̂(q) < 1, we have also
ruled out the possibility that the corruption tolerance of an in�nite family of



182 Conclusions

ideal LSSS tends to 1. In fact we have obtained upper bounds for τ̂(q) which
in some cases (for very small �nite �elds) are quite far from 1. For example,
in the binary case, we have proved τ̂(2) < 0.429. The proof of some of the
results that lead to these bounds are somewhat reminiscent of the techniques
used to prove the Norse upper bound for the covering radius and the Plotkin
upper bound for the dimension and distance of a linear code. However,
more sophisticated techniques have been proposed for these coding theory
problems, for example linear programming bounds. So an open question is:
Can some of these more sophisticated techniques be adapted to the problem
of upper bounding τ̂(q)?

We have also improved the lower bounds for τ̂(q) that appeared in [20]
by means of more involved algebraic geometric techniques. We have consid-
ered certain system of equations de�ned on the set of divisors of the function
�eld, that have been named Riemann-Roch systems of equations in this text,
whose solutions yield linear codes with good properties. The equations con-
sist on equalities of the Riemann-Roch dimensions of some pairs of divisors.
In our case, we can pose a certain Riemann-Roch system such that whenever
it has a solution there is an ideal linear secret sharing scheme with certain
corruption tolerance. Although the idea of Riemann-Roch systems of equa-
tions had already been used in previous works [54, 60, 79, 81, 82, 83, 85], the
systems considered in this thesis are of a more general type and this a�ects
the analysis of the existence of solutions.

In order to guarantee the existence of a solution to a system of this kind,
we have given upper bounds for two kinds of parameters of the algebraic
function �eld. The �rst parameter is the number of e�ective divisors of
certain degree. Bounds for this parameter had already been found in other
works concerning Riemann-Roch systems of equations. We have adapted the
bounding techniques in those papers, which make use of results about the
zeta function of the function �eld. The novelty was the necessity to bound
a second parameter: the size of the m-torsion subgroup Cl0(F)[m] of the
degree zero divisor class group Cl0(F). This does not seem to have been
studied before in relation to the problem of proving the existence of a system
of equations of the considered type.

We have de�ned, for every �nite �eld Fq and 0 < a ≤ A(q), the torsion
limits Jm(q, a), which are an asymptotic measure of |Cl0(F)[m]| for families
F of function �elds F with �Ihara's limit� A(F) ≥ a. We have shown that
we can derive some upper bounds for Jm(q, a) from several known results in
algebraic geometry. General bounds for any a, m, q follow from results due
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to Weil, but we have improved this bounds in some cases using two di�erent
strategies, based on properties of Weil Pairing and on a theorem of Deuring
and Shafarevich about the computation of the p-rank in extensions of alge-
braic function �elds. The latter idea has led to a particularly good upper
bound for J2(q,

√
q−1) in the case where q is a square. It is an interesting and

crucial open problem to determine the actual value of Jm(q, a) for some �nite
�eld Fq, real number 0 < a ≤ A(q) and integer m 6= −1, 1; in particular, it is
an intriguing question to determine whether Jm(q, a) = 0 in some case. An-
other interesting question is to determine if it helps to consider non-optimal
families F of function �elds over Fq; that is, if Jm(q, a) < Jm(q, A(q)) for
some m, q and 0 < a < A(q).

We have shown, as an application of the results obtained for a particular
kind of Riemann-Roch systems of equations, new lower bounds for τ̂(q) > 0.
These are achieved in the case a > 1 + J2(q, a) for some
0 < a ≤ A(q) and depend on the ratio 1+J2(q,a)

a
. The bounds are stronger

if we can guarantee that this value is small. So another open question is,
even if Jm(q, a) < Jm(q, A(q)) holds for some m,q and 0 < a < A(q), we
can also prove 1+J2(q,a)

a
< 1+J2(q,A(q))

A(q)
; in other words, we wonder if the best

bounds for τ̂(q) obtained by means of this argumentation may be attained
for a non-optimal family of function �elds.

Another related interesting question would be if it is possible at all to
prove τ̂(q) > 0 without the use of asymptotically good families of function
�elds. A well known result of coding theory, proved by Pellikaan, Shen
and van Wee( [65]) states that every linear code over Fq is an AG-code de-
�ned over some function �eld F/Fq. Therefore for any in�nite family of
codes {C(m)}m>0 ⊆ C†(Fq) with n(C(m))→∞ there exists an in�nite family
F = {F(m)}m>0 of function �elds F(m)/Fq such that C(m) is an AG-code de-
�ned over the function �eld F(m)/Fq and consequently |P(1)(F(m))| → ∞
and g(F(m)) → ∞. Assume now that we have a family of linear codes
{C(m)}m>0 ⊆ C†(Fq) with n(C(m)) → ∞ such that in addition the corrup-
tion tolerance tends to a positive number, that is, τ̂(C(m)) → τ > 0. The
question is if this family of codes may be de�ned as AG-codes over some
asymptotically bad family F of function �elds over Fq (i.e. a family F such
that A(F) = 0).

Note that in this thesis whenever we have constructed a family of codes
directly as AG-codes over some family of function �elds F we required at least
the condition A(F) > 1 in order to ensure that the corruption tolerance
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of the codes is asymptotically non-vanishing. However we know that this
condition is not necessary for every �nite �eld because we have also obtained,
by means of the �eld descent technique, families of codes over F2 and F3

with asymptotically non-vanishing corruption tolerance. Since A(q) < 1 for
q = 2, 3, and on account of the aforementioned result in [65], the codes in
these families must be de�ned as AG-codes on an in�nite family of function
�elds with A(F) < 1.

We can compare this aspect of our problem with the code-theoretic prob-
lem of asymptotically good codes. Xing [82] proved that given a �nite �eld Fq
and any real number 0 < a ≤ A(q) there exist families of AG-codes de�ned
over a family F of function �elds over Fq with A(F) = a and attaining the
Gilbert-Varshamov bound (interestingly those results are also based on the
Riemann-Roch systems approach). And in fact, if we examine the arguments
given in [82], the same result is true if one uses asymptotically bad families
F = {F(m)}m>0 (i.e. A(F) = 0) as long as |P(1)(F(m))| → ∞. However we do
not seem to be able to use the same techniques as a successful approach to
our problem.

We have also applied the �Riemann-Roch systems approach� to a problem
in the context of multiplication complexity in �nite �elds. More precisely,
given a base �eld Fq and an extension �eld Fqk an algorithm by D. V. Chud-
novsky and G. V. Chudnovsky allows for the transformation of the task of
multiplying two elements in Fqk into the computation of a certain number of
products of elements in Fq. The complexity of the product is the minimal nec-
essary number of products in the base �eld, which we have denoted m(q, k).
Shparlinski, Tsfasman and Vladut[73] extended this work and studied the
problem asymptotically, that is, when q is �xed and k grows. Concretely, one
of the quantities they considered was the limit inferior ofm(q, k)/k for k ∈ N,
which we have denoted µ(q). They computed lower and upper bounds for
this value, however as we have seen, there was a gap in one of their proofs,
where they did not take into account the role of the group Cl0(F)[2], and
this error a�ected the upper bounds. We have identi�ed and this problem
and proved new bounds using the aforementioned bounding techniques. The
bounds obtained are worse (although relatively close) than the ones claimed
in [73]. It is still an open problem to determine whether the bounds clamed
in [73] are valid, which may still happen, since the known lower bounds for
µ(q) are smaller than the claimed upper bounds. In fact, our argumentation
here proves that these bounds would be true if J2(q, A(q)) = 0 holds.
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To conclude, we remark that the techniques explained in this thesis can
also be applied to a number of extensions of the problems studied here and
this is the subject of current and future work. In �rst place, we can analyze
the case of (non-perfect) LSSS with n shares where the secret is not one
single element of Fq but a vector of length κn for some real number κ. The
study of multiplication of these kind of schemes was initiated by Franklin and
Yung, who considered in [36] a variation of Shamir's scheme where the secret
consists on the evaluations of a polynomial on several elements of the �eld,
and discussed its applications in multiparty computation. We can de�ne
an appropiate generalization Cκ(Fq) of the class C(Fq), and for a code C in
this class and an appropiate set T ⊆ I(C), with |T | = κn(C), we take as
secret the subvector πT (c), and as shares the remaining coordinates πi(c),
i /∈ T , for a word c taken uniformly at random in C. We can generalize all
the notions given in Chapters 4 and 5, which now depend also on the extra
parameter κ (the �relative length of the secret�) and apply the same kind
of techniques explained in the rest of the thesis. In particular we can also
estimate the �multisecret asymptotical optimal corruption tolerance� τ̂(q, κ).
We can also study the case of secret sharing schemes where the secret is an
element of an extension �eld Fqk of Fq, the shares are elements of Fq and the
strong multiplication property is de�ned with respect to the products in the
respective �elds. Cramer,Damgård and de Haan �rst studied a scheme with
these properties (see [26]). Some results on this problem also appeared in
[18]. In this case, we need to apply the techniques of this thesis to generalized
linear codes, where one coordinate lies in the extension �eld.

Other extensions are interesting as well: we can consider the more general
problem of secret sharing schemes with r-fold multiplication, for r ≥ 2, where
the product of r secrets is determined by the products of the corresponding
sets of r shares. Then we need to study the weight at an index of the r-th
order Schur product transform C~r of a code C. We can apply the strategy
consisting of Riemann-Roch systems of equations as explained in Part III. In
this case, we will have equations of the form ∆P0(rX−D+PA) and therefore
we will need the upper bounds for the size of r-torsion limits Jr(q, a) that
were obtained in Chapter 10 (note again that for the applications considered
in this thesis we only needed bounds for the particular case r = 2, but the
results in Chapter 10 are more general).

Finally, we can also analyze which of our constructions enjoy the property
of t-independence of shares, required by the application to correlation extrac-
tors of [47] mentioned in the introduction. It turns out that this property
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can be captured imposing a condition on the dual distance of the codes and
that all techniques we have used in this thesis yield secret sharing schemes
with t-independence of shares for t = Ω(n) except for the ones resulting from
the application of the descent technique presented in Chapter 6 where, on
account of the observations of Section 6.4, the dual distances of all codes of
the family are upper bounded by certain constant. It is still an unanswered
question to determine whether for all �nite �elds Fq there is a family of codes
{C(m)}m>0 ⊆ C†(Fq) with n(C(m))→∞ such that not only τ̂(C(m))→ τ > 0
but also d((C(m))⊥)/n(C(m)) → δ > 0. Currently we can only prove this
fact for �nite �elds for which we can prove τ̂(q) > 0 without resorting to the
descent technique, in particular for every �nite �eld Fq with q square and
q ≥ 9, as we can deduce from the results stated in Table 11.1.
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En esta tesis se ha analizado el comportamiento asintótico de familias
de esquemas de compartición de secretos lineales ideales con multiplicación
fuerte. El problema se ha estudiado desde la perspectiva de la teoría de códi-
gos. Hemos introducido el concepto de peso mínimo wi(C) en un índice i
de un código lineal C y la clase C(Fq) de códigos lineales sobre Fq tales que
podemos de�nir un esquema de compartición de secretos Σ(C, i) a partir de
cualquier índice i ∈ I(C). Hemos caracterizado los umbrales de privacidad y
reconstrucción de Σ(C, i) en función de wi(C) y w⊥i (C). Para estudiar la mul-
tiplicación de Σ(C, i), hemos introducido el concepto de cuadrado de Schur
Ĉ de un código lineal C como el código generado por el conjunto de produc-
tos de Schur de todo par de palabras de C. Hemos de�nido una subclase
C†(Fq) ⊆ C(Fq) que contiene todos los códigos C tal que algún esquema
Σ(C, i) tiene t-multiplicación fuerte para algún entero t. Se ha usado la no-
ción de tolerancia de corrupción τ̂(C) de un código C ∈ C†(Fq). Es el cociente
τ̂(C) = 3t

n−1 donde t es el mayor entero para el cual existe un esquema de com-
partición de secretos construido a partir de C que tiene t-multiplicación fuerte
y n fragmentos. Es inmediato comprobar que 0 ≤ τ̂(C) ≤ 1 para cualquier
C ∈ C†(Fq). Hemos introducido la tolerancia de corrupción asintótica τ̂(q)
del cuerpo Fq que representa el mejor límite posible para la tolerancia de co-
rrupción de una familia in�nita de códigos C ∈ C†(Fq). Hemos reformulado
los resultados de Chen y Cramer [20] en nuestro lenguaje. Estos resultados
implican que τ̂(q) > 1 − 4

A(q)
> 0 para un número in�nito de cuerpos �ni-

tos Fq, concretamente para aquellos cuya constante de Ihara A(q) satisface
A(q) > 4.

Un resultado a resaltar de esta tesis es el que asegura que τ̂(q) > 0 para
todo cuerpo �nito Fq. En términos de esquemas de compartición de secretos
esto signi�ca que para todo cuerpo �nito Fq existe una familia de esquemas
de compartición de secretos lineales ideales tal que el número de fragmentos n
tiende a in�nito y tienen t-multiplicación fuerte para t = Ω(n). En particular
se ha demostrado que τ̂(2) ≥ 0.034 así que, para n arbitrariamente grande,
existe un esquema de compartición de secretos lineal ideal con n fragmentos y
t-multiplicación fuerte para t = 0.01n. Para probar esto, hemos introducido
una técnica de descenso de cuerpo, que nos ha permitido demostrar que
τ̂(q) ≥ 1

3
τ̂(q2) y luego la hemos combinado con los resultados de Chen y

Cramer.

Por otro lado, hemos demostrado que τ̂(q) < 1. Es fácil veri�car que el
valor óptimo τ̂(C) = 1 sólo se puede alcanzar cuando C es un código MDS.
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Como la longitud de este tipo de códigos está acotada por cierta función de
q, el tamaño del cuerpo, no es posible tener que τ̂(C) = 1 para códigos de
longitud arbitraria sobre un determinado cuerpo �nito Fq. Pero, demostrando
que τ̂(q) < 1, también hemos eliminado la posibilidad de que la tolerancia de
corrupción de una familia in�nita de esquemas de compartición de secretos
lineales ideales tienda a 1. De hecho, hemos obtenido cotas superiores para
τ̂(q) que en algunos casos (para cuerpos muy pequeños) están bastante lejos
de 1. Por ejemplo, en el caso binario, hemos demostrado que τ̂(2) < 0.429.
La demostración de algunos de los resultados que nos llevan a estas cotas
se parecen, en cierto modo, a las técnicas que se utilizan para demostrar la
denominada cota noruega para el radio de cobertura y la cota de Plotkin
para la dimensión y distancia de un código lineal. Sin embargo, en la teoría
de códigos se han utilizado técnicas más so�sticadas para estos problemas,
por ejemplo programación lineal. Así que una pregunta que nos podemos
plantear es: ¾se puede adaptar alguna de estas técnicas más so�sticadas para
mejorar las cotas superiores que hemos encontrado para τ̂(q)?

Además hemos mejorado las cotas inferiores para τ̂(q) que aparecieron
en [20] por medio de técnicas más elaboradas de geometría algebraica. Hemos
considerado ciertos sistemas de ecuaciones de�nidos en el conjunto de divi-
sores de un cuerpo de funciones algebraicas, sistemas que hemos denominado
de Riemann-Roch, cuyas soluciones permiten obtener códigos lineales con
buenas propiedades. Las ecuaciones consisten en igualdades de las dimen-
siones de Riemann-Roch de algunos pares de divisores. En nuestro caso,
podemos plantear un sistema de Riemann-Roch de forma que si tiene solu-
ción, entonces existe un esquema de compartición de secretos lineal ideal con
cierta tolerancia de corrupción. Aunque la idea de los sistemas de ecuaciones
de Riemann-Roch había sido utilizada ya anteriormente en [54, 60, 79, 81,
82, 83, 85], los sistemas considerados en esta tesis son de un tipo más general
y esto afecta al análisis de la existencia de soluciones.

Para garantizar la existencia de solución en un sistema de este tipo, hemos
necesitado cotas superiores para dos tipos de parámetros del cuerpo de fun-
ciones algebraicas. El primer parámetro es el número de divisores positivos
de cierto grado. Se habían obtenido cotas para este parámetro en trabajos
anteriores que utilizaban el planteamiento de sistemas de Riemann-Roch.
En esta tesis se han adaptado las técnicas utilizadas, que hacen uso de
algunos resultados acerca de la función zeta del cuerpo de funciones alge-
braicas. La novedad de este trabajo con respecto a trabajos anteriores es
la necesidad de acotar un segundo parámetro: el tamaño del subgrupo de
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m-torsión Cl0(F)[m] del grupo de clases de divisores de grado cero Cl0(F).
Este problema no parece haber sido tratado anteriormente en relación con el
de asegurar la existencia de un sistema de ecuaciones de Riemann-Roch.

A este respecto, hemos de�nido para todo cuerpo �nito Fq y todo número
real a con 0 < a ≤ A(q) los límites de torsión Jm(q, a), que son una medida
asintótica de |Cl0(F)[m]| para cuerpos de funciones algebraicas F de una fa-
milia F con �límite de Ihara� A(F) ≥ a. Hemos demostrado que podemos
obtener cotas superiores para los valores Jm(q, a) a partir de resultados cono-
cidos de geometría algebraica. Algunos resultados clásicos de Weil acerca de
torsión en variedades abelianas permiten deducir cotas generales para cuales-
quiera a, m, q, pero hemos mejorado estas cotas en algunos casos utilizando
dos estretegias distintas, que se basan respectivamente en propiedades de
los pares de Weil y en un teorema de Deuring y Shafarevich acerca de la
computación del p-rango de extensiones de cuerpos de funciones algebraicas.
Esta última idea nos ha llevado a obtener cotas superiores particularmente
buenas para J2(q,

√
q − 1) en el caso en el que q es un cuadrado. Determi-

nar el verdadero valor de Jm(q, a) para algún cuerpo �nito Fq, número real
0 < a ≤ A(q) y entero m 6= −1, 1 es un problema interesante; en particular,
sería importante determinar si Jm(q, a) = 0 puede ocurrir en algún caso. Otra
cuestión interesante es la de determinar si permitir familias no óptimas F de
cuerpos de funciones algebraicas sobre Fq puede ayudar a mejorar las cotas
superiores para resolver este problema; es decir, si Jm(q, a) < Jm(q, A(q))
para algunos m, q y algún 0 < a < A(q).

Hemos encontrado nuevas cotas inferiores para τ̂(q) como aplicación de
los resultados obtenidos para un tipo particular de sistemas de ecuaciones de
Riemann-Roch. Estas cotas se alcanzan siempre que a > 1 + J2(q, a) para
algún 0 < a ≤ A(q) y dependen del cociente 1+J2(q,a)

a
. Las cotas son mejores si

podemos garantizar que este valor es pequeño. Así que otra cuestión abierta
es si, incluso en el caso de que Jm(q, a) < Jm(q, A(q)) para algunos m, q
y 0 < a < A(q), se cumple que 1+J2(q,a)

a
< 1+J2(q,A(q))

A(q)
; en otras palabras,

nos preguntamos si las mejores cotas para τ̂(q) obtenidas por medio de estos
argumentos se pueden alcanzar para una familia no óptima de cuerpos de
funciones algebraicas.

Otra cuestión interesante relacionada con lo anterior que nos podemos
plantear es la de determinar si es posible demostrar que τ̂(q) > 0 sin utilizar
familias buenas de cuerpos de funciones algebraicas. Un resultado conocido
de teoría de códigos, demostrado por Pellikaan, Shen y van Wee( [65]) a�rma
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que todo código lineal sobre Fq es un código algebraico-geométrico de�nido
sobre algún cuerpo de funciones algebraicas F/Fq. Por tanto para cualquier
familia in�nita de códigos {C(m)}m>0 ⊆ C†(Fq) con n(C(m)) → ∞ existe
una familia in�nita F = {F(m)}m>0 de cuerpos de funciones F(m)/Fq tal
que C(m) es un código algebraico-geométrico de�nido sobre un cuerpo de
funciones F(m)/Fq y por tanto |P(1)(F(m))| → ∞ y g(F(m))→∞. Supongamos
ahora que tenemos una familia {C(m)}m>0 ⊆ C†(Fq) de códigos lineales con
n(C(m)) → ∞ y además la tolerancia de corrupción tiende a un número
positivo, es decir, τ̂(C(m)) → τ > 0. La pregunta que nos planteamos es si
esta familia de códigos se puede de�nir como códigos algebraico-geométricos
sobre alguna familia asintóticamente mala F de cuerpos de funciones sobre
Fq (es decir una familia F tal que A(F) = 0).

Notemos que, en esta tesis, siempre que hemos construido una familia de
códigos directamente como códigos algebraico-geométricos sobre alguna fa-
milia de cuerpos de funciones F exigimos que se cumpla al menos la condición
A(F) > 1 para asegurar que la tolerancia de corrupción de los códigos no
tienda a cero. Sin embargo, sabemos que esta condición no es necesaria para
todo cuerpo �nito porque también hemos obtenido, por medio del método
de descenso de cuerpo, familias de códigos sobre F2 y F3 con tolerancia de
corrupción asintóticamente positiva. Como A(q) < 1 para q = 2, 3, teniendo
en cuenta el resultado antes mencionado de [65], los códigos de estas fami-
lias deben ser códigos algebraico-geométricos sobre una familia in�nita de
cuerpos de funciones F tal que A(F) < 1.

Podemos comparar este aspecto de nuestro problema con el de construir
códigos lineales asintóticamente buenos. Xing [82] demostró que dado un
cuerpo �nito Fq y cualquier número real 0 < a ≤ A(q) existen familias
de códigos algebraico-geométricos de�nidos sobre una familia F de cuerpos
de funciones algebraicas sobre Fq con A(F) = a que alcanzan la cota de
Gilbert-Varshamov (es interesante que estos resultados también se basan en
el planteamiento de sistemas de Riemann-Roch). Y de hecho, si examinamos
los argumentos dados en [82], este resultado también es cierto si utilizamos
familias asintóticamente malas F = {F(m)}m>0 (es decir, A(F) = 0) siempre
que |P(1)(F(m))| → ∞. Sin embargo, estas técnicas no parecen ser efectivas
para aproximarnos a nuestro problema.

Hemos aplicado también el �enfoque de los sistemas de Riemann-Roch� a
un problema en el contexto de la complejidad de la multiplicación en cuerpos
�nitos. De forma más precisa, dado un cuerpo base Fq y una extensìón suya
Fqk , un algoritmo de D.V. Chudnovsky y G.V. Chudnovsky permite trans-
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formar el problema de multiplicar dos elementos de Fqk en la computación de
cierto número de productos de elementos de Fq. La complejidad del producto
es el número mínimo necesario de productos en el cuerpo base, que hemos
denotado por m(q, k). Shparlinski, Tsfasman y Vladut [73] extendieron este
trabajo y estudiaron el problema asintóticamente, es decir, cuando q está �jo
y k crece. Concretamente, uno de los valores que estudiaron fue el límite
inferior de m(q, k)/k para k ∈ N, que hemos denotado por µ(q). Calcu-
laron cotas inferiores y superiores para este valor, pero como hemos visto,
había un paso injusti�cado en una de sus demostraciones, ya que no tuvieron
en cuenta el papel del grupo Cl0(F)[2], lo que afecta a las cotas superiores.
Hemos identi�cado este error y hallado nuevas cotas utilizando las cotas
obtenidas previamente para |Cl0(F)[2]|. Estas nuevas cotas superiores para
µ(q), aunque relativamente cercanas, son peores que las presentadas en [73].
Es todavía un problema abierto el decidir si las cotas de [73] son válidas, lo
que no es descartable, ya que las cotas inferiores conocidas para µ(q) son
más pequeñas que ellas. De hecho, nuestra argumentación demuestra que las
cotas de [73] serían válidas si J2(q, A(q)) = 0.

Para concluir, queremos destacar que las técnicas empleadas en esta tesis
también se pueden aplicar a algunas extensiones de los problemas estudia-
dos aquí, de lo que nos ocuparemos en futuros trabajos. En primer lugar,
podemos analizar el caso de los esquemas de compartición de secretos no
perfectos con n fragmentos donde el secreto no es un único elemento de Fq
sino un vector de longitud κn para cierto número real κ. El estudio de la
multiplicación de este tipo de esquemas fue iniciado por Franklin y Yung, que
consideraron en [36] una variación del esquema de Shamir en la que el secreto
consiste en las evaluaciones de un polinomio en varios elementos del cuerpo y
discutieron sus aplicaciones en computación multiparte. Podemos de�nir una
generalización Cκ(Fq) de la clase C(Fq), y para un código C de esta clase y un
conjunto de índices T ⊆ I(C), con |T | = κn(C), tomar como secreto el sub-
vector πT (c), y como fragmentos el resto de coordenadas πi(c), i /∈ T , para
una palabra c tomada uniformemente al azar en C. Podremos generalizar
entonces las nociones dadas en los capítulos 4 y 5, que ahora dependerán tam-
bién del parámetro κ (la �longitud relativa del secreto�) y aplicar el mismo
tipo de técnicas explicadas en el resto de la tesis. En particular, será posible
estimar la �tolerancia de corrupción multisecreto asintótica óptima� τ̂(q, κ).
También queremos estudiar el caso de los esquemas de compartición de se-
cretos en los que el secreto es un elemento de una extensión Fqk de Fq, los
fragmentos son elementos de Fq y la propiedad de multiplicación fuerte se
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de�ne con respecto a los productos en los respectivos cuerpos. Un esquema
con estas propiedades fue estudiado por primera vez por Cramer, Damgård
y de Haan (ver [26]). En este caso, necesitaremos aplicar las técnicas de esta
tesis a códigos lineales generalizados, donde una coordenada pertenece a la
extensión del cuerpo. Algunos resultados relacionados con este problema han
sido publicados en [18].

Hay otras extensiones del problema que son interesantes: podemos con-
siderar el problema más general de esquemas de compartición de secretos en
los que el producto de r secretos está determinado por los productos de los
correspondientes conjuntos de r fragmentos, con r ≥ 2. Necesitamos estu-
diar entonces el peso mínimo en un índice de la transformada del producto
de Schur C~r de un código C. Podemos aplicar la estrategia que consiste en
plantear sistemas de ecuaciones de Riemann-Roch explicada en la parte III de
esta tesis. En este caso, tendremos ecuaciones de la forma ∆P0(rX−D+PA)
y por tanto necesitaremos las cotas superiores para el tamaño de los límites
de r-torsión Jr(q, a) que obtuvimos en el capítulo 10 (notemos de nuevo que
para las aplicaciones consideradas en esta tesis sólo hemos necesitado cotas
para el caso particular r = 2, pero, de hecho, los resultados del capítulo 10
son más generales).

Finalmente, podemos analizar cuáles de nuestras construcciones disfrutan
de la propiedad de t-independencia de fragmentos, que requiere la aplicación a
la construcción de extractores de correlaciones de [47] que fue mencionada en
la introducción. Esta propiedad se puede capturar imponiendo una condición
sobre la distancia dual de los códigos. Todas las técnicas utilizadas en esta
tesis dan lugar a esquemas de compartición de secretos con t-independencia
de fragmentos para t = Ω(n) excepto aquellas que resultan de la aplicación
de la técnica de descenso presentada en el capítulo 6, ya que como hemos
visto en la sección 6.4, en este caso la distancia dual está acotada por cierta
constante para todos los códigos de las familias que obtenemos. Todavía
es una cuestión abierta determinar si para todo cuerpo �nito Fq hay una
familia de códigos {C(m)}m>0 ⊆ C†(Fq) con n(C(m)) → ∞ veri�cando no
sólo que τ̂(C(m)) → τ > 0 sino también que d((C(m))⊥)/n(C(m)) → δ > 0.
Actualmente, sólo podemos demostrar este hecho para cuerpos �nitos para
los que es posible probar que τ̂(q) > 0 sin recurrir a la técnica del descenso,
lo que es el caso para todos los cuerpos �nitos Fq con q cuadrado y q ≥ 9 (se
puede comprobar en los resultados detallados en la Tabla 11.1).
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