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ABSTRACT. Using a few basics from integration theory, a short proof of nowhere-differentiability

of Weierstrass functions is given. Restated in terms of the Fourier transformation, the method

consists in principle of a second microlocalisation, which is used to derive two general results on

existence of nowhere differentiable functions. Examples are given in which the frequencies are of

polynomial growth and of almost quadratic growth as a borderline case.

1. INTRODUCTION

In 1872, K. Weierstrass presented his famous example of a nowhere differentiable function W

on the real line R. With two real parameters b ≥ a > 1, this may be written as

W (t) =
∞

∑
j=0

a− j cos(b jt), t ∈ R. (1.1)

Weierstrass proved that W is continuous at every t0 ∈ R, but not differentiable at any t0 ∈ R if

b

a
> 1+

3π

2
, b is an odd integer. (1.2)

Subsequently several mathematicians attempted to relax condition (1.2), but with limited luck.

Much later G. H. Hardy [Har16] was able to remove it:

Theorem 1.1 (Hardy 1916). For every real number b ≥ a > 1 the functions

W (t) =
∞

∑
j=0

a− j cos(b jt), S(t) =
∞

∑
j=0

a− j sin(b jt), (1.3)

are bounded and continuous on R, but have no points of differentiability.

The assumption b ≥ a here is optimal for every a > 1, for W is in C1(R) whenever b
a
< 1, due

to uniform convergence of the derivatives. (Strangely this was unobserved in [Har16, Sect. 1.2],

where Hardy sought to justify the sufficient condition b ≥ a as being more natural than eg (1.2).)

Hardy also proved that S′(0) = +∞ for

1 < a ≤ b < 2a−1, (1.4)
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so then the graph of S(t) is not rough at t = 0 (similarly W ′(π/2) =+∞ if in addition b∈ 4N+1).

However, Hardy’s treatment is not entirely elementary and yet it fills ca. 15 pages.

It is perhaps partly for this reason that attempts have been made over the years to find other ex-

amples. These have often involved a replacement of the sine and cosine above by a function with

a zig-zag graph, the first one due to T. Takagi [Tak03] who introduced t 7→ ∑∞
j=0 2− j dist(2 jt,Z).

However, the price is that the partial sums are not C1 for such functions, and due to the dilations

every x ∈R is a limit x = limrN where each rN ∈Q is a point at which the Nth partial sum has no

derivatives; whence nowhere-differentiability of the sum function is less startling. Nevertheless,

a fine example of this sort was given in just 13 lines by J. McCarthy [McC53].

Somewhat surprisingly, there is an equally short proof of nowhere-differentiability for W and

S, using a few basics of integration theory. This is explained below in the introduction.

It is a major purpose of this paper to show that the simple method has an easy extension to

large classes of nowhere differentiable functions. Thus the main part of the paper contains two

general theorems, of which at least the last should be a novelty, and it ends with new examples

with slow increase of the frequencies.

Remark 1.2. By a well-known reasoning, W is nowhere-differentiable since the jth term cannot

cancel the oscillations of the previous ones: it is out of phase with previous terms as b > 1 and

the amplitudes decay exponentially since 1
a
< 1; as b ≥ a > 1 the combined effect is large enough

(vindicated by the optimality of b ≥ a noted after Theorem 1.1). However, it will be shown in

Section 4 that frequencies growing almost quadratically suffice for nowhere-differentiability.

To present the ideas in a clearer way, one may consider the following function fθ which (in

this paper) serves as a typical nowhere differentiable function,

fθ (t) =
∞

∑
j=0

2− jθ ei2 jt , 0 < θ ≤ 1. (1.5)

It is convenient to choose an auxiliary function χ : R→C thus: the Fourier transformed function

F χ(τ) = χ̂(τ) =
∫

R e− i tτ χ(t)dt is chosen as a C∞-function fulfilling

χ̂(1) = 1, χ̂(τ) = 0 for τ /∈ ]1
2 ,2[ ; (1.6)

for example by setting χ̂(τ) = exp
(

2− 1
(2−τ)(τ−1/2)

)

for τ ∈ ]1
2 ,2[ .

Using (1.6) it is easy to show that χ(t) = F−1χ̂(t) = 1
2π

∫

R ei tτ χ̂(τ)dτ is continuous and that

for each k ∈ N0 the function tkχ(t) = F−1(ik χ̂(k)) is bounded (by sup |χ̂(k)|). Therefore χ is

integrable, ie χ ∈ L1(R), and clearly
∫

χ dt = χ̂(0) = 0.
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With this preparation, the function fθ is particularly simple to treat, using only ordinary exer-

cises in integration theory: First one may introduce the convolution

2kχ(2k·)∗ fθ (t0) =
∫

R
2kχ(2kt) fθ (t0 − t)dt, (1.7)

which is in L∞(R) since fθ ∈ L∞(R) and χ ∈ L1(R). Secondly this will be analysed in two

different ways in the proof of

Proposition 1.3. For 0 < θ ≤ 1 the function fθ (t) = ∑∞
j=0 2− jθ ei2 jt is a continuous 2π-periodic,

hence bounded function fθ : R→ C without points of differentiability.

Proof. By uniform convergence fθ is for θ > 0 a continuous 2π-periodic and bounded function;

this follows from Weierstrass’s majorant criterion as ∑2− jθ < ∞.

Inserting the series defining fθ into (1.7), Lebesgue’s theorem on majorised convergence al-

lows the sum and integral to be interchanged (eg with 2k

1−2−θ |χ(2
kt)| as a majorant), ie

2kχ(2k·)∗ fθ (t0) = lim
N→∞

N

∑
j=0

2− jθ
∫

R
2kχ(2kt)ei2 j(t0−t) dt

=
∞

∑
j=0

2− jθ ei2 jt0

∫

R
e− iz2 j−k

χ(z)dz = 2−kθ ei2kt0 χ̂(1) = 2−kθ ei2kt0 .

(1.8)

Here it was also used that χ̂(2 j−k) = 1 for j = k and equals 0 for j 6= k.

Moreover, since fθ (t0)
∫

R χ dz = 0 (cf the note prior to the proposition) this gives

2−kθ ei2kt0 = 2kχ(2k·)∗ fθ (t0) =
∫

R
χ(z)( fθ (t0 −2−kz)− fθ (t0))dz. (1.9)

So if fθ were differentiable at t0, F(h) := 1
h
( fθ (t0 + h)− fθ (t0)) would define a function in

C(R)∩L∞(R) for which F(0) = f ′(t0), and Lebesgue’s theorem, applied with |zχ(z)|supR |F|

as the majorant, would imply that

−2(1−θ)kei2kt0 =
∫

F(−2−kz)zχ(z)dz −−−→
k→∞

f ′(t0)
∫

R
zχ(z)dz = f ′(t0) i

dχ̂

dτ
(0) = 0; (1.10)

hence that 1−θ < 0. This would contradict the assumption that θ ≤ 1. �

By now this argument is of course of a classical nature, although not well established in the

literature. Eg, recently R. Shakarchi and E. M. Stein treated nowhere-differentiability of fθ in

Thm. 3.1 of Chap. 1 in their treatise [SS03] with a method they described thus: “The proof of the

theorem is really the story of three methods of summing a Fourier series. . . partial sums. . . Cesaro

summability. . . delayed means.” However, they covered 0 < θ < 1 in a few pages with refine-

ments for θ = 1 sketched there in Problem 5.8 based on the Poisson summation formula.

The present proofs are not confined to periodic functions (cf the next section), for the theory

of lacunary Fourier series is replaced by the Fourier transformation F and its basic properties.
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Moreover, also Hardy’s theorem can be obtained in this way, with a few modifications. The

main point is to keep the factor ei2kt0 instead of introducing cos(2kt0) and sin(2kt0) that appear in

W and S, but do not a priori stay away from 0 as k → ∞. Luckily this difficulty (which was dealt

with at length in [Har16]) disappears with the present approach:

Proof of Theorem 1.1. As a > 1, clearly W ∈ C(R)∩ L∞. Since b > 1 it may in this proof be

arranged that χ̂(1) = 1 and χ̂(τ) 6= 0 only for 1
b
< τ < b. As for fθ this gives, by Euler’s

formula,

bkχ(bk·)∗W (t0) =
∞

∑
j=0

a− j

∫

R
bkχ(bkt)1

2(e
ib j(t0−t)+ eib j(t−t0))dt. (1.11)

The term eib j(t−t0) is redundant here, for z := tbk yields
∫

eib jt χ(bkt)bk dt =
∫

eizb j−k
χ(z)dz =

χ̂(−b j−k) = 0, as χ̂ vanishes on ]−∞,0]. So as in (1.8), one has bkχ(bk·)∗W (t0) =
eibkt0

2ak .

Hence existence of W ′(t0) would imply that limk(
b
a
)keibkt0 = 0; cf (1.9)–(1.10). This would

contradict that b ≥ a, so W is nowhere differentiable. Similarly S(t) is so. �

It is known that nowhere-differentiability of W can be derived with wavelets, cf [Hol95]; an

elementary explanation has been given in [BD92], but only for b > a. In comparison the above

proofs are short and cover all cases through “first principles” of integration theory.

In Section 2 a general result on nowhere differentiable functions is given. Refining a dila-

tion argument, a further extension is found in Section 3, including functions with polynomial

frequency growth. Borderline cases with quasi-quadratic growth are given in Section 4.

Remark 1.4. In the proof of Theorem 1.1, Lebesgue’s theorem on majorised convergence is the

most advanced part. As this result appeared in 1908, cf [Leb08, p. 12], it seems that the argument

above could, perhaps, have been written down a century ago.

2. PROOF BY MICROLOCALISATION

To emphasize why the proofs of Proposition 1.3 and Theorem 1.1 work, the proof of the general

Theorem 2.1 below will use the Fourier transformation F more consistently.

To apply F to non-integrable functions, it is convenient to use a few elements of the distribu-

tion theory of L. Schwartz [Sch66]. (An introduction to this could be [RY90].)

Recall that F f (τ) = f̂ (τ) =
∫

R e− i tτ f (t)dt defines a bijection F : S (R) → S (R), when

S (R) denotes the Schwartz space of rapidly decreasing C∞-functions. Moreover, F extends

by duality to the space S ′(R) of so-called temperate distributions, which contains Lp(R) for

1 ≤ p ≤ ∞. In particular it applies to exponential functions eibt , and as a basic exercise this
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yields 2π times the Dirac measure δb, ie the point measure at τ = b,

F (eib·)(τ) = 2πδ (τ −b) = 2πδb(τ). (2.1)

This applies in a discussion of the function

f (t) =
∞

∑
j=0

a je
ib jt

with general amplitudes a j ∈C and frequencies 0< b0 < b1 < · · ·< b j < .. . with b j →∞, written

0 < b j ր ∞ for brevity. (There could be finitely many b j ≤ 0, but this would only contribute with

a C∞-term.)

Obviously the condition ∑ j |a j| < ∞ implies f ∈ C(R)∩L∞(R), so f ∈ S ′(R), and since F

applies termwise (it is continuous on S ′(R)), one has by (2.1)

F f =
∞

∑
j=0

a jF (eib j·) = 2π
∞

∑
j=0

a jδb j
. (2.2)

Of course (2.2) just expresses that f is synthesized from the frequencies b0,b1, . . .

When liminf
b j+1

b j
> 1, then each frequency may be picked out in a well-known way: fixing

λ ∈ ]1, liminf
b j+1

b j
[ there is a χ ∈ S (R) for which χ̂(1) = 1 while χ̂(τ) 6= 0 only for 1

λ < τ < λ .

Then bk > λbk−1 for all k ≥ K, if K is chosen appropriately.

Considering only k ≥ K in the following, one has χ̂(τ/bk) 6= 0 only for τ ∈ ]bk

λ ;λbk[ . Because

[bk

λ ;λbk]⊂ ]bk−1;bk+1[ and (bk) is monotone increasing,

χ̂(τ/bk)δb j
(τ) =

{

0 for j 6= k

δbk
for j = k.

(2.3)

In general F (χ ∗ f ) = χ̂ · f̂ holds for all χ ∈ S (R) and f ∈ L∞ ⊂ S ′(R), whence

F (bkχ(bk·)∗ f ) = χ̂(·/bk) ·F f = 2π
∞

∑
j=0

a j χ̂(·/bk)δb j
= 2πakδbk

. (2.4)

So by use of F−1 and (2.1),

bkχ(bk·)∗ f (t) = 2πakF
−1δbk

(t) = akeibkt . (2.5)

This gives back (1.8) in case ak = 2−kθ and bk = 2k, but the derivation above is more transparent

than eg the proof of (1.8), since it is clear why convolution by bkχ(bk·) just gives the kth term.

The process in (2.4)–(2.5) has of course been known for ages, but with distribution theory it

is fully justified although F f consists of measures. In principle, it is a banal example of what is

sometimes called a second microlocalisation of f , since χ̂(bkτ)F f (τ) is localised to frequencies

τ restricted in both size and direction; namely to |τ| ≈ bk and τ > 0, respectively.
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The second microlocalisation is more visible in a separate treatment of

Re f (t) =
∞

∑
j=0

a j cos(b jt), Im f (t) =
∞

∑
j=0

a j sin(b jt). (2.6)

Indeed, by Euler’s formula and (2.1),

F cos(b j·) =
2π
2 (δb j

+δ−b j
), F sin(b j·) =

2π
2i (δb j

−δ−b j
). (2.7)

Here multiplication by χ̂(·/b j) removes the contribution from δ−b j
since χ̂ vanishes on ]−∞,0].

This actually explains why the proof of Theorem 1.1 was saved by the redundancy of the term

eib j(t−t0).

However, the details will follow in connection with the next result. Recall that f : R→ C is

said to be Lipschitz continuous at t0 if there exist two constants L > 0, η > 0 such that | f (t)−

f (t0)| ≤ L|t − t0| for every t ∈ ]t0 −η , t0 +η [ .

Theorem 2.1. Let f : R → C be given as f (t) = ∑∞
j=0 a j exp(ib jt) for a complex sequence

(a j) j∈N0
with ∑∞

j=0 |a j|< ∞ and 0 < b j ր ∞ satisfying

liminf
j→∞

b j+1

b j
> 1, a jb j 6→ 0 for j → ∞. (2.8)

Then f is bounded and continuous on R, but nowhere differentiable. If sup j |a j|b j = ∞ holds in

addition, then f is not Lipschitz continuous at any point. The conclusions are also valid for Re f

and Im f .

Proof. Continuing from (2.5), one clearly has akeibkt0 =
∫

R χ(z) f (t0 − z/bk)dz.

If f were differentiable at t0, then F(t) = ( f (t0+ t)− f (t0))/t would be in L∞ (like f ), so since
∫

χ(t)dt = 0, multiplication by bk and majorised convergence would imply

−akbkeibkt0 =
∫

R
zχ(z)

f (t0 − z/bk)− f (t0)

−z/bk

dz −−−→
k→∞

f ′(t0) i
dχ̂

dτ
(0) = 0. (2.9)

This would entail |ak|bk → 0 for k → ∞, in contradiction of (2.8).

In addition, were f Lipschitz continuous at t0, then again F would be bounded, so the integral

in (2.9) would be uniformly bounded with respect to k, in which case supk |ak|bk < ∞.

Finally, using (2.7) ff, one can clearly replace f in (2.4)–(2.5) by Re f or Im f if only ak is

replaced by ak/2 and ak/(2i), respectively. Eg

χ̂(τ/bk)F Im f (τ) = 2π
∞

∑
j=0

χ̂(τ/bk)
a j

2i
(δb j

(τ)−δ−b j
(τ)) = 2π

ak

2i
δbk

(τ). (2.10)

Proceeding as for f itself via variants of (2.5) and (2.9), it follows that neither Re f nor Im f can

be differentiable at some t0 ∈ R, respectively Lipschitz continuous if sup j |a j|b j = ∞. �
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Clearly limsup |a j|b j > 0 is equivalent to a jb j 6→ 0; cf (2.8). While the former leaves a gap

to the non-Lipschitz condition, the latter is natural as termwise differentiation yields ∑a jb je
ib jt ,

which cannot converge unless a jb j → 0. The conditions (2.8) have been used repeatedly in the

literature, but Theorem 2.1 should be of interest because of the easy treatment of non-periodic f

as well as of Re f , Im f .

Remark 2.2. A necessary condition for Hölder continuity of order α ∈ ]0,1[ follows at once from

a modification of the above argument: replacing akbk on the left-hand side of (2.9) by akbα
k , the

resulting integral will be uniformly bounded with respect to k since
∫

|z|α |χ(z)|dz < ∞. Hence

sup
k

|ak|b
α
k < ∞ (2.11)

whenever f (t) in Theorem 2.1 is Hölder continuous of order α at a single point t0.

Example 2.3. Sequences of power type like a j = a− j and b j = b j for parameters b ≥ |a|> 1 give

f (t) = ∑∞
j=0 a− jeib jt , which is covered by Theorem 2.1 as |a j|b j = |b

a
| j ≥ 1 and

b j+1

b j
= b > 1.

Therefore Theorem 2.1 contains Theorem 1.1 and extends it to complex amplitudes.

For W (t) Remark 2.2 yields bα

a
≤ 1, ie α ≤ loga

logb
. In case b > a > 1, Hardy’s proof strategy

[Har16, p. 311] was to show that W is Hölder continuous of order α = loga/ logb but no better

(even locally); whereas for b = a > 1 it was obtained that W (t + h)−W (t) = O(|h| log1/|h|).

So Remark 2.2 at once gives a sharp upper bound for the Hölder exponent of W . (This was

mentioned as a difficult task in [Jaf97]; however, [BD92] contains a relatively short proof of the

bound.) Thm. 4.9 in Ch. II of Zygmund’s book [Zyg59] also treats Hölder continuity of W .

Example 2.4. In the same way Theorem 2.1 covers Darboux’s function f (t) = ∑∞
j=0

sin(( j+1)!t)
j! ,

for a j = 1/ j! and b j = ( j+1)! fulfil in particular
b j+1

b j
= j+2 ր ∞ and a jb j = j+1 ր ∞.

Example 2.5. Setting a j = a− j for some a > 1 and defining (b j) by b2m = a2m and b2m+1 =

(1+ a−p)a2m, it is seen directly that when the power p is so large that 1+ a−p < a2, then the

sequences (a j) and (b j) fulfil the conditions of Theorem 2.1. Eg (2.8) holds as
b j+1

b j
∈ {1+

a−p,a2(1+ a−p)−1} ⊂ ]1,∞[ and a jb j ∈ {1,(1+ a−p)/a}. Thus f (t) is nowhere differentiable

in this case. If further p is so large that 1+a2 < ap(a2−1) it is easily verified that b2m+1−b2m <

b2m −b2m−1 so that (b j+1 −b j) is not monotone increasing. Eg if a = 5, both requirements are

met by p = 1 and the values of (b j) are

1, 6
5 ,25,30,625,750,15625,18750, . . .

Clearly these frequencies have a distribution with lacunas of rather uneven size.
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To elucidate the assumptions in Theorem 2.1, note that for a sequence (b j) of positive reals,

liminf
b j+1

b j
> 1 ⇐⇒ liminf

b j+1 −b j

b j
> 0 ⇐⇒ ∃J,ε > 0 ∀ j > J : εb j < b j+1 −b j < b j+1.

(2.12)

Hence the conditions liminf
b j+1

b j
> 1 and b j ր ∞ imply that b j+1 −b j → ∞ when Theorem 2.1

applies; but the gaps b j+1 −b j need not be monotone increasing; cf Example 2.5.

Moreover, liminf
b j+1

b j
> 1 implies exponential growth of the b j (as b j ≥ λ j− j0b j0 when

b j+1

b j
≥

λ > 1 for j ≥ j0) so Thm. 2.1 does not apply if b j = jq. This will be remedied in Thm. 3.1 ff.

3. DILATION BY DIFFERENCES

To escape the exponential frequency growth in Theorem 2.1, it is natural instead of dilation by

b j to use the smallest gap at frequency b j, ie to dilate by

∆b j = min(b j −b j−1,b j+1 −b j). (b−1 = 0) (3.1)

This requires lim∆b j = ∞, that one could use as an assumption (replacing exponential growth

by one of its consequences, cf (2.12)). However, (3.2) below is weaker, since it only implies the

existence of j1 < j2 < .. . satisfying lim∆b jk = ∞ (the ∆b j are unbounded since a j → 0).

Theorem 3.1. Let f (t) = ∑∞
j=0 a j exp(ib jt) for a complex sequence (a j) j∈N0

with ∑∞
j=0 |a j|< ∞

and 0 < b j ր ∞. When ∆b j in (3.1) fulfils

a j∆b j 6→ 0 for j → ∞, (3.2)

then f is bounded and continuous on R, but nowhere differentiable. If sup j |a j|∆b j = ∞ holds

in addition, then f is not Lipschitz continuous at any t0 ∈ R. The conclusions are also valid for

Re f and Im f .

Proof. That f ∈ C(R) ∩ L∞(R) is shown as in Theorem 2.1. Let now Fψ ∈ C∞(R) fulfil

Fψ(0) = 1 and Fψ(τ) 6= 0 only for |τ|< 1/2, and take the spectral cut-off function as

ψ̂k(τ) = ψ̂(
τ −bk

∆bk

). (3.3)

Then the definition of ∆bk as a minimum entails

ψ̂k(τ) 6= 0 =⇒ bk −
1
2(bk −bk−1)< τ < bk +

1
2(bk+1 −bk). (3.4)

Since (b j) is increasing, the τ-interval specified here only contains b j for j = k, whence

ψ̂k(τ) f̂ (τ) = 2π
∞

∑
j=0

a jψ̂k(τ)δb j
(τ) = 2πakδbk

(τ). (3.5)
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Note that by a change of variables,

ψk(t) = F
−1ψ̂k(t) =

1
2π

∫

R
ei t(bk+σ∆bk)ψ̂(σ)∆bk dσ = (∆bk)e

i tbkψ(t∆bk). (3.6)

Here the integral of the left-hand side is 0 by (3.4), so application of F−1 to (3.5) gives,

ak(∆bk)e
ibkt0 = (∆bk) f ∗ψk(t0)

=
∫

R
( f (t0 − t)− f (t0))(∆bk)

2eibktψ(t∆bk)dt.

=
∫

R

f (t0 − z/∆bk)− f (t0)

z/∆bk

zψ(z)eizbk/∆bk dz.

(3.7)

If f is Lipschitz continuous at t0, h 7→ ( f (t0 +h)− f (t0))/h is bounded, so for some L ∈ R

sup
k

|ak|∆bk ≤ sup
k

∫

R

∣

∣

∣

∣

f (t0 − z/∆bk)− f (t0)

z/∆bk

∣

∣

∣

∣

|zψ(z)|dz ≤ L

∫

R
|zψ(z)|dz < ∞. (3.8)

Moreover, because bk/∆bk ≥ bk/(bk −bk−1)> 1,
∫

R
zψ(z)eizbk/∆bk dz = i

dψ̂

dτ
(−bk/∆bk) = 0. (3.9)

So were f differentiable at t0, it would follow from (3.7) by majorised convergence that

ak(∆bk)e
i t0bk =−

∫

R

( f (t0 − z/∆bk)− f (t0)

−z/∆bk

− f ′(t0)
)

zψ(z)eizbk/∆bk dz −−−→
k→∞

0, (3.10)

in contradiction of (3.2). Finally the same arguments apply to Re f , Im f by dividing ak by 2 and

2i, respectively, as in Theorem 2.1. �

Remark 3.2. If f in Theorem 3.1 is Hölder continuous of order α ∈ ]0,1[ at some t0, (3.7) yields

sup
j

|a j|(∆b j)
α < ∞. (3.11)

When applied to W , this gives the same result as Remark 2.2, for ∆b j = cb j with c = 1−1/b > 0

as b > 1. Hence the gap growth condition (3.11) cannot be sharpened in general.

Note that, due to the use of the extended F on S ′(R), it is clear from (3.5) that one cannot

dilate by larger quantities than ∆bk, so the method seems optimally exploited.

Apparently, nowhere-differentiability has not been obtained under the weak assumptions of

Theorem 3.1 before. Like for fθ and W , the regularity of the sum function improves when the

growth of the frequencies is taken smaller, eg by reducing q in the following:

Example 3.3 (Polynomial growth). For p > 1 one has uniformly continuous functions

fp,q(t) =
∞

∑
j=1

exp(i t jq)

jp
, Re fp,q(t), Im fp,q(t), (3.12)
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that moreover are C1 and bounded with bounded derivatives on R in case 0< q< p−1. However,

for q ≥ p+ 1 they are nowhere differentiable according to Theorem 3.1: (3.2) follows since by

the mean value theorem the frequency gaps increase, and

limsup j−p( jq − ( j−1)q)≥ limsupq jq−p−1(1−1/ j)q−1 =

{

q for q = p+1,

∞ for q > p+1.
(3.13)

Moreover, for q > p+1 there is not Lipschitz continuity at any point.

But the functions in (3.12) are globally Hölder continuous of order α = (p− 1)/q if only

q > p−1. This results from integral comparisons that (eg for c = 1+1/(q− p+1)) yield

| fp,q(t +h)− fp,q(t)| ≤ ∑
j≤N

jq−p|h|+ ∑
j>N

2 j−p ≤ cNq−p+1|h|+
2

p−1
N1−p. (3.14)

For 0 < |h| ≤ 1
2 this is exploited for the unique N such that N ≤ |h|−1/q < N +1. For the Hölder

exponents, this is optimal among the powers |h|−θ , for clearly θ = 1/q maximises

min(θ(p−1),1−θ(q− p+1)). (3.15)

Insertion of the choice of N in (3.14) gives a C < ∞ so that for h ∈ R (as fp,q ∈ L∞)

| fp,q(t +h)− fp,q(t)| ≤C|h|α , α =
p−1

q
. (3.16)

Since ∆b j < q jq−1 for q > 1, the necessary condition in Remark 3.2 is fulfilled for α(q−1)−

p ≤ 0, leading to the upper bound α ≤ p
q−1 . So in view of (3.16) there remains a gap for these

functions.

In view of Example 3.3, it is clear that Theorem 3.1 improves Theorem 2.1 a good deal. The

condition |a j|∆b j 6→ 0 in (3.2) cannot be relaxed in general, for already for W it amounts to b≥ a,

that is equivalent to nowhere-differentiability.

However, (3.2) does not give optimal results for fp,q. Eg the case with p= q= 2 has been com-

pletely clarified and shown to have a delicate nature, as it is known from several investigations

that the so-called Riemann function

R(t) =
∞

∑
j=1

sin(π j2t)

j2
(3.17)

is differentiable with R′(t) =−1/2 exactly at t = r/s for odd integers r, s. For properties of this

function the reader is referred to the paper of J. Duistermaat [Dui91].

As fp,q is in C1(R) for every q < p− 1 when p > 1, transition to nowhere-differentiability

occurs (perhaps gradually) as q runs through the interval [p−1, p+1[ . Nowhere-differentiability

for q≥ p+1 was also mentioned for Im fp,q by W. Luther [Lut86] as an outcome of a very general

Tauberian theorem. (In addition Im fp,2 was covered with nowhere-differentiability for p ≤ 3/2
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providing cases in [p+ 1
2 , p+ 1[ ; for t irrational Luther’s result relied on Hardy’s investigation

[Har16], that covered Im fp,2 for p < 5/2 thus giving cases of almost nowhere differentiability

in ]p− 1
2 , p+ 1

2 ] for q = 2.)

By (3.16), R is globally Hölder continuous of order α = 1/2, that is well known [Dui91]. At

the differentiability points, this is of course not optimal, but the local Hölder regularity of R is

known to attain every value α ∈ [1
2 ,

3
4 ] in a non-empty set; cf the paper of S. Jaffard [Jaf97].

Remark 3.4. Recently fp,q was studied by F. Chamizo and A. Ubis [CU07] for q ∈N, p > 1, with

nowhere-differentiability treated by convolving fp,q with the Fejér kernel, cf [CU07, Prop. 3.3].

This method was proposed as an alternative to those of [Lut86] and similar in spirit to the above

proof of Theorem 3.1. But some statements are flawed: eg in [CU07, Thm. 3.1], fp,q is claimed

differentiable at an irreducible fraction t = r/s ∈ Q, s > 0, if and only if both q < p+ 1/2 and,

for some maximal prime power σ γ in the factorisation of s, q divides γ − 1 but is relatively

prime with σ −1. However, fp,q ∈C1(R) for every q < p−1 (cf Example 3.3 above), whilst for

q ∈ N∩ [2, p−1[ their condition is violated at r
s
= 1

2q ; hence this claim is not correct for such q.

t
0 20 40 60 80 100

K30

K20

K10

10

20

30

FIGURE 1. Graph of ImF2(t) for the function in (4.3)
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4. SLOWLY GROWING FREQUENCIES

Using Theorem 3.1, nowhere-differentiability is obtained in new cases where b j is almost

O( j2). The examples to follow all relate to the limiting case p = 1, q = 2 in Example 3.3.

Setting loga t = (log t)a for a ∈ R and t > 1, the functions

F1(t) =
∞

∑
j=2

exp(i t j2 logb j)

j loga j
, ReF1(t), ImF1(t) (4.1)

are for b ≥ a > 1 continuous, bounded and nowhere differentiable on R by Theorem 3.1, for the

mean-value theorem gives a j∆b j ≥ 2logb−a j. For b > a > 1 there is no Lipschitz continuity.

To simplify, the Lipschitz aspect is left out below by taking b = a. Instead iterated logarithms

will be seen to allow quasi-quadratic growth of the b j, relying on a general result for b j = j/|a j|:

Corollary 4.1. If ∑ j>J |a j| < ∞ and |a j| ≥ |a j+1| > 0 for all j > J while for a convex function

ϕ : ]J,∞[→ R one has ϕ( j) = j/|a j| for j ∈ N∩ ]J,∞[ , then

f (t) = ∑
j>J

a j exp(i t j/|a j|), Re f (t), Im f (t) (4.2)

are continuous on R but nowhere differentiable.

Proof. As ϕ is convex, clearly ∆b j = ϕ( j)−ϕ( j−1). Therefore |a j|∆b j = |a j|(
j

|a j|
− j−1

|a j−1|
) ≥

j− ( j−1) = 1, and b j = j/|a j| ր ∞, whence Theorem 3.1 yields the claim. �

For t > e, there is a nowhere differentiable function given by

F2(t) =
∞

∑
j=3

exp(i t j2 log j(log log j)a)

j log j(log log j)a
, a > 1. (4.3)

This can be seen directly from Corollary 4.1, but it is a special case of Example 4.2 below.

The graph of ImF2 is sketched in Figure 1. All figures give a plot of a partial sum with 1000

terms and partition points. The quasi-periodic behaviour visible in Figure 1 results because the

first term of the series is dominating. More pronounced cases of slow growth are given in:

Example 4.2. Denoting the n-fold logarithm by log◦n t := log . . . log t, defined for t > En−2 :=

exp . . .exp1 (n− 2 times), and setting loga
◦n t = (log◦n t)a for a ∈ R and t > En−1, there is a

continuous nowhere differentiable function given for t > En−1 by

Fn(t) = ∑
j>En−1

exp(i t j2 log j . . . log◦(n−1) j · loga
◦n j)

j log j . . . log◦(n−1) j · loga
◦n j

, a > 1. (4.4)

Indeed, ∑ |a j|< ∞ because a j = 1/( j log j . . . log◦(n−1) j loga
◦n j) equals g′( j), whereby

g(t) = 1
1−a

log1−a
◦n t = 1

1−a
(log . . . log t)1−a −−−→

t→∞
0 for a > 1. (4.5)
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That a j ≥ a j+1 follows since all iterated logarithms are monotone increasing and positive for

j > En−1. Analogously, ϕa,n(t) = t2 log t . . . log◦(n−1) t · loga
◦n t is convex on ]En−1,∞[ , for ϕ ′

a,n(t)

is easily written as a sum of n+1 terms, that are increasing. Hence Corollary 4.1 gives the claim.

ImF3 and its first term are sketched in Figure 2 for a = 2. One has E2 = ee ≈ 15.15, and for

j ≥ 16 the frequencies are 0.28, 1.4, 3.5, 6.8, 11, 17, 25, 34, 45, 57, . . . (As a = 2, the sum could

include e < j < ee, but the b j decrease from 11 for j = 6 to 0.009 for j = 15.)

As a last comparison, for a = 2 and n = 4, summation begins in (4.4) after E3 = eee
=

3814279.1 . . . Cf Figure 3. The quasi-quadratic growth of b j is indicated by the fact that terms

no. 1, 10, 100, 1000 have frequencies 0.02, 2.4, 247, 24 326, respectively.

t
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K60

K40

K20

20

40

60

FIGURE 2. ImF3(t) for the function in Example 4.2, n = 3, a = 2

It may of course be shown analytically that, despite the larger number of j-dependent factors,

one gets slower frequency growth in Fn+p than in Fn. Figures 1, 2 and 3 indicate that as the

frequency growth is reduced, there will be increasingly larger deviations from a sinusoidal curve.

Figure 4 shows the deviation from the first term, ie the sum over j ≥ 3814281. Notice that

here the sinusoidal structure is almost completely lost, ie the first term is even less dominating.

In addition to the vertical tangent at the origin in Figure 4, there seems to be approximate

self-similarities, like those for R analysed by J. Duistermaat [Dui91]. Eg the behaviour for ca.

40 < t < 75 seems similar to that found for 25 < t < 40 and so on for t → 0+.
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t
0 100 200 300 400 500 600

K2#108

K1#108

1#108

2#108

FIGURE 3. ImF4(t) for the function in Example 4.2, n = 4, a = 2

5. FINAL REMARKS

The first example of a nowhere differentiable function is due to B. Bolzano (ca. 1830, dis-

covered 1921), cf the accounts in [Hyk01, Thi03]. Nowhere-differentiability was established

by means of infinite products in [Wen02]. For a review of the historical development of the

subject the reader could consult the illustrated thesis of J. Thim [Thi03]. Very recently nowhere-

differentiable functions were shown to enter the counter-examples that establish the pathological

properties of pseudo-differential operators of type 1,1; cf [Joh08].

It has turned out that some elements of the arguments exist sporadically in the literature; cf

Remark 3.4 for comments on [CU07]. In particular Re fθ and Im fθ , θ = 1 have been analysed

by Y. Meyer [Mey93, Ch. 9.2] with a method partly based on wavelets and partly similar to the

proof of Proposition 1.3. The method was attributed to G. Freud but without any references.

However, G. Freud showed in [Fre62] that an integrable periodic function f with Fourier series

∑ρk sin(nkt +ϕk), infnk+1/nk > 1 is differentiable at a point only if limρknk = 0, similarly to

Theorem 2.1. His proof was based on estimates of the differentiated Cesaro means and of the

corresponding Fejér kernel (as done also in [SS03]), so it applies only to periodic functions.
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t
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K6#107

K4#107

K2#107

2#107

4#107

FIGURE 4. Deviation from the first term of ImF4(t) in Example 4.2, n = 4, a = 2

Whereas the purpose in [Mey93, Ch. 9.2] was to derive the lack of differentiability of Re f1,

Im f1 with wavelet theory, the present paper goes much beyond this. Eg nowhere-differentiability

of fθ , or W , is shown to follow directly from basic facts in integration theory; cf the introduction.

And using only F , differentiability was in Theorem 2.1 linked to the growth of the frequencies

b j. Finally, the removal of the condition liminfb j+1/b j > 1 in Theorem 3.1 seems to be a novelty,

which yields that the growth of the frequency increments ∆b j is equally important.

Acknowledgement. I am grateful to Professor L. Rodino and Professor H. Cornean for asking

me to publish this work; and to an anonymous referee for pointing out the reference [BD92].
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1999/Brno, 2000), Děj. Mat./Hist. Math., vol. 17, Prometheus, Prague, 2001, pp. 67–91.

[Jaf97] S. Jaffard, Old friends revisited: the multifractal nature of some classical functions, J. Fourier Anal. Appl.

3 (1997), 1–22.

[Joh08] J. Johnsen, Type 1,1-operators defined by vanishing frequency modulation, New Developments in Pseudo-

Differential Operators (L. Rodino and M. W. Wong, eds.), Operator Theory: Advances and Applications,
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