
Stochastic Geometry and Random Tessellations

Jesper Møller1 and Dietrich Stoyan2

1 Department of Mathematical Sciences, Aalborg University, jm@math.aau.dk
2 Institute of Stochastics, TU Bergakademie Freiberg,
stoyan@math.tu-freiberg.de

1 Introduction

Random tessellations form a very important field in stochastic geometry. They
pose many interesting mathematical problems and have numerous important
applications in many branches of natural sciences and engineering, as this
volume shows. This contribution aims to present mathematical basic facts as
well as statistical ideas for random tessellations of the d-dimensional Euclidean
space R

d. Having applications in mind, it concentrates on the planar (d = 2)
and spatial case (d = 3), while a general d-dimensional theory is presented
to some extent. The theory of random tessellations uses ideas from various
branches of stochastic geometry, for example point process and random set
methods. Point processes play a fundamental role both in the construction
of random tessellations (the points are cell nuclei) and in their description of
‘accompanying structures’ such as the point process of cell centres and the
point process of vertices.

There are many models and constructions for random tessellations. This
contribution concentrates on Voronoi tessellations and tessellations resulting
from similar construction principles. For example, tessellations resulting from
infinite planes or from crack processes are not discussed here. These topics
and more material are presented in the monographs Møller (1994), Stoyan et

al. (1995), and Okabe et al. (2000).

2 Stochastic geometry models

2.1 General

This section briefly presents fundamental models of stochastic geometry which
are needed in the theory of random tessellations. These models are either used
in the construction of tessellations or in their description; in the latter case
one speaks about ‘accompanying structures’. Many tessellation models are
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defined starting from point processes, the most prominent example is the
Voronoi tessellation. Furthermore, each tessellation is accompanied by point
processes, for example by the point process of vertices or side face centres.
Section 2.2 therefore presents point process theory in some detail.

Random set theory is used when studying the accompanying sets of the set-
theoretic union of all cell edges (planar case) or faces (spatial case). These sets
have Lebesgue measure and volume fraction zero but are nevertheless valuable
since set-theoretic characteristics such as contact distribution functions help
to describe the size and variability of tessellation cells. The systems of all
edges of tessellations form random segment processes, and the edge-length
densities LA (planar case) and LV (spatial case) are typical parameters in
the theory of fibre processes, which includes segment processes as a particular
case. The system of all cell faces of a tessellation of R

3 can be interpreted
as a particular surface process, and the specific surface SV is a parameter
of particular interest. Finally, the systems of all edges of tessellations can
be considered as particular random networks and analyzed by corresponding
methods (Zähle, 1988; Mecke and Stoyan, 2001).

2.2 Point processes

This section provides an introduction to point processes in R
d, where in ap-

plications the planar case d = 2 and the spatial case d = 3 are of particular
interest. For more formal treatments, see Stoyan et al. (1995), Daley and
Vere-Jones (2003), and Møller and Waagepetersen (2003).

Definitions

In the simplest case, a point process X is a finite random subset of a given
bounded region S ⊂ R

d, and a realization of such a process is a point pattern

x = {x1, . . . , xn} of n ≥ 0 points contained in S. We say that the point

process is defined on S. To specify the distribution of X, one may specify the
distribution of the number of points, n(X), and for each n ≥ 1, conditional on
n(X) = n, the joint distribution of the n points in X. An equivalent approach
is to specify the distribution of the count variables N(B) = n(XB) for subsets
B ⊆ S, where XB = X ∩ B denotes X intersected with B.

If it is not known on which region the point process is defined, or if the
process extends over a very large region, or if certain invariance assumptions
such as stationarity are imposed, then it may be appropriate to consider an
infinite point process on R

d. We define a point process X in R
d as a locally

finite random subset of R
d, i.e. N(B) is a finite random variable whenever

B ⊂ R
d is a bounded region. Again the distribution of X may be specified by

the distribution of the count variables N(B) for bounded subsets B ⊆ R
d.

We say that X is stationary respective isotropic if for any bounded region
B ⊂ R

d, N(T (B)) respective N(R(B)) is distributed as N(B) for an arbitrary
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translation T respective rotation R about the origin in R
d. Stationary and

isotropic point processes are also called motion invariant.
Note that stationarity implies that X extends all over R

d in the sense that
(with probability one) N(H) > 0 for any closed halfspace H ⊂ R

d. Stationar-
ity and isotropy may be reasonable assumptions for point processes observed
within a homogeneous environment. These assumptions appear commonly in
stochastic geometry, and in particular the assumption of stationarity provides
the basis for establishing many general results as shown e.g. in Section 3.2.

Fundamental characteristics

Moment measure and intensity

The mean structure of the count variables N(B), B ⊆ R
d, is summarized by

the moment measure

µ(B) = EN(B), B ⊆ R
d

(where EN(B) means the mean value of N(B)). Usually, for an arbitrary B,
we can write

µ(B) =

∫

B

ρ(u) du

where ρ is a non-negative function called the intensity function. We may in-
terpret ρ(u) du as the probability that precisely one point falls in an infinitesi-
mally small region containing the location u and of size du. If X is stationary,
then ρ(u) will be constant and is called the intensity of X.

Covariance structure and pair correlation function

The covariance structure of the count variables is most conveniently given in
terms of the second order factorial moment measure µ(2). This is defined by

µ(2)(A) = E
∑ 6=

u,v∈X

1[(u, v) ∈ A], A ⊆ R
d × R

d,

where 6= at the summation sign means that the sum runs over all pairwise
different points u, v in X, and 1[·] is the indicator function. For bounded
regions B ⊆ R

d and C ⊆ R
d, the covariance of N(B) and N(C) is expressed

in terms of µ and µ(2) by

Cov[N(B), N(C)] = µ(2)(B × C) + µ(B ∩ C) − µ(B)µ(C).

For many important model classes, µ(2) is given in terms of an explicitly
known second order product density ρ(2),

µ(2)(A) =

∫

1[(u, v) ∈ A]ρ(2)(u, v) dudv
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where ρ(2)(u, v)dudv may be interpreted as the probability of observing a point
in each of two regions of infinitesimally small sizes du and dv and containing
u and v.

In order to characterize the tendency of points to attract or repel each
other, while adjusting for the effect of a large or small intensity function, it is
useful to consider the pair correlation function

g(u, v) = ρ(2)(u, v)/(ρ(u)ρ(v))

(provided ρ(u) > 0 and ρ(v) > 0). If the points appear independently of each
other, ρ(2)(u, v) = ρ(u)ρ(v) and g(u, v) = 1. When g(u, v) > 1 we interpret
this as attraction between points of the process at locations u and v, while if
g(u, v) < 1 we have repulsion at the two locations. In applications it is often
assumed that g(u, v) depends only on the distance r = ‖u− v‖, and we write
g(r) for g(u, v). Stationarity and isotropy of X implies this property.

The Poisson process

The Poisson process plays a fundamental role in stochastic geometry, partly
because of mathematical tractability, partly since it serves as a reference pro-
cess when more advanced models are considered, and partly since it is used
for constructing more advanced models.

Definition

A Poisson process X defined on R
d and with intensity measure µ and intensity

function ρ satisfies for any bounded region B ⊆ R
d with µ(B) > 0,

(i) N(B) is Poisson distributed with mean µ(B),
(ii) conditional on N(B), the points in XB are independent and identically

distributed with density proportional to ρ(u), u ∈ B.

Some further definitions and properties

The Poisson process is a model for ‘no interaction’ or ‘complete spatial ran-

domness’, since XA and XB are independent whenever A, B ⊂ R
d are disjoint.

This property together with the definition above show how to construct the
process, using a partition of R

d into bounded subsets, and it is not hard to
verify that this construction is well-defined and unique no matter how we
choose the partition. Moreover,

ρ(2)(u, v) = ρ(u)ρ(v), g(u, v) ≡ 1,

reflecting the lack of interaction.
If ρ(u) is constant for all u ∈ R

d with ρ(u) > 0, we say that the Poisson
process is homogeneous. In particular, a stationary Poisson process is homo-
geneous as well as isotropic.
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2.3 Random sets

A random set X is a random subset of R
d (for a formal definition, see e.g.

Stoyan et al. (1995)). Usually, and also in this text, random closed sets are
considered, i.e. sets X where the boundary ∂X belongs to X. An example of a
random set in the context of three-dimensional tessellations is the set-theoretic
union of all cell faces of a given random tessellation of R

3.
The distribution of a random closed set X is given by its capacity functional

TX defined by

TX(K) = P(X ∩ K 6= ∅) for K ∈ K , (1)

where K is the family of all compact subsets K of R
d (a subset of R

d is called
compact if it is closed and bounded).

A random set X is called stationary if X and the translated set Xx =
{y + x : y ∈ X} have the same distribution for all x ∈ R

d. An equivalent
condition is

TX(K) = TX(Kx)

for every K ∈ K and every x ∈ R
d, where Kx = {k + x : k ∈ K}. Isotropy

is defined analogously, where translations (by x) are replaced by rotations
around the origin o, and motion invariance means that X is both stationary
and isotropic.

The capacity functional TX(K) in (1) is defined for all K ∈ K, but in
practice K is a too large family of ‘test sets’, so instead we usually consider
a much smaller parameterized family of compact sets. Examples include the
family of closed balls b(o, r) of radius r > 0 centred at the origin o, and the
family of closed line segment s(o, r) of length r > 0 with one endpoint in
o. In the motion invariant case this leads to the spherical and linear contact
distribution functions Hs(r) and Hl(r) given by

Hs(r) = 1 − 1 − TX(b(o, r))

1 − p
, 0 ≤ r < ∞

and

Hl(r) = 1 − 1 − Tx(s(o, r))

1 − p
, 0 ≤ r < ∞ .

Here p = P(o ∈ X) is the volume fraction of X, and a heuristic interpretation
of Hs(r) (Hl(r)) is as follows: Consider an arbitrary fixed point t ∈ R

d, con-
dition on that t 6∈ X, and consider the random distance from t to the nearest
point (to the nearest point in prescribed direction) in X. Then Hs(r) (Hl(r))
is the distribution function of this distance. For the random sets which usu-
ally accompany tessellations, we have p = 0, and so Hs(r) = TX(b(o, r)) and
Hl(r) = TX(s(o, r)).
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Again in the motion invariant case of the random set X, consider an ar-
bitrary line S in R

d. Its intersection with X generates a series of intervals
outside of X. In the case of interest in this paper, where X is the union of all
(d−1)-dimensional cell-faces of a tessellation, these intervals are separated by
points which are intersections of S and cell-faces. The chord length distribu-
tion function L(r) is defined as the distribution function of the length of an
interval which (loosely speaking) is uniformly chosen among these intervals,
and the mean chord length l is the expected length of this interval (a formal
definition is to use Palm distributions as defined later on, and to let the inter-
val be given by the “typical chord outside S”). This is closely related to the
linear contact distribution function, since

Hl(r) =
1

l

r
∫

0

[1 − L(s)] ds , 0 ≤ r < ∞

assuming 0 < l < ∞.

2.4 Germ-grain processes

Definitions

If there to each point x in a point process X is associated a mark in the form
of a compact random set Kx ⊂ R

d, we consider the marked point process
{(x, Kx) : x ∈ X}, assuming its distribution is well-defined (see e.g. Stoyan et

al. (1995)). This is in fact a particular type of a marked point process, which
we here call a germ-grain process (Hanisch, 1981), where x is the germ and
Kx is the grain of a geometric object E(x) = x + Kx, the translate of Kx

by x. As shown later many aspects of random tessellations can be described
by such processes. For example, a fiber process, where the fibres are bounded
closed curves, can be represented as a germ-grain process, where to each fibre
E we have a germ x, given e.g. by the midpoint of E, and a grain Kx = E−x.
Note that in the stochastic geometry literature, it is usually the random set
Ψ = ∪x∈XE(x) given by the union of all geometric objects which is called a
germ-grain model, and there may be many natural ways of choosing the germs
(see below).

The germ-grain process is stationary if its distribution is invariant under
translations in R

d, i.e. if {x + y, Kx) : x ∈ X} is distributed as {(x, Kx) : x ∈
X} for any point y ∈ R

d. Further, it is isotropic if its distribution is invariant
under rotations about the origin in R

d. Stationary and isotropic germ-grain
processes are also called motion invariant.

Palm distribution

The concept of Palm distributions is useful when defining what is meant
by a typical grain. For the purpose of this text, we only define the Palm
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distribution of the typical grain in the case of a stationary germ-grain process
{(x, Kx) : x ∈ X} when X has a positive, finite intensity ρ. Then the Palm
distribution is defined for all possible events F of a grain by

P(F ) =
1

ρ|B|E
(

∑

x∈XB

1
[

Kx ∈ F
]

)

(2)

where B ⊂ R
d is an arbitrary region with positive, finite content |B| (i.e. |B| is

the area of |B| if d = 2, and the volume of |B| if d = 3). Moreover, the typical

grain is a random set following this Palm distribution. Since the right hand
side in (2) does not depend on the choice of B, and we may let B expand to
R

d, we can interpret the Palm distribution as the distribution of a uniformly
selected grain, justifying the terminology ‘typical grain’.

As mentioned, there may be many natural ways of choosing the germs for
a process E(x) of random sets indexed by a point process X. For mathemat-
ical reasons, in the stationary case, it is convenient to use so-called covariant

centroids c(E) ∈ R
d, meaning that c(T (E)) = T (c(E)) for all possible real-

izations E of the grains and all translations T . If E is a convex polytope (i.e.
a finite intersection of closed halfspaces), the centroid c(E) is natural given
by the centre of gravity (i.e. the mean of the vertices of E), and this choice
is clearly covariant. Another covariant choice is the ‘most extreme point’ of
E in a given fixed direction. No matter the choice it turns out that the geo-
metric properties of the typical grain are the same as long as the centroid is
covariant; by ‘geometric properties’ of e.g. a polyhedron we mean for example
its volume, surface area, total length of edges, and number of vertices; see e.g.
Møller (1989). Indeed all results presented in the sequel do not depend on the
choice of covariant centroid.

3 Random tessellations

3.1 Basic definitions and assumptions

Definition of random tessellations

By a tessellation of a given bounded region S ⊂ R
d or of the entire space

S = R
d, we mean a countable subdivision of S into non-overlapping, compact

d-dimensional sets Ci called cells. Thus S = ∪i∈ICi, where I is a countable
index set, each cell Ci is closed and bounded with d-dimensional interior intCi,
and the cells have disjoint interiors: intCi ∩ intCj = ∅ whenever i, j ∈ I with
i 6= j. Further assumptions are usually added, including that the collection of
cells is locally finite in the sense that an arbitrary bounded region of R

d is in-
tersected only by a finite number of cells. Often tessellations with convex cells

(more precisely, the cells are bounded d-dimensional convex polytopes) have
been studied in stochastic geometry, though tessellations with non-convex cells
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also play some importance and will be considered to some extent also in this
contribution.

Suppose that we have specified the joint distribution of a sequence Ci,
i ∈ I, of random closed sets so that the sequence is a tessellation of S = ∪i∈ICi

(or at least with probability one, it is a tessellation). This is called a random

tessellation of S.

Intersections between cells

Consider a random tessellation Ci, i ∈ I. For most random tessellation models
studied in stochastic geometry, if d = 2, each boundary ∂Ci splits into a
number of edges and vertices given by non-void intersections between Ci and
one or more other cells Cj . Similarly, if d = 3, non-void intersections between
two or more cells result in general in 0, 1, and 2 dimensional connected sets
called vertices, edges, and faces, respectively. These concepts can be made
more precise under the assumption in the next paragraph.

Henceforth, we restrict attention to the following case (which may actually
only happen with probability one). Suppose that each cell is a connected set,
which is only intersected by a finite number of other cells, and any non-void
intersection between k > 1 cells is a finite union of (maximal) connected
components of the same dimension m = m(k), say. The intersection is then
called an m-facet and each of its connected components is called an m-face.
Note that a 0-face is nothing but a point or vertex of the tessellation, a 1-face
is a closed curve called an edge of the tessellation, and if d = 3, a 2-face is
what we above just called a face. It is convenient to call a cell a d-facet or
d-face (recalling that a cell is assumed to be connected).

If for any k = 2, . . . , d+1 and any non-void intersection between k cells we
always have that m(k) = d−k+1, we say that the tessellation is normal, since
many real-life non-artificial tessellations possess this property. For instance, a
planar tessellation is normal if the edges and vertices are given by the non-void
intersections between pairs respective triplets of cells.

For normal tessellations with convex cells, the sets of m-facets and m-
faces coincide, and they possess many desirable geometrical and topological
properties:

(i) For k = 1, . . . , d, any (d− k)-face is a bounded convex polytope of dimen-
sion d−k, and it lies in the relative boundaries of (k+1)!/((l+1)!(k− l)!)
intersecting (k − l)-faces, 0 ≤ l ≤ k ≤ d.

(ii) The set of m-faces is locally finite in the sense that the number of m-faces
intersecting a given bounded subset of R

d is finite.

Accompanying structures

The m-faces and m-facets of a random tessellation define accompanying struc-

tures of random sets, e.g. the point processes of vertices (m = 0) and cell
centres (m = d), the fiber process of edges (m = 1), and the surface process
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of 2-faces (m = 2 and d = 3). Such structures can be represented as germ-
grain processes, and they are helpful for the description of particular aspects
of random tessellations as demonstrated in the following section.

3.2 Stationary tessellations

A random tessellation with cells Ci, i ∈ I, is stationary if its distribution is
invariant under translations in R

d, i.e. if the collection {T (Ci), i ∈ I} of all
cells transformed by an arbitrary translation T is distributed as {Ci, i ∈ I}.
This implies that {Ci, i ∈ I} is necessarily a tessellation of the entire space
R

d. Moreover, isotropy of the random tessellation means that its distribution
is invariant under rotations about the origin in R

d. Stationary and isotropic
tessellations are also called motion invariant.

Stationarity allow us to define the concepts of the typical cell and the typ-
ical m-face, and to establish various mean value relations for the geometrical
characteristics of the accompanying structures of the tessellation. The planar
(d = 2) and spatial (d = 3) cases have been studied in Mecke (1980, 1984),
Radecke (1980), Møller (1994), and Stoyan et al. (1995); general definitions
and results in d ≥ 1 dimensions are given in Møller (1989). These results allow
us to parameterize all mean values considered by only a few of them, which
in turn often may be easily estimated by non-parametric statistical methods.

In the sequel we concentrate on mean value relations for the ‘practical’ pla-
nar (d = 2) and spatial (d = 3) cases of a stationary tessellation with convex
cells. For the accompanying structures represented as germ-grain processes,
we use covariant centroids (see Section 2.4).

Mean value relations in the planar case

Consider a planar (d = 2) stationary tessellation with convex cells, and intro-
duce the following notation.

(i) The point processes of vertices, edge midpoints, and cell centroids are
denoted X0,X1,X2, respectively. These are stationary with intensities
ρ0, ρ1, ρ2, which are assumed to be positive and finite.

(ii) For each vertex x ∈ X0, consider the edges emanating from x, and denote
N0,2(x) the number and L0(x) the total length of these edges.

(iii) For each x ∈ X1, let L1(x) denote the length of the associated edge.
(iv) For each x ∈ X2 and the associated cell, denote N2,0(x) the number

of edges (or equivalently number of vertices), L2(x) the length of the
perimeter, and A2(x) the area of the cell.

(v) Let LA denote the intensity of the fiber process of edges, i.e. LA|B| is the
mean length of the union of all edges intersected with an arbitrary region
B ⊂ R

2.

Note that ρm is the intensity of m-faces. In each case of (ii)-(iv) we have
obviously an underlying stationary germ-grain process, and we can thereby
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define mean values for the geometric characteristics in (ii)-(iv) with respect
to the typical vertex, edge or cell. We denote these mean values by N0,2, L0,
L1, N2,0, L2, A2; e.g. N0,2 is the mean number of edges emanating from the
typical vertex.

Now, mean value relations expressing the parameters ρ0, ρ1, ρ2, N0,2, L0,
L1, N2,0(x), A2, and LA in terms of only three parameters, namely ρ0, ρ2

(or N0,2), and LA, have been established, see e.g. Stoyan et al. (1995, Section
10.3). Note that ρ0, ρ2 (or N0,2), and LA may be easily estimated in practice
(see Section 5). Normality of the tessellation is equivalent to that N0,2 = 3,
in which case we only need to determine two parameters, e.g. ρ2 and LA.

Mean value relations in the spatial case

Consider a spatial (d = 3) stationary tessellation with convex cells, and in a
similar way as in the planar case, define

(i) ρm, the intensity of m-faces (m = 0, 1, 2, 3), which is assumed to be posi-
tive and finite;

(ii) Nk,l, the mean number of l-faces adjacent to the typical k-face (k, l ∈
{0, 1, 2, 3});

(iii) L1, the mean length of the typical edge;
(iv) L2 and A2, the mean perimeter and mean area of the typical 2-face (or

just ‘face’);
(v) L3, S3, V3, and B3, the mean total edge length, the mean surface area,

the mean volume, and mean of the average breadth of the typical cell;
(vi) LV , the intensity of the fiber process of edges, i.e. LV |B| is the mean length

of the union of all edges intersected with an arbitrary region B ⊂ R
3;

(vii) SV , the intensity of the surface process of 2-faces, i.e. SV |B| is the mean
area of the union of all 2-faces intersected with an arbitrary region B ⊂ R

3;
(viii) TV , the intensity of vertices weighted according to the numbers of adjacent

cells, i.e. TV |B| is the mean of the sum of all such weights for vertices
within an arbitrary region B ⊂ R

3;
(ix) ZV , the intensity of the fibre process of edges weighted according to the

numbers of adjacent cells, i.e. ZV |B| is the mean of the sum over all edges
where each term in the sum is obtained by multiplying the number of
adjacent cells of an edge by the length of the intersection of that edge
with an arbitrary region B ⊂ R

3.

All the parameters in (i)-(ix) can be expressed by seven parameters, namely
ρ0, ρ3, ρ1+ρ2, LV , SV , TV , and ZV , which may be easily estimated in practice
(see Section 5). In the case of a normal tessellation we only need to determine
three parameters, e.g. ρ0, ρ3, and LV . For details, see e.g. Stoyan et al. (1995,
Section 10.4).

The typical cell and the point-sampled cell

We return now to the general setting of a stationary tessellation in R
d, with-

out assuming convexity of the cells. Denote C∗ the cell containing the origin
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0 (or any other arbitrary fixed point in R
d); sometimes it is said to be a point

sampled cell. The point process of cell centroids is stationarity with an inten-
sity ρd. Assuming 0 < ρd < ∞, let C denote the typical cell of the tessellation.
Intuitively, C∗ is larger than C; this can be formalized as shown in Mecke
(1999).

4 Voronoi and Delaunay tessellations

4.1 General definitions, assumptions, and properties

Definition and some general properties of Voronoi tessellation

Given a realization of point process X = {xi} in R
d, the Voronoi tessellation

of R
d with nuclei {xi} has cells

Ci = {y ∈ R
d : ‖xi − y‖ ≤ ‖xj − y‖ for all j 6= i},

where ‖ · ‖ is the usual Euclidean distance. In other words, the Voronoi cell
Ci consists of all points closer to the nucleus xi than to any other nucleus.
Clearly, the Voronoi cells have disjoint interiors, and they are convex, closed
sets. Since X is locally finite, each point in R

d belongs to finitely many Voronoi
cells, so the Voronoi cells are space-filling (Rd = ∪iCi). Further conditions are
needed to ensure boundness and other desirable properties of the Voronoi cells.
For example, stationarity of X implies that the Voronoi cells are bounded
and hence compact. Furthermore, for subsets S ⊂ R

d, we have a Voronoi

tessellation of S which is simply given by the restriction of the Voronoi cells
to S.

In the sequel, like in most of the stochastic geometry literature on Voronoi
tessellations, we assume the nuclei to be in general quadratic position, that
is (with probability one) no k + 1 nuclei lie on a (k − 1)-dimensional affine
subspace of R

d, k = 2, . . . , d, and no d + 2 nuclei lie on the boundary of a
sphere. Then the Voronoi cells are compact d-dimensional polytopes, and any
bounded region of R

d is intersected by only finitely many Voronoi cells, so
that in the sense of Section 3.1, the Voronoi tessellation is in fact a tessella-
tion of R

d. Moreover, the Voronoi tessellation is normal. Consequently, in the
stationary case, the general simple mean value relations for normal stationary
tessellations apply, cf. Section 3.2.

Definition and some general properties of Delaunay tessellation

Since the Voronoi tessellation is normal, each of its vertices is given by an
intersection of exactly d + 1 Voronoi cells. The corresponding d + 1 nuclei
define a Delaunay cell; this is the closed d-dimensional simplex with vertices
given by these nuclei, i.e. a closed triangle if d = 2, a closed tetrahedron
if d = 3, and so on. The Delaunay cells constitute a tessellation of R

d, the
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Delaunay tessellation. The two types of tessellations are said to be dual, since
the vertices of the Voronoi tessellation correspond to the Delaunay cells. Note
that each k-facet of the Delaunay tessellation is a k-dimensional closed simplex
with vertices given by k +1 nuclei whose Voronoi cells share a (d− k)-facet of
the Voronoi tessellation. For this and other reasons, although the Delaunay
tessellation is not normal, it is more tractable for mathematical analysis than
the Voronoi tessellation.

Consider again the stationary case; clearly, stationarity of the nuclei is
equivalent to stationarity of the Voronoi or Delaunay tessellation. By duality,
i.e. since the k-faces of the Delaunay tessellation are in one-to-one correspon-
dence with the (d−k)-faces of the Voronoi tessellation, we easily obtain simple
mean value relations for the Delaunay tessellation. For instance, the intensity
ρd−k of (d− k)-faces of the Voronoi tessellation equals the intensity of k-faces
of the Delaunay tessellation.

4.2 Poisson-Voronoi tessellations

Stochastic geometry models for the point process of nuclei generating a
Voronoi tessellation are very different from the highly regular patterns of
nuclei used in the seminal work of Dirichlet (1850) and Voronoi (1908). An
important particular case is the Voronoi tessellation with respect to a ho-
mogeneous Poisson process. For this stationary Poisson-Voronoi tessellation
numerous useful results can be established.

Throughout this section, the point process X of nuclei is assumed to be
a stationary Poisson process with positive and finite intensity ρ. This implies
that the nuclei are in general quadratic position.

First order mean value results

As the nuclei are clearly covariant, the intensity of Voronoi cells is ρd = ρ.
Furthermore,

LA = 2
√

ρ when d = 2, (3)

while if d = 3 we have

λ0 =
24π2ρ

35
≈ 6.768ρ, LV =

16

15

(

3

4

)1/3

π5/3Γ

(

4

3

)

ρ2/3 ≈ 5.832ρ2/3, (4)

where Γ is the Gamma-function. These results follow from a general result
in arbitrary dimensions d for the density of m-faces, i.e., the intensity of the
random set given by the union of m-faces of a stationary Poisson-Voronoi
tessellation. Specifically, denoting the density of m-faces by λd,m and setting
k = d − m, we have

λd,m =
λk/d2k+1πk/2Γ (dk+d−k+1

2 )Γ (d
2 + 1)k+((d−k)/d)Γ (k + d−k

d )

(k + 1)!Γ (dk+d−k
2 )Γ (d+1

2 )kΓ (d−k+1
2 )d

. (5)
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Equation (5) is obtained by combining the extremely useful Slivnyak-Mecke
formula (considered in more detail in Section 4.4) with an integral geomet-
ric result known as the Blaschke-Petkantschin formula, see Miles (1974) and
Møller (1989, 1994, 1999). Indeed, (5) when d ≤ 3 was already established by
Meijering (1953).

Recall that for the mean value relations discussed in Section 3.2 where
d ≤ 3, we need only to know ρd = ρ and the parameters in (3)–(4) in the
planar and spatial cases. If d = 2, we have

ρ0 = 2ρ, ρ1 = 3ρ, ρ2 = ρ,

N0,2 = 3, L0 = 2/
√

ρ, L1 = 2/ (3
√

ρ) ,

N2,0 = 6, L2 = 4/
√

ρ, A2 = 1/ρ, LA = 2
√

ρ.

The results for d = 3 are given in e.g. Stoyan et al. (1995).

Other results

Higher order moments and many other properties of the Poisson-Voronoi tes-
sellation than those considered above are often more complicated to derive
and require in general either numerical or Monte Carlo methods. Such results
are briefly discussed below; see also Okabe et al. (2000).

Higher order mean values: For d ≤ 3, Gilbert (1962) derived an integral ex-
pression for the variance of the size of the typical Poisson-Voronoi cell and
the typical sectional cells obtained by considering the tessellation given by
the intersection of the stationary Poisson-Voronoi tessellation with a line or
plane. Covariances and variances of other kind of characteristics can be cal-
culated as well; in general the details are intricate. This is demonstrated in
two unpublished papers by Brakke (1987a, 1987b). Tables showing Gilbert’s
and Brakke’s results can be found in Møller (1994, Section 4.2).

The typical edge: Figures of Brakke’s numerical results for the density func-
tions of the length of the typical planar (d = 2) and spatial (d = 3) Poisson-

Voronoi edge are shown in Møller (1994); see also Muche (1993, 1996b) and
Schlather (2000). Recent work by Muche (2005) and Baumstark and Last
(2006) establish a complete description of the joint distribution of the typical
Poison-Voronoi edge and the accompanying point process of the d nuclei of
the Voronoi cells containing the typical Poison-Voronoi edge.

The typical cell: If we naturally choose the centroids of cells to be given by
the nuclei X, the distribution of the typical Poisson-Voronoi cell is by the
Slivnyak-Mecke formula the same as the Voronoi cell with nucleus 0 if we
consider the Voronoi tessellation with nuclei X ∪ {0}. This can formally be
expressed by the following distributional equality

C = {y ∈ R
d : ‖y‖ ≤ ‖y − x‖ for all x ∈ X}, (6)
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which is useful for simulating realizations of the typical Poisson-Voronoi cell,
see Section 7.

Table 10.4 in Stoyan et al. (1995), based on Monte Carlo simulations from
Miles and Maillardet (1982), shows the distribution of the number of vertices

in the typical planar Poisson-Voronoi cell. Calka (2002, 2003) studied size and
shape of planar Voronoi cells. Hug et al. (2004) showed that large Voronoi
cells tend to be spherical. Hayen and Quine (2002) calculated the first three
moments of the area of the typical Poisson-Voronoi cell in the plane.

Full Voronoi neighbours: Two nuclei are said to be full Voronoi neighbours

if the intersection between the corresponding two Voronoi cells and the line
segment with endpoints given by the two nuclei is non-empty, and the full
Voronoi neighbouring graph is called the Gabriel graph (the Gabriel graph is
a connected subgraph of the Delaunay graph given by Delaunay edges). The
mean number of Gabriel (or full) neighbours to the typical Poisson-Voronoi
cell is 2d, and if L is the length of the typical Gabriel edge, then Ld follows an
exponential distribution with mean Γ (1 + d/2)/((π/4)d/2ρ) (Møller, 1994).

Contact distribution functions: Muche and Stoyan (1992) derived integral for-
mulae for Hl(r) and Hs(r) in the case of the random set X given by the union
of all cell faces (d=3) or edges (d=2). The formulae are numerically tractable
and lead to formulae for the chord length distribution function L(r). The cor-
responding density functions l(r) are shown in Figure 1 for the planar and
spatial case for a Poisson process of unit intensity.

Heinrich (1998) studied contact and chord length distributions for Voronoi
tessellations with respect to some non-Poisson processes in R

d. Numerical
results were given for Poisson cluster and Gibbs processes.

Angular distributions: The distributions of various angles (e.g. at the typical
point or dihedral angles at vertices) are given for the spatial case in Muche
(1998, 2005) and Schlather (2000).

Pair correlation function of point process of vertices: Heinrich et al. (1998)
studied the pair correlation function of the accompanying point process of
vertices and derived numerically tractable formulae. Figure 2 shows this func-
tion for the spatial (d=3) case. There is a pole of order one at r=0 and a
small local maximum at r=1.5. It can be shown that the pole results from
very short edges. Such poles have been also observed for vertex processes of
Voronoi tessellations with respect to point processes that are more regular
than Poisson processes.

Gamma type results: Møller and Zuyev (1996) derived various gamma-type
results and conditional independence results between size and shape of dif-
ferent geometric characteristics determined by a stationary Poisson process.
One example is the fundamental region ∆ of the typical Poisson-Voronoi cell
as defined by the union of balls with centers at the vertices of C and contain-
ing 0 in their boundaries. Under the condition that C has n (≥ d + 1) faces,
|∆| is conditionally independent of the shape and orientation of ∆, and |∆|
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Fig. 1. The chord-length probability densities for Poisson-Voronoi tessellations
when d = 2 and d = 3, where in both cases the generating Poisson process is of
unit intensity.

follows a gamma distribution with shape parameter n and scale parameter
1/ρ; see also Miles and Maillardet (1982), Zuyev (1992) and Møller (1994).
Other examples of results of this type will be considered in Section 4.3.

4.3 Poisson-Delaunay tessellations

Assume still that the point process X of nuclei is a stationary Poisson pro-
cess with positive and finite intensity ρ. The typical Poisson-Delaunay cell is
denoted D; it is (almost surely) a d-dimensional simplex centred at the origin
0 (corresponding to a typical vertex of the Voronoi tessellation).

Miles (1974) determined the distribution of D (see also Møller (1989, The-
orem 7.5) for a simple proof): Let RU0, . . . , RUd denote the d+1 vertices of D,
where R > 0 is the typical vertex-nucleus distance and U0, . . . , Ud are unit vec-
tors. Then R is independent of the directions (U0, . . . , Ud), and Rd is gamma
distributed with shape parameter d and scale parameter Γ (1 + d/2)/(λπd/2).
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Fig. 2. The pair correlation function g(r) for the point process of vertices of the
spatial Poisson-Voronoi when the generating Poisson process is of unit intensity.

Further, the joint density function of (U0, . . . , Ud) is proportional to the d-
content of the (d + 1)-simplex determined by these unit vectors (here, the
density is with respect to the uniform distribution on the product space of d+1
unit spheres in R

d; the constant of proportionality is also known). Thereby,
the moments of |D| can be derived:

E
[

|D|k
]

=
(d + k − 1)!Γ (d2

2 )Γ (d2+dk+k+1
2 )Γ (d+1

2 )d−k+1
∏d+1

i=2 Γ (k+i
2 )/Γ ( i

2 )

(d − 1)!Γ (d2+1
2 )Γ (d2+dk

2 )Γ (d+k+1
2 )d+1(2dπ(d−1)/2ρ)k

for k = 1, 2, . . .. Specific results for d = 2, 3 are given in Møller (1994).
Miles’ result plays a fundamental role in the statistical theory of shape

(Kendall, 1989). Rathie (1992) has used the result for deriving the distribution

of the area (when d = 2) and the volume (d = 3) of the typical Poisson-

Delaunay cell. The density for the planar case d = 2 involves a modified
Bessel function; the expression for d = 3 becomes more complicated. Also the
distributions of the typical angle (when d = 2) and the typical edge (when d =
2, 3) of the Poisson-Delaunay tessellation have been determined: See Collins
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(1968), Miles (1970), Sibson (1980), Møller (1994), and Muche (1996a). Muche
(1999) studied the distributions of surface area, total edge length and mean
breadth of the typical Delaunay cell in the spatial case. Recently, Baumstark
and Last (2006) extended Miles’ result to a complete description of the Palm
distribution describing the nuclei as seen from a typical point on a k-face of
the Voronoi tessellation.

4.4 Generalizations of random Voronoi tessellations

So far we have mostly considered Voronoi tessellations with nuclei from a
stationary Poisson process. This section reviews some extensions, where the
nuclei are specified by a another kind of point process model, or where the
construction of Voronoi cells is modified.

Non-Poisson models

It is basically the Slivnyak-Mecke formula which makes the Poisson-Voronoi
tessellation relatively tractable for mathematical analysis. This formula can
be extended to characterize Gibbs point processes (Georgii, 1976; Nguyen
and Zessin, 1979): For disjoint point patterns x and {x0, . . . , xk} in R

d,
let λ({x0, . . . , xk};x) denote the conditional intensity of X at the locations
x0, . . . , xk. Intuitively, λ({x0, . . . , xk};x) dx0 · · · dxk is the conditional prob-
ability that X has a point in each of infinitesimally small regions around the
points x0, . . . , xk of content dx0, . . . , dxk when we condition on that X agrees
with x outside these regions. In the special case of a Poisson process with
intensity function ρ, we have that λ({x0, . . . , xk};x) = ρ(x0) · · · ρ(xk). Now,
X is a Gibbs point process with conditional intensity λ({x0, . . . , xk};x) if

(k + 1)! E
∑

{x0,...,xk}⊂X

f(X \ {x0, . . . , xk}, {x0, . . . , xk}) (7)

=

∫

· · ·
∫

E [λ({x0, . . . , xk};X)f(X, {x0, . . . , xk})] dx0 · · · dxk

for any integer k ≥ 0 and non-negative function f . Equation (7) is called the
(extended) Georgii-Nguyen-Zessin formula (or the GNZ-formula); the specifi-
cation of λ({x0, . . . , xk};X) on the right side of (7) is arbitrary if {x0, . . . , xk}
and X are not disjoint. The GNZ formula reduces to the Slivnyak-Mecke for-
mula in the special case of a Poisson process.

As an interesting example of a Gibbs point process, consider the hard core

point process. This has conditional intensity λ({x0, . . . , xk};x) given by

βk+11[‖ξ − η‖ ≥ δ for distinct points {ξ, η} ⊂ x ∪ {x0, . . . , xk}] (8)

where β > 0 is a parameter controlling the intensity of the process, and δ > 0
is a so-called hard core parameter. For the accompanying Voronoi tessellation,
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each cell contains the ball of diameter δ centered at its nucleus. Thus, as β
increases, we get more and more regular Voronoi cells.

Another possibly even more interesting model is obtained by replacing the
hard core condition ‖ξ − η‖ ≥ δ in (8) by a hard core condition on the size of
the Voronoi cells, thereby obtaining Ord’s process; see Baddeley and Møller
(1989). Ord’s process and many other examples of Gibbs models specified
in terms of Voronoi tessellations are studied in Baddeley and Møller (1989),
Kendall (1990), and Bertin et al. (1999a, 1999b).

Though Gibbs models may be more realistic for applications than Poisson
models, and the GNZ-formula (7) makes it possible to obtain various estima-
tion equations for the model parameters as well as the characteristics of the
accompanying Voronoi tessellation, it remains to study such models in more
detail.

Since most Gibbs point processes are only well-defined in the case where
the points repel each other, the accompanying Voronoi tessellations will usu-
ally have more regular cells as compared to a Poisson-Voronoi tessellation.
The same is true for the point processes of sphere centres in random packing
of hard identical spheres as discussed in Lochmann et al. (2006a).

Also point processes where the points aggregate have been considered as
models for the nuclei of a Voronoi tessellation. In particular Poisson clus-

ter processes X have been used. Such a process is given by a union of ‘off-
spring’ point processes translated by a ‘mother’ point process; specifically,
X = ∪y∈Y(y + Ky), where {(y, Ky) : y ∈ Y} is a germ-grain process, Y is
a Poisson process of ‘mother’ points, and the grains Ky are finite ‘offspring’
point processes, which are independent and identically distributed and inde-
pendent of Y. For example, in a Matérn cluster process, Ky is a homogeneous
Poisson process defined on a ball with center 0. See Hermann et al. (1989),
Møller et al. (1989), Lorz (1990), Lorz and Hahn (1993), Møller (1994, 1995),
Saxl and Ponižil (2002) and Van de Weygaert (1994).

Tessellation constructions related to the Voronoi tessellation

The construction of a Voronoi tessellation has been generalized in various
ways as exemplified below.

Generalized Voronoi tessellation: This kind of tessellation is also called a near-

est order n diagram. Given a point process X of nuclei, each cell of the gen-
eralized Voronoi tessellation is specified by a point configuration of n nuclei
{x1, . . . , xn} ⊂ X. The cell consists of all points in R

d at least as close to
x1, . . . , xn as to any other nuclei in X. Some probabilistic results when X is a
stationary Poisson process for such tessellation have been established in Miles
(1970) and Miles and Maillardet (1982).

Johnson-Mehl tessellation: Considering the Voronoi tessellation as the result
of growing nuclei (with same speed and start of growth) one can generalize
the construction to obtain the Johnson-Mehl tessellation (Johnson and Mehl,
1939), where nuclei starts to growth at different times. This tessellation has
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non-convex cells, and assuming stationarity, the Slivnyak-Mecke formula can
be used to obtain a general expression for the density of faces of a Poisson-

Johnson-Mehl tessellation (and for sectional Poisson-Johnson-Mehl tessella-
tions as well), whereby further characteristics can be evaluated, see Møller
(1992, 1995).

Laguerre tessellation: This kind of tessellation is also called a power tessel-

lation, sectional Dirichlet tessellation or radical tessellation, see Okabe et al.
(2000). It is generated with respect to a set X of balls b(x, r) with centres x
called nuclei and radii r. The Laguerre cell corresponding to b(x, r) is defined
as

C(x, r) = {y ∈ R
d : pow(y, (x, r)) ≤ pow(v, (x′, r′)) for all b(x′, r′) ∈ X}

where pow(y, (x, r)) = ‖y−x‖2−r2. These cells are closed convex polytopes. In
the special case where all balls in X have equal radii, the Laguerre tessellation
is just a Voronoi tessellation. If the radii are not equal, then in contrast to
the Voronoi tessellation the Laguerre cells can be empty or a nucleus may
be outside of its cell. If also the balls in X are non-overlapping (so-called
hard balls), then each ball in X is contained in one Laguerre cell. This makes
this tessellation interesting for the analysis and description of hard sphere
systems, see Lochmann et al. (2006b). Figure 3 shows a Laguerre tessellation
with respect to a system of random balls.

The Laguerre tessellation is also useful when studying and simulating in-
teraction processes for balls specified in terms of geometric properties of the
unions of balls (Møller and Helisova, 2007).

Similarly as in the case of a Voronoi tessellation, also Laguerre-Delaunay
tessellations can be defined.

Probabilistic analysis of Laguerre tessellations is rather complicated, even
in the case where X is an independently marked Poisson process. Lautensack
(2007) derived integral formulae for many interesting tessellation characteris-
tics, which can be numerically exploited. Examples in the spatial case (d = 3)
are the cell volume distribution, the parameters SV and LV , and the intensity
of the sub point process of Poisson process points with empty cells. Lauten-
sack also shows that Laguerre tessellations are very good models for various
cellular materials.

Anisotropic growth: Yet another generalization is to replace the Euclidean
distance used in the definition of Voronoi cells with another Euclidean metric
so that the growth is anisotropic. Scheike (1994) derived mean value relations
for such tessellations.

5 Statistical inference

So far most research on random tessellations has focused rather on mathemat-
ical modelling and analysis than statistical aspects. This section considers first
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Fig. 3. The Laguerre tessellation with respect to a random system of hard spheres.

non-parametric estimation of summary characteristics of tessellations and sec-
ond parameter estimation for stationary Poisson-Voronoi tessellations. Third,
recent progress with more complicated tessellation models, using a Bayesian
simulation-based approach to inference, is considered.

5.1 Non-parametric estimation of summary characteristics of

tessellations

When a sample of a stationary tessellation in R
d is given within a d-

dimensional observation window W , estimation of the corresponding summary
characteristics is not difficult. The established methods of spatial statistics for
point processes, fibre processes, surface processes and random sets can be ap-
plied, as sketched in Stoyan et al. (1995), p. 334, for the planar case.

For example, estimation of ρo means estimation of the intensity of a point
process (that of the vertices), while the estimation of ρd means estimation of
the mean number of grains per volume unit, where the grains are the cells.
Further, LA and LV are line densities of fibre processes and can be estimated
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by the statistical methods for these processes. Furthermore, Hl(r) and Hs(r)
can be estimated by the standard methods for random sets, where the random
set is here the set theoretic union of all cell boundaries (the union of all edges
for d = 2 and of all 2-faces for d = 3).

However, in many applications these methods only apply for planar tes-
sellations, while observation of three-dimensional tessellations are often only
given by planar sections which leads to stereological problems as discussed in
Section 6. Of course, for simulated d-dimensional tessellations, the methods
more easily apply.

5.2 Parameter estimation for Poisson-Voronoi tessellations and

related models

Parameter estimation for stationary Poisson-Voronoi tessellations is quite
easy: there is only one parameter, the intensity ρ of the cell centre point
process, and we can exploit that fundamental summary characteristics are
expressed in terms of ρ. In the planar case (the spatial case is similar) there
are three natural approaches:

(a) Estimating ρo, the intensity of the vertex point process, and then

ρ̂ = ρ̂o/2 .

(b) Estimating LA, the line density of the system of edges, and then

ρ̂ = L̂2
A/2 .

(c) Estimating ρ2, the mean number of cells per area unit, and then

ρ̂ = ρ̂2 .

The best method is (a) since there are no edge-problems when estimating
ρo and simple point counting suffices. If all three methods are carried out,
comparison of the three estimates of ρ may lead to some impression on the
validity of the stationary Poisson-Voronoi model assumption.

Also stereological methods lead in an elegant way to estimates of ρ for
spatial tessellations, see Section 6.

For other models statistical analysis is rather complicated, in particular
if no formulas for summary characteristics are available. A natural approach
is the minimum contrast method, see Gloaguen et al. (2006) and Lautensack
(2007). There the distributional difference between the tessellation data and
model tessellations is characterized by contrast characteristics and these are
then minimized. For example, Lautensack (2007) used in the context of a
spatial stationary Laguerre tessellations the contrast

d =

8
∑

i=1

( ĉi − ci

ci

)2



22 Jesper Møller and Dietrich Stoyan

with

c1 (c2) = mean (variance) of cell volume,
c3 (c4) = mean (variance) of cell surface,
c5 (c6) = mean (variance) of average cell width,
c7 (c8) = mean (variance) of number of faces per cell.

The ci are the model characteristics and the ĉi the empirical characteris-
tics. If the ci can be obtained only by simulation, the Nelder-Mead simplex
algorithm may be used for the minimization.

5.3 Bayesian reconstruction of tessellations

In recent years, various papers fitting tessellation models to actual data, us-
ing parametric statistical models and a Bayesian Markov chain Monte Carlo
(MCMC) approach to inference have appeared. A Bayesian approach is both
natural and very useful for many statistical applications of random tessel-
lations, partly because of the complicated structures and models used and
partly because some prior knowledge is often available. In contrast a classi-
cal/frequentist maximum likelihood approach is in general computationally
infeasible.

Some examples of reconstructing unobserved tessellations

Below we consider briefly the work by Blackwell and Møller (2003) where
vertices of a Voronoi tessellation are pertubated, and the work by Skare et

al. (2007) where points of a point process defined on the edge of a Voronoi
tessellation are pertubated such that the edges are not directly given. In both
papers, the tessellations are unobservable and have to be reconstructed using a
Bayesian MCMC approach. These papers consider only application examples
of planar and rather small samples, but the ideas used there can be applied
also to three-dimensional and much larger samples.

Figure 4 shows an example of a hidden tessellation in a noisy image ob-
tained from a cross-section through a sample of metal; the micro-crystalline
structure of the metal may be modelled by a tessellation. Figure 5 shows two
point patterns, where the larger circles indicate locations of badger setts and
the smaller dots indicate locations of badger latrines, which play a role in the
demarcation of badger territories; these territories may be modelled by the
cells of a tessellation, where the latrines tend to occur close to the edges of the
tessellation. Using a Bayesian MCMC-based approach to inference, Blackwell
and Møller (2003) show how to reconstruct the unobserved tessellations in
Figures 4 and 5, and how to indicate the uncertainty in the reconstruction.
Their approach is sketched below.
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Fig. 4. A grey-scale image of a cross-section of the austenite grain structure of a
steel sample obtained by light microscopy. The pixel size is about 0.5 µ m. We use
this rather blurred image to show the potential of the reconstruction method.

First, in Blackwell and Møller (2003), the unobserved tessellation is a

priori modelled by a deformed tessellation obtained by random pertubations
of the vertices of a planar Voronoi tessellation.

Second, conditional on the deformed tessellation, the data are modelled;
this is the likelihood term.

Third, certain priors are imposed on the unknown parameters of the like-
lihood and of the deformed tessellation model.

Fourth, an MCMC algorithm is constructed to sample from the poste-
rior distribution, which contains information about the unobserved deformed
tessellation, unobserved nuclei of the Voronoi tessellation, and all remain-
ing unknown parameters. Since MCMC methods are used for estimating the
posterior distribution, we only need to specify the posterior density up to
proportionality. It is proportional to the likelihood term times the joint prior
density for the unobserved deformed tessellation, the nuclei, and the remain-
ing unknown parameters. A major element of the MCMC algorithm is the
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Fig. 5. Badger setts and latrines.

reconstruction of the deformed tessellation after a proposed local change of
the tessellation.

Fifth, various illuminating graphical representations of the posterior dis-
tribution are shown, including how to reconstruct the deformed tessellation
and how to determine the uncertainty in the reconstruction.

In the badger example (Figure 5), the point patterns are observed in a
rectangular window W , and in order to account for edge effects, we may
consider a larger region S ⊃ W , see Figure 6. The nuclei of the Voronoi
tessellation are given by the badger setts defined on S, where the observed
badger setts are treated as a fixed point pattern, and the unobserved badger
setts are modelled by a homogeneous Poisson process on S \ W . An example
of a typical reconstruction of the deformed tessellation is shown in Figure 6,
where the non-convex cells are due to the pertubations of the vertices of the
underlying Voronoi tessellation.

The Bayesian approach is able to produce many other such reconstructions
and helps so to understand the uncertainty in the reconstruction, which is
a great advantage of the Bayesian approach; other reconstruction methods
usually just provides one tessellation as the final estimate. Figure 7 shows
this uncertainty in the form of the posterior edge intensity of the Voronoi
tessellation within the observation window.
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Fig. 6. Badgers data: An example of a reconstruction allowing for edge effects, where
the small rectangle indicates the observation window W and the larger rectangle
indicates the region S. The non-convex cells are due to pertubations of the vertices
of the underlying Voronoi tessellation.

Returning to the sample of metal in Figure 4, although a planar cross-
section through a 3D Voronoi tessellation is not precisely a 2D Voronoi tessel-
lation (Chiu et al., 1996), it makes nevertheless sense to try to reconstruct the
(unobserved) true structure of the grains in the cross-section using a deformed
Voronoi tessellation. A Bayesian reconstruction of the deformed tessellation is
shown in Figure 8; again this estimate could be supplied with a plot indicating
the uncertainty in the reconstruction.

In Skare et al. (2007), another point process model with high intensity near
the edges of a homogeneous Poisson-Voronoi tessellation is constructed. Given
the Voronoi tessellation, the point process is generated by random pertuba-
tions of the points of an unobserved homogeneous Poisson process defined on
the edges of the tessellation. The point process turns out to be an inhomoge-
neous Poisson process, and priors on the nuclei of the Voronoi tessellation and
other model parameters are imposed. Thereby the model can be analyzed in
a rather similar Bayesian fashion as in Blackwell and Møller (2003), using an
MCMC algorithm to sample from the posterior, which contains information
about the unobserved Voronoi tessellation and the model parameters. Fur-
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Fig. 7. Badgers data: Locations of the badger latrines together with a gray scale
plot of the posterior edge intensity.
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Fig. 8. Sample of metal: The posterior modal reconstruction.
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ther, it is demonstrated how posterior predictive distributions can be used for
model control. Moreover, a simulation study, the 2D application of the badger
dataset considered above, and a 3D application in material science (alumina
grain structure) are presented.

Further related work

In Green (1995), reversible jump Markov chain Monte Carlo has been devel-
oped and applied to image segmentation (subdivision of a digital image into
homogeneous regions) via Voronoi tessellations. Heikkinen and Arjas (1998,
1999) studied a non-parametric Bayesian modelling framework for inhomo-
geneous Poisson processes where the intensity function is piecewise constant
on Voronoi cells. In Møller and Skare (2001), Voronoi tessellations have been
used in a Bayesian setting for reservoir modelling. Blackwell (2001) considered
a Bayesian setting with Voronoi tessellations for modelling animal territories.

Other related statistical work uses the Voronoi tessellation as a way of
defining a correlation structure in a spatial model while allowing disconti-
nuities and anisotropy; see e.g. Denison et al. (2002). Such ‘partition models’
have been widely used in e.g. spatial epidemiology. In contrast with the models
above, partition models typically assume that mean response does not depend
on location within a cell, and the tessellation itself does not necessarily have
any direct interpretation within a specific application. In a very different con-
text, the pertubed vertices of a Voronoi tessellation generated by a Poisson
process in 3 dimensions have been used as a point process to model the lo-
cations of galaxies, see Snethlage et al. (2002). The interest there is in the
pertubated vertices themselves, however, not in any pertubated tessellation
nor in statistical inference.

The abovementioned papers are all related to particular applications, and
there is indeed scope for a further development of Bayesian MCMC methods
for random tessellations.

6 Stereology for tessellations

In this section, we consider stationary three-dimensional tessellations. Stere-
ology is a ‘toolbox’ of methods for obtaining three-dimensional information
from one- or two-dimensional data, obtained for example by beams or planar
sections. Many three-dimensional tessellation characteristics can be obtained
by means of stereological methods but the most fundamental ones, ρ3 and V3,
are notoriously difficult to estimate from planar sections. Given such data,
one approach is to use the formula

NA = ρ3B3,

where NA is the mean number of cell profiles per unit area and B3 is the mean
average breadth. In general B3 is impossible to estimate from planar sections,
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so the formula and other similar approaches based on stereological results can
only be used for systems of spherical particles and other particles of fixed
shape, and they lead to ill-posed integral equations, see Stoyan et al. (1995).
For random tessellation characteristics, this approach is useless. Alternative
approaches are based on serial sections (Baddeley and Jensen, 2005; Howard
and Reed, 2004; Liu et al., 1994) and modern measurement techniques using
computerized tomography, but difficult technical problems appear.

6.1 One-dimensional samples

Consider the intersection between an arbitrary line and a motion invariant
tessellation. The lengths of intervals given by the intersection points of the
line and the cell faces determine what is called the chord length distribution (a
formal definition involves the use of Palm measures). The mean chord length
l, appears in important formulae:

ρ3 =
4

S3 · l
, SV = 2/l .

In practice usually a system of lines is used to provide chord length data,
whereby l can be estimated. Furthermore, for the particular case of a Poisson-
Voronoi tessellation,

l = 0.687ρ−
1

3

which can be used to estimate ρ from the estimate of l.

6.2 Planar sections

The result of a planar section of a spatial tessellation is a planar tessellation.
Its first order characteristics are NA, LA (= mean cell edge length per unit
area) and PA (= mean number of profile vertices per unit area). These satisfy
the following fundamental stereological formulae in the motion invariant case:

NA = ρ3B3 , LA =
π

4
SV , PA =

1

2
LV .

Thus SV and LV can be conveniently determined by means of planar infor-
mation, whereas ρ3 can usually not be obtained from planar sections since B3

is unknown.
In the particular case of a Poisson-Voronoi tessellation the formulae above

can be replaced by expressions which contain only the tessellation parameter
ρ,

NA = 1.46ρ2/3 , LA = 2.29ρ1/3 , PA = 2.92ρ2/3 .

These formulas lead to estimators of ρ, where that based on PA might be
preferred. Information on these estimators and on related tests of the Poisson-
Voronoi hypothesis can be found in Stoyan et al. (1995), p. 374. There it is
recommended to estimate ρ3 for general stationary tessellations by means of
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ρ̂3 = 0.566N̂
3/2
A ,

using the working assumption that the Poisson-Voronoi tessellation can be
used as an approximation.

In metallography more precise methods have been developed. According
to U.S. standards (the last version is ASTM Standard E-112) for steel grains

ρ̂3 = 0.8N̂
3

2

A , ρ̂3 = 0.5659l
−3

.

Horálek (1988) showed that these estimators are unbiased for a particular class
of Poisson-Johnson-Mehl tessellation models. Saxl & Ponižil (2001) studied
the grain-size estimation problem in materials in more detail and developed
the so-called w-s diagram, which leads to fair approximate estimates of mean
cell volume V3 based on N̂A, l and the coefficients of variation of section cell
area and chord length.

The papers Schwertel and Stamm (1997) and Coster et al. (2005) are worth
reading case studies for the application of stereological methods for tessella-
tions in the context of materials science. There image-processing methods are
first used to obtain from rough data images of a quality suitable for statis-
tical methods. Next Poisson-Voronoi and Poisson-Johnson-Mehl tessellations
are fitted to these refined data, using the methods discussed above and in
Section 5.2.

7 Simulation procedures

In previous sections, mathematically tractable properties of Poisson-Voronoi
and Poisson-Delaunay tessellations were outlined. Further analysis of these
and other kind of random tessellation models requires Monte Carlo studies.
In the case of a tessellation defined on an unbounded region, it is important
to account for edge effects, i.e. not to forget that what happens outside a
bounded simulation window may effect what happens within the window.

Most simulation studies of Voronoi tessellations are concerned with the
Poisson case. In a large scale study, Hinde and Miles (1980) approximated the
polygonal characteristics of a typical planar Poisson-Voronoi cell by Monte
Carlo methods. A more efficient method is based on combining (6) with the
radial simulation algorithm for the stationary Poisson process in R

d as in-
troduced in Quine and Watson (1984). This algorithm is also tailormade for
simulating a Voronoi tessellation within a ball when the nuclei come from a
stationary Poisson process or a related point process obtained by thinning or
clustering such as Matérn hard core processes and Poisson cluster processes
with uniformly bounded clusters (including the Matérn cluster process). For
such processes the problem with edge effects can be avoided, while for for Pois-
son cluster processes with not necessarily uniformly bounded clusters, results
in Møller (2003) are useful for evaluating the edge effects. Moreover, Quine
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and Watson’s algorithm can be extended to apply for Poisson-Johnson-Mehl
tessellations, see Møller (1995). Several simulated results are shown in Hinde
and Miles (1980), Quine and Watson (1984), Hermann et al. (1989), Møller et

al. (1989), Lorz (1990), Lorz and Hahn (1993), Møller (1994, 1995), Van de
Weygaert (1994), and Okabe et al. (2000).

The Bayesian MCMC algorithms used in the papers mentioned in Sec-
tion 5.3 depend much on the specific models and problems. Briefly, they are
hybrid Metropolis-Hastings algorithms, with separate types of updates for
the various kind of parameters. For the point process updates, a birth-death-
move algorithm is used (Geyer and Møller, 1994), and for the other kind of
parameters Gibbs or Metropolis random walk updates are used.

Acknowledgments

We thank Lutz Muche for valuable remarks on an earlier version of this paper
and for providing Figures 1 and 2, and Joachim Ohser for providing Figure 4.
JM was supported by the Danish Natural Science Research Council, grant no.
272-06-0442 (‘Point process modelling and statistical inference’).

References

1. A. Baddeley, E. B. Vedel Jensen: Stereology of Statisticians (Chapman &
Hall/CRC, Boca Raton, 2005)

2. A. Baddeley, J. Møller: Int. Statist. Rev. 2, 89 (1989)
3. V. Baumstark, G. Last: Adv. Appl. Probab. 37, 279 (2006)
4. P.G. Blackwell: Biometrics 57, 502 (2001)
5. P.G. Blackwell, J. Møller: Adv. Appl. Probab. 35, 4 (2003)
6. E. Bertin, J.-M. Billiot, R. Drouilhet: Stochastic Models 15, 181 (1999a)
7. E. Bertin, J.-M. Billiot, R. Drouilhet: Adv. Appl. Probab. 31, 895 (1999b)
8. K.A. Brakke: Statistics of random plane Voronoi tessellations, Department of

Mathematical Sciences, Susquehanna University (Manuscript 1987a)
9. K.A. Brakke: Statistics of three dimensional random Voronoi tessellations,

Department of Mathematical Sciences, Susquehanna University (Manuscript
1987b)

10. P. Calka: Adv. Appl. Probab. 34, 702 (2002)
11. P. Calka: Adv. Appl. Probab. 35, 551 (2003)
12. S.N. Chiu, R. van de Weygaert, D. Stoyan: Adv. Appl. Probab. 28, 356 (1996)
13. R. Collins: J. Phys. C 1, 1461 (1968)
14. M. Coster, X. Arnould, J.-L. Chermant, A. E. Moataz, T. Chartier: Image Anal.

Stereol. 24, 105 (2005)
15. D.J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes.

Volume I: Elementary Theory and Methods, 2nd edn (Springer, New York 2003)
16. D.G.T. Denison, C.C. Holmes, B.K. Mallick et al: Bayesian Methods for Non-

linear Classification and Regression (Wiley, New York, 2002)
17. G.L. Dirichlet: J. Reine und Angew. Math. 40, 209 (1850)
18. H.-O. Georgii: Comm. Math. Phys. 48, 31 (1976)



Stochastic Geometry and Random Tessellations 31

19. E.N. Gilbert: Ann. Math. Statist. 33, 958 (1962)
20. C. Gloaguen, F. Fleischer, H. Schmidt, V. Schmidt: Telecommunciation Systems

31, 353 (2006)
21. C.J. Geyer, J. Møller: Scand. J. Statist. 21, 359 (1994)
22. P.J. Green: Biometrika 82, 711 (1995)
23. M. P. Hayen, M. P. Quine: Adv. Appl. Probab. 34, 281 (2002)
24. J. Heikkinen, E. Arjas: Scand. J. Statist. 25, 435 (1998)
25. J. Heikkinen, E. Arjas: Biometrics 55, 738 (1999)
26. L. Heinrich: Adv. Appl. Probab. 30, 603 (1998)
27. L. Heinrich, R. Körner, N. Mehlhorn, L. Muche: Statistics 31, 235 (1998)
28. H. Hermann, H. Wendrock, D. Stoyan: Metallography 23, 189 (1989)
29. A.L. Hinde, R.E. Miles: J. Statist. Comput. Simul. 10, 205 (1980)
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