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ABSTRACT

The contribution presents statistical analysis of data given by a digital image of heather growth. The bushes
are modeled as a process of interacting discs. Different ways of estimating the parameters of the model are
compared.
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INTRODUCTION

Many phenomena in nature can be described by a
union of discs. The objects represented by discs do
not need to be independent, but they may mutually
interact.

The contribution concerns a model of a random
closed set given by a finite union of interacting discs
with centers in a bounded setS⊂ R2. This model
is described by a density (with respect to a Boolean
model), which depends on geometrical characteristics
(e.g. area or perimeter) of the given set. The fact,
that in applications, only the union and not the discs
themselves can be observed, is taken into account so
that all the characteristics depend only on the whole
union. More details about this model can be found in
(Møller and Helisov́a , 2008a)

Here, the focus is given on estimating the
parameters of the model by MCMC simulation-
based maximum likelihood approach (MCMC MLE),
see (Møller and Waagepetersen , 2004), applied
to heather data first presented in (Diggle, 1981).
Problems with edge effects are solved by two different
ways - conditional and unconditional MLE. The
main aim is to compare these two ways for three
different reference processes. For this comparing,
some summary statistics (see (Stoyan et al , 1988)) and
shape characteristics (see (Ripley , 1988)) are used.

The presented results are obtained mainly by using
known methods from the theory of point processes.
For more details about this analysis, see (Møller and
Helisov́a , 2008b).

BASIC DEFINITIONS

Consider a point processX defined onRd as
a measurable mapping from some probability space
(Ω,F ,P) to (N,N ), whereN is the system of locally
finite subsets ofRd with the σ -algebraN = σ({x ∈
N : ](x∩A) = m} : A∈B,m∈N0). The distributionPX

of X is given byPX(F) = P({ω ∈Ω : X(ω) ∈ F}) for
F ∈N . We say that the point processX is absolutely
continuous with respect to the point processY if the
distribution ofX is absolutely continuous with respect
to the distribution ofY.

Let Y be the Poisson process with an intensity
measureµ (i.e. the process satisfying that (a) for
any finite collection{An} of disjoint sets inRd, the
numbers of points in these sets,Y(An), are independent
random variables and (b) for eachA ⊂ Rd such
that µ(A) < ∞, Y(A) has Poisson distribution with
parameterµ(A)) and denoteΠ(F) = P(Y ∈ F) for
F ∈N . A point processX is given by densityf with
respect to the Poisson processY if

P(X ∈ F) =
∫

F
f (x)Π(dx).

MODEL

For the construction of the model, denoteb =
b(z, r) a disc with a centerz∈R2 and radiusr ∈ (0,∞)
and identifyb with a point x = (z, r) ∈ R2× (0,∞).
Then the union of discs∪i∈I bi = ∪i∈I b(zi , r i), I ⊆ N,
can be identified with a point process onR2× (0,∞).

Consider a Poisson point processY onR2× (0,∞)
with an intensity measureρ(z)dzQ(dr), whereρ is an
intensity function of a Poisson point process onR2

and Q is a probability measure on(0,∞). Then the
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process of discs corresponding to the point processY
is a Boolean model with germs given by the Poisson
point process with the intensity functionρ and grains
are random discs with radii distributionQ.

Our model for a random set given by a union
of interacting discs is the union corresponding to a
point processX which is absolutely continuous with
respect to the Poisson processY and given by a density
f (x) with respect toY for any finite configuration
x = {x1, . . . ,xn}.

We assume thatX is a finite point process defined
on S× (0,R), whereS⊂ R2 is a bounded set such
that

∫
Sρ(z)dz> 0, andR< ∞. Further, we assume the

density in the form

fθ (x) =
1
cθ

exp(θ ·T(Ux)) = (1)

=
exp(θ1A(Ux)+θ2L(Ux)+θ3Ncc(Ux)+θ4Nh(Ux))

cθ
,

wherecθ is a normalizing constant,θ = (θ1,θ2,θ3,θ4)
is a vector of parameters,· denotes the inner product
andT(Ux) = (A(Ux),L(Ux),Ncc(Ux),Nh(Ux)) is the
vector of geometrical characteristics of the unionUx
of discs corresponding to the configurationx, where
A(Ux) denotes the area,L(Ux) the perimeter,Ncc(Ux)
the number of connected components andNh(Ux) the
number of holes in the unionUx.

The interpretation of the density is following: If
θ1 = . . . = θ4 = 0, there are no interactions among the
discs and the model corresponds to the Boolean model.
Else the configurations of the model have different
geometrical characteristics than the reference Boolean
model, e.g. ifθ1 > 0, then the unions of discs with (in
average) larger area than the area of the unions of discs
of the reference process are more probable.

Because the interactions in the model depend on
the vector of geometrical characteristicsT, we call the
modelT-interaction process.

DATA ANALYSIS

We applied the model to the data of heather growth
observed in a region10× 20 m in J̈adråas (Sweden),
see upper left picture in Figure 1.

Since the bushes are observed in a bounded
windowW, which does not include the whole growth,
the problem with edge effects occurs. We solve this
problem by two different ways of using MCMC MLE
method. These ways are described in the following
subsections.

CONDITIONAL MLE

Split X into X(a), X(b), X(c) corresponding to discs
belonging to connected components ofUX which are
respectively

(a) whole contained in the windowW,

(b) intersecting bothW and its complementWc,

(c) whole contained inWc.

Let x(b) denote a realization ofX(b), i.e. x(b)

corresponds to a finite configuration of discs such that
every component ofx(b) intersects bothW and Wc.
By (Møller and Helisov́a , 2008a), Proposition 5, we
have that conditionally onX(b) = x(b), the processes
X(a) and X(c) are independent, and the conditional
distribution ofX(a) depends onx(b) only throughV =
W∩Ux(b) .

DenoteZ the whole data set,̃Z = Z ∩W the data
we can observe,Z(b) the components intersecting the
boundary ofW andZ(a) = Z̃ \Z(b). Then we have the
(conditional) log likelihood function in the form

Lc(θ) = θ ·T(Z(a))− logcθ . (2)

Here, the edge effects are omitted. However, ifW
is not large enough, many components intersect the
boundary and we can lose much data (in the worst case
x(a) is empty).

UNCONDITIONAL MLE

This way is based on ignoring everything outside
the observation windowW. ConsideringS= W, we
can approximate the log likelihood function by

Lu(θ) = θ ·T(Z̃)− logcθ . (3)

Here we have no data loss, but on the other hand, the
method is less exact, sinceZ (and henceUX) may
expand outsideW.

Notice that the normalizing constant in (3) is
different from the one in (2) - whilecθ in (3)
corresponds to the density of the wholeX, cθ in
(2) is normalizing constant in conditional density of
X(a). Moreover, both these constants have no explicit
expression, and therefore they need to be approximated
using MCMC simulations.
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RESULTS

From the data, we have for conditional MLE

A(Z(a)) = 45.6,L(Z(a)) = 190,

Ncc(Z(a)) = 32,Nh(Z(a)) = 2

and for unconditional MLE

A(Z̃) = 100.3,L(Z̃) = 382.8,

Ncc(Z̃) = 56,Nh(Z̃) = 6.

In order to have more comparing, we produce
the estimates for three different reference processes
(the choices of their parameters values are based on
previous analyses):

(R1)ρ = 2.45 and Q is the restriction of distribution
N(0.26,0.162) to the interval[0,0.50];

(R2)ρ = 2.45 and Q is the uniform distribution on
[0,0.53];

(R3)ρ = 1.16 and Q is the uniform distribution on
[0,0.53].

Comparing the data with the reference processes is
in the following figure.

Fig. 1.Comparing the data (upper left) with simulation
of reference Boolean models (R1) (upper right), (R2)
(lower left) and (R3) (lower right).

The estimated parameters are further tested by
Wald test (see (Møller and Waagepetersen , 2004)) if
they can be considered to be equal to zero.

The estimates obtained by conditional likelihood
(MLEc) and unconditional likelihood (MLEu) together
with the correspondingp−values obtained from Wald
test are shown in the following tables:

MLEc θ1 θ2 θ3 θ4

(R1) −2.14 0.89 −1.78 −1.01
p−value 0.0063 2.3e-05 2.6e-12 0.1435
(R2) −4.81 1.17 −2.26 −0.69
p−value 1.2e-09 4.9e-08 < e-16 0.3149
(R3) −3.67 1.62 −2.25 −0.13
p−value 3.7e-05 8.4e-12 < e-16 0.8415

MLEu θ1 θ2 θ3 θ4

(R1) −0.52 −0.10 −1.11 −0.91
p−value 0.3149 0.5071 2.1e-09 0.0200
(R2) −3.32 0.72 −1.62 −0.49
p−value 1.0e-11 3.9e-07 < e-16 0.2207
(R3) −1.79 1.04 −1.64 0.01
p−value 0.0022 8.6e-10 2.2e-16 1

Since in the most cases, the parameterθ4 has very
large p−value, Nh seems to be irrelevant while the
remaining characteristics with very lowp−value are
important. Therefore we omitNh from the model and
estimate again the parameters for the reduced model
with the density

fθ (x) =
1
cθ

exp(θ1A(Ux)+θ2L(Ux)+θ3Ncc(Ux)) .

Then we obtain

MLEc θ1 θ2 θ3

(R1) −2.33 0.92 −1.77
p−value 0.0020 4.6e-06 7.5e-12
(R2) −4.91 1.18 −2.25
p−value 7.0e-10 1.3e-08 < e-16
(R3) −3.71 1.64 −2.25
p−value 3.7e-05 6.7e-12 < e-16

MLEu θ1 θ2 θ3

(R1) −0.91 −0.02 −1.13
p−value 0.0512 0.8875 3.7e-10
(R2) −1.75 1.02 −1.63
p−value 0.0018 3.08e-10 < e-16
(R3) −3.45 0.74 −1.63
p−value 2.1e-12 2.2e-07 < e-16

In five of the six models, all the estimates are
considered not to be equal to zero. Hence we consider
the values in the table to be the parameters of the final
(A,L,Ncc)-interaction models.
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MODEL CONTROL

Let A ⊂ R2 be a set observed in a (bounded)
window W ⊂ R2 (in our case,A represents either the
dataZ̃ or the setUX corresponding to the simulated
disc processX observed insideW) andG is a set of
pixels in digital image of the setA.

In order to compare the results of the methods,
we construct the following pictures of simulations and
plots of summary statistics and shape characteristics,
where the three rows correspond from above to results
for models with respect to (R1), (R2) and (R3), and the
two columns correspond to models obtained by MLEc
(left) and MLEu (right).

– Figure 2: simulations of the model for visual
compare with the data;

– Figure 3: functionT̂(r)=−1
r log

(
1− Ĥ(r)

)
, r >

0, where Ĥ is the estimate of spherical contact
distribution function (see (Stoyan et al , 1988))
given by

Ĥ(r) =

∑u∈G1[u 6∈ A, u+br ⊂W, (u+br)∩A 6= /0]
∑u∈G1[u 6∈ A, u+br ⊂W]

,

wherebr = b(0, r) denotes a disc with center in
0∈ R2 and radiusr.

– Figure 4: estimate of covariance functionC(r) =
P(u∈ A, v∈ A) for any two pointsu,v∈ R2 with
distance‖u−v‖= r given by

Ĉ(r) =
∑u,v∈G1[‖u−v‖= r, {u,v} ⊂ A]

∑u,v∈G1[‖u−v‖= r]
.

– Figure 5: dilatation (for more details, see (Ripley ,
1988))

d(r) =
|A⊕r ∩Wªr |
|Wªr | ,

where |.| denotes the area,A⊕r = ∪u∈Ab(u, r)
is enlarging andAªr = {u : b(u, r) ⊆ A} is
contracting of the setA by a disc with radiusr.

Fig. 2. Simulations of the fitted(A,L,Ncc)-interaction
models.
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Fig. 3. Comparing the theoretical functionsT(r)
for the reference Boolean models (dot-dashed lines)
with T̂(r) based on the data (solid lines) and its
simulated 2.5% and 97.5% envelopes obtained under
the Boolean model (R1), (R2), or (R3) (dotted lines)
and the corresponding(A,L,Ncc)-interaction model
(dashed lines).
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Fig. 4. Comparing the theoretical functionsC(r)
for the reference Boolean models (dot-dashed lines)
with Ĉ(r) based on the data (solid lines) and its
simulated 2.5% and 97.5% envelopes obtained under
the Boolean model (R1), (R2), or (R3) (dotted lines)
and the corresponding(A,L,Ncc)-interaction model
(dashed lines).
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Fig. 5.Comparingd(r) based on the data (solid lines)
with simulated 2.5% and 97.5% envelopes obtained
under the Boolean model (R1), (R2), or (R3) (dotted
lines) and the corresponding(A,L,Ncc)-interaction
model (dashed lines).

CONCLUSION

In Figures 3 - 5, one can see that in many cases,
the plots of summary and shape statistics for the

data lie more in the middle of the envelopes for the
models with parameters obtained by MLEc. Due to this
observation, MLEc can be considered more exact then
MLEu. Nevertheless, there are apparent misfits neither
for models obtained by MLEc nor for that obtained by
MLEu, and therefore we can conclude that both the
methods provide suitable estimates.

ACKNOWLEDGEMENTS

The research was supported by the Danish Natural
Science Research Council, grant 272-06-0442 ”Point
process modelling and statistical inference”, by grant
IAA 101120604 and by the Czech Government under
the research programme MSM 6840770038.

REFERENCES

Diggle PJ (1981). Binary mosaics and the spatial pattern of
heather. Biometrics 37:531–539.

Møller J and Helisov́a K (2008). Power diagrams and
interaction processes for unions of discs. Advances in
Applied Probability 40:321–347.

Møller J and Helisov́a K (2008). Likelihood inference for
unions of interacting discs. To appear.

Møller J and Waagepetersen RP (2004). Statistical Inference
and Simulation for Spatial Point Processes. Boca Raton:
Chapman and Hall/CRC.

Ripley BD (1988). Statistical Inference for Spatial
Processes. Cambridge: Cambridge University Press.

Stoyan D, Kendall WS and Mecke J (1995). Stochastic
Geometry and Its Applications. Chichester: Wiley.

5


