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Abstract The Matérn type III hard core point process (shortly Matérn III
process) is a less well-known but for many applications more appealing or
realistic model than the Matérn type I and II hard core point processes. This
paper focuses on the stationary (and hence infinite) Matérn III process from
a probabilistic and a stochastic geometry perspective. Briefly, given a hard
core parameter R > 0, the Matérn III process is obtained by a dependent
thinning from a spatio-temporal Poisson process on R

d× [0, 1] with intensity
λ > 0, where a Poisson point becomes a Matérn III point if the ball of radius
R centered at the point does not contain an earlier Matérn III point. Using a
construction of Matérn III that creates various ‘generations’ of points, a per-
fect simulation algorithm for the infinite Matérn III process within a bounded
region is developed. It is shown that the log expected number of points that
must be examined is bounded above by a linear function which is easily cal-
culated. This result is quite general, which is illustrated by an extension
of the basic Matérn III process to allow random radii or more generally to
replace balls with random sets, and also to allow spatial inhomogeneity. The
perfect simulation algorithm is used to provide Monte Carlo estimates of the
packing density of Matérn III, which can be much higher than for Matérn I
or II, and increases to the jamming limit of the random sequential adsorption
model as λ→∞.
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1 Introduction

Bertil Matérn introduced in his seminal D. Sc. thesis work (Matérn, 1960) sev-
eral important spatial models, including what are now known as the Matérn
hard core point processes of types I and II (hereafter just called Matérn I and
II), see Matérn (1986, pp. 47–49) and e.g. Stoyan, Kendall, and Mecke (1995,
p. 121). Given a hard core parameter R > 0 and a stationary Poisson point
process in R

d with intensity λ > 0, which (following Matérn) we call the pri-
mary process, Matérn I is the secondary point process obtained by retaining
every primary point which is not within distance R from another primary
point. Upon assigning to the primary points independent time marks chosen
uniformly from the interval [0, 1], Matérn II is the secondary point process
obtained by retaining every primary point z which is not within distance R
from another primary point with a lower (or ‘earlier’) time mark. Matérn
briefly mentioned a third type of hard core process, where instead every pri-
mary point z is retained if no earlier secondary point is within distance R
(Matérn, 1986, page 48); the details are given in Section 2.

This paper deals with this less well-known but for many applications more
appealing or realistic hard core point process model which we refer to as the
stationary Matérn’s hard core process of type III or shortly Matérn III. Al-
though Matérn discusses the model no further after noting that ‘even an
attempt to find the [packing density] tends to rather formidable mathemat-
ics’, the Matérn III process on spaces such as R

d can be constructed and
simulated (Penrose, 2001). Likelihood-based inference for a version of the
Matérn III process on bounded sets is considered by Huber and Wolpert
(2009), whereas the focus in the present paper is on the stationary (and
hence infinite) Matérn III process from a probabilistic and a stochastic geom-
etry perspective. We shall also consider various extensions of the Matérn III
process.

As the primary intensity λ→∞, the Matérn III model converges to the
‘jamming limit’ of the random sequential adsorption (RSA) model long used
by physicists and chemists studying the irreversible binding of proteins to
surfaces. In its most common form this model constructs a hard core process
as a sequence of points, each drawn within some bounded region S ⊂ R

2 from
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the uniform distribution on the complement of the unions of disks of radius
R centered at each of the previously-drawn points. When this union (whose
connnected components are called ‘cavities’) is empty, the jamming limit
has been reached and the process halts. Variations include using replacing
the disks with squares or other convex shapes, constructing the process in
R

d rather than the plane, employing independent random radii Ri, stopping
after a specified number of points have been drawn, stopping after a specified
number of attempts have been made, etc. For more details and some of the
historical development, see Döge (2001); Feder (1980); Finegold and Donnell
(1979); Pálasti (1960); Schaaf, Voegel, and Senger (1998); Solomon (1967);
Tanemura (1979).

In this paper, we present a construction of Matérn III that creates various
‘generations’ of points. This point of view is inspired from our simulation
algorithm for the process rather than from the relationship to RSA. Section 2
presents this construction in a form similar to that found in Stoyan and
Schlather (2000), but in greater detail.

Section 3 then presents the basic simulation algorithm, which is perfect
in the sense of Propp and Wilson (1996) in that it has a random running
time but returns samples drawn exactly from the desired distribution. This
method was derived independently from but is similar to an algorithm im-
plicitly given in Penrose (2001). Later in the section an improvement to the
basic method is given that drastically speeds up the algorithm.

Next comes an analysis of the running time of the algorithm. In Penrose
(2001) and Schreiber, Penrose, and Yukich (2007) are shown that the chance
that the presence of a particular point in the process affects another point
declines exponentially in the distance between them. Section 3.2 shows that
the expected number of points that must be examined in order to determine
whether or not to include as a secondary is bounded above by a simple
function of an easily calculated parameter of the process. This result is quite
general, which we illustrate by an extension of the basic Matérn III process
to allow random radii or more generally to replace balls with random sets,
and also to allow spatial inhomogeneity.

While first and second order moment properties can easily be derived
for Matérn I and II (Matérn, 1986, page 48), no closed form expressions are
available for Matérn III (Matérn, 1986, page 49). On the other hand, the
likelihood function for a finite version of the marked Matérn III process can
be derived in closed form (Huber and Wolpert, 2009), while this seems to
be impossible for Matérn I and II. As demonstrated in this paper, although
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it is harder to simulate from Matérn III than from Matérn I or II, it is still
feasible to make perfect simulations and hence to study the properties of
Matérn III experimentally. Section 4 provides Monte Carlo estimates of the
packing density of Matérn III, which can be much higher than for Matérn I
or II, and increases to the jamming limit of RSA as λ→∞.

2 Dependent thinning constructions

In this section, a construction for the Matérn III process is given that utilizes
a generation approach whereby points are removed from a dominating process
or added to the Matérn III process at each generation. This is similar to an
approach described in Stoyan and Schlather (2000) that was suggested by
the first author.

We shall only consider point processes expressible as locally-finite subsets
of R

d or R
d × [0, 1]. As described in detail below, for a given hard core

parameter R > 0, the stationary Matérn I–III processes denoted XI, XII, XIII,
respectively, can all be constructed by dependent thinnings from a Poisson
point process Y on R

d× [0, 1] with intensity λ > 0. In Matérn’s terminology,
Y is the primary process, and XI, XII, XIII the secondary processes. When
we later write “by stationarity”, we have in mind that the distribution of Y
is invariant under translations in R

d.
Often it is useful to view Y = {(z1, t1), (z2, t2), . . .} as a marked Poisson

process, where the points Z = {z1, z2, . . .} constitute a stationary Poisson
point process on R

d of intensity λ, and the marks {t1, t2, . . .} are indepen-
dent uniformly distributed on [0, 1] and independent of Z. We shall refer
to ti as the time associated with point zi. It turns out that an equivalent
marked Poisson process to Y , with i.i.d. ti following an arbitrary continuous
distribution on R, will lead to the same definitions of Matérn I–III as below,
since the times then will have no ties (with probability one). It is also useful
to view Y as a spatio-temporal point process, where we say that zi is older
than zj (or zj is younger than zi) if ti < tj .

We say that zi and zj are (R-close) neighbours if their Euclidean distance
satisfies 0 < ‖zi − zj‖ ≤ R, in which case (zi, ti) and (zj , tj) are also said to
be neighbours. For any subprocesses U ⊆ Z and V ⊆ Y and points zi ∈ U
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and (zi, ti) ∈ V , call

∂(zi, U) := {zj ∈ U : 0 < ‖zi − zj‖ ≤ R}
the neighbours of zi within U , and

∂<

(

(zi, ti), V
)

:= {(zj, tj) ∈ V : ‖zi − zj‖ ≤ R, tj < ti}

the older neighbours of (zi, ti) within V .
Let BR(z) denote the closed ball in R

d with centre z and radius R.
The random graph with vertex set Z and edges connecting any two neigh-
bouring points zi, zj corresponds to the Poisson process of balls BR/2(zi),
zi ∈ Z, where intersecting balls are neighbours. Restricting this graph to
any subprocess Z ′ ⊆ Z and considering the corresponding marked subpro-
cess Y ′ = {(zi, ti) : zi ∈ Z ′}, we refer to the subprocesses of Z ′ given by the
maximal connected components of the subgraph with vertex set Z ′ as the Z ′-
clusters, and also to the corresponding subprocesses of Y ′ as the Y ′-clusters.
For d ≥ 2, we have continuum percolation (Meester and Roy, 1996), since
there exists a critical value λc > 0, such that for λ > λc there is a positive
probability that an infinite cluster exists, while for λ < λc almost surely no
infinite cluster exists. The critical value is not known precisely in general.
For d = 2 and R = 2, we have 0.174 < λc < 0.843 (Meester and Roy, 1996,
Theorem 3.10).

For Matérn I, a primary point zi ∈ Z is retained as a secondary point if
and only if zi has no neighbours in Z. Thus the time ti plays no role, and

XI = {zi ∈ Z : ∂(zi, Z) = ∅}

is the set of isolated Z-clusters (those with only one member).
For Matérn II, a primary point zi ∈ Z is retained as a secondary point if

and only if the corresponding marked point (zi, ti) has no older neighbours,
so

XII = {zi ∈ Z : ∂<

(

(zi, ti), Y
)

= ∅}.
Each Z-cluster contributes to XII its locally oldest members, i.e., those with
no older neighbours.

Matérn’s definition of his third type of hard core point process is that a
primary point zi ∈ Z is retained as a secondary point if and only if zi is not
an R-close neighbour to an older retained secondary point zj (i.e., tj < ti).
Thus, while in Matérn II a point zi ∈ Z will always be thinned by an older

5



neighbour zj ∈ Z ∩BR(zi), in Matérn III it will not be thinned by that zj if
zj was already thinned by a yet earlier point.

To make this spatio-temporal definition more clear, consider the following
iterative construction, which is illustrated in Figures 1–3. Begin with Y (1) :=
Y , a Poisson point process on R

d × [0, 1] with intensity λ > 0, and, for
Z(1) := Z, i = 1, 2, . . ., set

X(i) = Y (i) \
⋃

(z,t)∈Y (i)

BR(z)× (t, 1], (1a)

Y (i+1) = Y (i) \
⋃

(z,t)∈X(i)

BR(z)× [t, 1]. (1b)

At each stage i, X(i) is obtained by thinning Y (i) in exactly the same way

as in Matérn II, that is, X(i) consists of the locally oldest members of the

Y (i)-clusters. As verified later in Corollary 1, with probability one, within

each Y (i)-cluster there will be at least one locally oldest member, and as

exemplified in Figures 1 and 3 there may be more than one locally oldest

member. Furthermore, Y (i+1) concists of those elements in Y (i) which are

neither in X(i) or thinned by an element of X(i). We call Y (i), X(i), and Y (i) \
X(i) the ith generation primary, secondary, and complementary processes,

respectively. Finally, the Matérn III process is

XIII =

∞
⋃

i=1

{z : (z, t) ∈ X(i)}, (1c)

the projection of ∪∞i=1X
(i) onto R

d. Note that the projection of X(1) onto R
d

is just the Matérn II process XII.
The coupling of the Matérn I–III processes is given in the following propo-

sition and illustrated in Figure 4.

Proposition 1. With probability one, XI ⊂ XII ⊂ XIII ⊂ Z.

Proof. Since XI is the set of isolated Z-clusters, and XII is the projection of
X(1) onto R

d, it follows that XI ⊆ XII ⊆ XIII ⊆ Z. Hence, since there is a
positive probability that X(1) 6= X(2), it follows that the intensity of X(1) is
strictly smaller than that of X(2), and so X(1) ⊂ X(2) almost surely. In a
similar way we obtain that X(2) ⊂ X(3) and X(3) ⊂ Z almost surely.
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Figure 1: An illustration of a single cluster of the primary process in the
one-dimensional case d = 1. The horizontal line segments are centered at
the marked points (zi, ti) of the cluster and have length 2R. The first (top
panel) and second (bottom panel) generation secondary marked points are
the filled circles, and the first (top panel) and second (bottom panel) genera-
tion complementary marked points are the open circles. There are no higher
order generation marked points.

7



Matern III

1
1

1

1

1

1

1

1

1

1

11

1

1

2

1

1

1

1

2

1

12

1

1

1

1

2

2

1

2

1

1

1

1

1

2

1

2

2

2

2

2

3

2

3

1

2

2

1

2

1

3

2

2

2

2

3

3

2

4

4

3

4

1
1

1

1

1

1

1

1

1

1

11

1

1

2

1

1

1

1

2

1

12

1

1

1

2

2

1

2

1

1

1

1

1

2

1

2

2

2

2

2

3

2

3

1

2

2

2

1

3

2

2

2

2

3

3

4

4

4

Figure 2: Perfect simulation of a Matérn III process within a rectangular
region, with λ = 10 and R = 1. The circles are centered at the Matérn III
points and are all of radius R/2. The integers i = 1, 2, . . . at circle centers
are points of the ith generation secondary process X(i). The dots are the
primary points removed by older Matérn III points within distance R.
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Figure 3: Perfect simulation of a Matérn III process within W = [0, 10]2,
with λ = 100 and R = 1, with 70 Matérn III points in W . The disjoint
circles of radius R/2 are centered at the Matérn III points. The integers i
are points of the ith generation secondary process X(i) within the cluster.
The numbers of secondary points within W of generation i are 38, 12, 11,
7, 1, 1 for i = 1, . . . , 6, respectively. The estimated packing density (see
Section 4) is (70/100)π(R/2)2 = 54.98%.
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Figure 4: Planar Matérn hard core point processes at four intensities, with
R = 1 in all cases: (a) λ = 0.10, (b) λ = 1.0, (c) λ = 10.0, (d) λ = 100.
Empty circles are Matérn I–III; triangles are Matérn II–III; filled circles are
Matérn III. Packing densities (see Section 4) of Matérn III are 5.5%, 31.4%,
47.9%, and 48.7%, respectively — well below the two-dimensional perfect-
packing density of π/

√
12 = 90.7%, but for (b)–(d) well above the maximal

Matérn II density of 25%.
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3 Perfect simulation

Efficient simulation procedures are important for theoretical investigations as
well as for model checking based on, e.g., the reduced second moment or K-
function (Ripley, 1981, §8.1). Matérn I and II can easily be simulated within
a bounded region W ⊂ R

d, since they do not depend on those (zi, ti) ∈ Y for
which the distance from zi to W exceeds R. This section shows how to make
a perfect simulation of XIII ∩W , the Matérn III process within W , without
ignoring the fact that XIII ∩W may depend on (zi, ti) ∈ Y for zi arbitrarily
far away from W .

3.1 The basic algorithm

Suppose W ⊂ R
d has finite volume (Lebesgue measure). To support inference

about λ and R, when only a finite point pattern {zi}i∈I ⊂ W is observed
and modeled by a finite version of the Matérn III process within W , Huber
and Wolpert (2009) developed a perfect simulation algorithm of the latent
times {ti}i∈I and the removed marked points but without accounting for edge
effects. Here we address a different problem — the perfect sampling of both
the positions and times for the Matérn III process, with full accounting of
the edge effects.

Our first algorithm, Algorithm 1, is implicit in early work of Penrose
(2001) and was rediscovered independently by the authors. The pseudo code
in Algorithm 1 below describes our perfect sampler, and Figures 5 and 6
illustrate the algorithm.

Algorithm 1 begins with setting U = W and generating a primary Poisson
point process YU of intensity λ > 0 on U × [0, 1]. Clearly, YU is distributed
as Y ∩ U × [0, 1]. Let ZU denote the set of the corresponding points, which
we view as ZU = Z ∩ U . Thus the output of the algorithm is a subset
XW ⊆ Z, which as verified later is distributed exactly as XIII ∩ W . In
order to determine whether or not a particular primary point z ∈ ZU with
associated time t should be included in XW , we need to consider the other
marked points (zi, ti) ∈ Y with zi ∈ BR(z). Therefore, if BR(z) does not lie
entirely in U , we first extend the primary Poisson point process YU to all of
BR(z)× [0, 1]. If z is older than each such zi (i.e., ti > t), then z is included
in XW . Even if it is not the oldest, it will still be retained if each older point
zi ∈ BR(z) (i.e., ti < t) is removed by some other retained point. To find
out if that happens, we must examine recursively whether or not each such
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Algorithm 1 Perfect simulation of Matérn III

Input: W ⊂ R
d of finite volume, λ > 0, R > 0

Output: XW = XIII ∩W , a Matérn III process within the window W
1: XW ← ∅, U ←W
2: draw YU ← Poi(U×[0, 1], λ)
3: while YU ∩

(

W × [0, 1]
)

6= ∅ do

4: let (z, t) be the marked point in Y with smallest time
5: draw Y ′ ← Poi

(

[BR(z) \ U ]× [0, 1], λ
)

6: U ← U ∪BR(z)
7: YU ← YU ∪ Y ′

8: if
(

∀(z′, t′) ∈ Y ′
) (

t < t′) then

9: YU ← YU \
(

BR(z)× [0, 1]
)

10: if z ∈W then XW ← XW ∪ {z} end if

11: end if

12: end while

zi is retained in XW .
For any marked point (z, t) ∈ Y , denote by C(z, t) the ‘directed Y -cluster’

starting at (z, t), defined recursively as the union of (z, t) and the union of all
directed Y -clusters C(zi, ti) for (zi, ti) ∈ ∂<

(

(z, t), Y
)

, i.e., with ‖z−zi‖ ≤ R
and ti < t. These are the only marked points that might possibly influence
whether or not z is retained in XW . By Theorem 1 below, with probabil-
ity one, each such directed cluster is finite for any λ < ∞. Consequently,
Algorithm 1 will complete in finite time for any set W ⊂ R

d of finite volume.

3.2 Results

Before stating Theorem 1 we need to introduce some notation and results.
For (z, t) ∈ R

d × [0, 1], let Y (z,t) = Y ∪ {(z, t)}. By stationarity (i.e., the
distribution of Y is invariant under translations in R

d), for any fixed (z, t) ∈
R

d× [0, 1], we have the following: (z, t) 6∈ Y almost surely; the expected size
of the directed Y (z,t)-cluster starting at (z, t) 6∈ Y does not depend on z, so
we can set

g(t) = E[#C(z, t)]; (2)
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and for an arbitrary Borel set A ⊆ R
d, by Slivnyak-Mecke’s theorem (Slivnyak,

1962; Mecke, 1967) (see also Møller and Waagepetersen, 2004, pp. 20–22),

E
∑

(z,t)∈Y : z∈A

#C(z, t) = λ|A|
∫ 1

0

g(t) dt, (3)

where |A| is the Lebesgue measure of A. Finally,

b = λωdR
d

denotes the expected number of points of Z ∩ BR(z) for an arbitray fixed
location z ∈ R

d, where ωd = πd/2/Γ(1+d/2) is the volume of a unit ball.

Theorem 1. We have the bound

g(t) ≤ eb t, (4)

and with probability one, for all (z, t) ∈ Y , #C(z, t) <∞.

Before tackling the tight bound (4), it will be useful to have a weaker
bound in place:

Lemma 1. For some fixed B <∞ and all 0 ≤ t ≤ 1, g(t) ≤ B.

Proof. First note that g(0) = 1 and that g(t) is non-decreasing. Let Z0

denote the projection of Y (0,t) onto R
d, and G(λ) ≤ ∞ the expected size of

the (undirected) Z0-cluster containing 0. Since there is an upper bound on
the number of Z0\{0}-clusters which has a member which is a neighbour to 0,
it follows from Meester and Roy (1996, Theorem 3.2) that there exists λc > 0
such that G(λ) < ∞ for λ ∈ (0, λc). Since the projection onto R

d of Y (0,t)

is an undirected Z0-cluster of the projection onto R
d of Y (0,t) ∩

(

R
d × [0, t]

)

,
the union of {(0, t)} and a Poisson point process of intensity λt, we have
g(t) ≤ G(tλ). It follows that

g(t) ≤ G(λc/2) <∞ whenever 0 ≤ t ≤ λc/(2λ). (5)

Let {(z1, t1), . . . , (zN , tN)} denote the older neighbours ∂<

(

(0, t), Y (z,t)
)

of (0, t). Then C(0, t) is the union of {(0, t)} and ∪iC(zi, ti), so #C(0, t) ≤
1 +

∑N
i=1 #C(zi, ti), and taking expectations yields

g(t) ≤ 1 + E

[

N
∑

i=1

#C(zi, ti)

]

.
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Figure 5: Illustration of Algorithm 1 when W = [0, 10]2, λ = 10, and R = 1.
Small filled circles are Matérn III points, which are the centers of the large
circles of radii R. Small open circles are primary points, which are removed
by Matérn III points, as indicated by the line segments. The question mark
is a point outside W whose status was still uncertain when the algorithm
terminated.
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Figure 6: Illustration of Algorithm 1 when W = [0, 10]2, λ = 10, and R = 1.
Circled integers i = 1, 2, . . . are Matérn III points of the ith generation X(i);
circles have diameter R. The dots are the primary points that were removed
by older Matérn III points within distance R. The shaded region outside
W indicates the larger region U where additional primary points had to be
generated to discover whether or not points within W would be retained.
The question marks are points outside W whose status was still uncertain
when the algorithm terminated.
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Since {(z1, t1), . . . , (zN , tN)} is a Poisson process on BR(0)× [0, t) with inten-
sity λ, Slivnyak-Mecke’s theorem and (2) imply that

E

[

N
∑

i=1

#C(zi, ti)

]

= λ

∫ t

0

[
∫

BR(0)

E[#C(z, s)] dz

]

ds = b

∫ t

0

g(s) ds.

Hence

g(t) ≤ 1 + b

∫ t

0

g(s) ds, (6)

and so, for any 0 < r < 1, since g is non-decreasing,

g(t) ≤ 1 + b t
[

r g(rt) + (1− r) g(t)
]

.

This implies that for b(1− r) ≤ 1/2, 0 ≤ t ≤ 1, and k ∈ N,

g(t) ≤ 1

1− bt(1− r)
+

btr

1− bt(1− r)
g(rt)

≤ 2 + (2br)g(rt)

≤ 2
[

1 + (2br) + · · ·+ (2br)k−1
]

+ (2br)kg(rkt) (7)

where we have used induction to obtain (7). For k ≥ log(2λ/λc)/ log(1/r),

we have rkt ≤ λc/(2λ), and so by combining (5) and (7),

g(t) ≤ B := 2[1 + (2br) + · · ·+ (2br)k−1] + (2br)kG(λc/2) <∞.

Now we turn to the theorem.

Proof of Theorem 1. Lemma 1 ensures that g(s) is integrable over [0, 1], and
so (6) and the integral form of Grönwall’s inequality (Grönwall, 1919; Bell-
man, 1943) gives (4). The other assertion in Theorem 1 follows immediately
by combining (3) and (4).

Corollary 1. With probability one, for any i = 1, 2, . . . and within any
Y (i)-cluster there will be at least one locally oldest member, and the cluster
contains no infinite sequence of marked points (z1, t1), (z2, t2), . . . such that
zj is a younger neighbour to zj+1 for all j = 1, 2, . . ..

Proof. Follows immediately from Theorem 1.
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3.3 Extensions

This section considers an extension of the basic Matérn III process to the
case where the ball BR(zi) associated to each time ti is replaced by zi +Gi =
{zi + g : g ∈ Gi}, the translate by zi of a random set Gi ⊆ R

d. At the
end of this section, we consider the inhomogeneous case where the intensity
function of the underlying primary Poisson process is not constant.

Specifically, let Ω denote the space of random closed subsets of R
d equipped

with the usual σ-algebra (see e.g. Stoyan et al., 1995, p. 94), and let Q de-
note a probability distribution for a random closed set. Let G1, G2, . . . be a
sequence of i.i.d. random closed sets with distribution Q. This sequence is as-
sumed to be independent of the Poisson process Y = {(z1, t1), (z2, t2), . . .} on
R

d×[0, 1] with intensity λ > 0. In other words, Y + := {(z1, t1, G1), (z2, t2, G2), . . .}
is a Poisson process on R

d× [0, 1]×Ω with intensity measure λ dz dt dQ(G).
In the stochastic geometry literature, zi is called a germ, zi +Gi a grain, and
the union of the grains a germ-grain model or a Boolean model, where it is
often assumed that Gi is compact (see e.g. Stoyan et al., 1995, p. 59 and p.
216). It turns out that the only condition we need in the sequel is that

b := E[#(Z ∩G0)] = λE [|G0|] (8)

is finite, where G0 follows Q and is independent of Y + (this implies the last
equality in (8)). If, as previously in this paper, G0 = BR(0) and R > 0 is
fixed, then clearly b = λωdR

d is finite. If instead R is a random variable,
then condition (8) means that E[Rd] <∞. If d = 2 and G0 is an ellipse with
a random orientation and independent minor and major axes a and b, then
(8) means that E[a]E[b] <∞.

For any (zi, ti, Gi) ∈ Y +, we think of zi + Gi as a ‘demand space’ and
define

∂<

(

(zi, ti, Gi), Y
)

= {(zj, tj) ∈ Y : zj ∈ zi + Gi and tj < ti}

to be the subprocess of older neighbours to (zi, ti, Gi). By definition, the
grain Gj of an older neighbour to (zi, ti, Gi) plays no role, explaining why we
are only considering ∂<

(

(zi, ti, Gi), Y
)

as a subprocess of the original primary
Poisson process Y . This is advantageous when establishing Theorem 2 below,
while the situation will be more complicated if we allowed older neighbours
to depend on their grains.

Now, we construct the extended Matérn III process by retaining a point
zi only if it is not adjacent to an older neighbour that has already been
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retained, cf. Section 2. In other words, a Matérn III point zi arriving at
time ti ‘demands’ that zi + Gi is not containing any previously generated
Matérn III point.

In a similar way as in Section 2, for any fixed (z, t, G) ∈ R
d × [0, 1] ×

Ω, define the directed Y (z,t,G)-cluster starting with (z, t, G) and denote it
C(z, t, G). Note that (z, t, G) 6∈ Y + almost surely. Let

g(t) = E[#C(z, t, G0)] (9)

be the size of a directed cluster when G is replaced by the generic grain G0,
noticing that g(t) does not depend on z. The following theorem bounds g(t)
above and establishes that the directed clusters C(zi, ti, Gi), i = 1, 2, . . ., are
almost surely finite, meaning that our perfect simulation algorithm (Algo-
rithm 1 modified to the case of the extended Matérn III process) completes
in finite time.

Theorem 2. The conclusions in Theorem 1 remain true for the extended
Matérn III process.

This is verified below. As in Section 3.1, it is easier to begin with weaker
results.

Lemma 2. If 0 ≤ t < 1/b, then g(t) ≤ 1/(1− tb).

Proof. The idea is to compare the directed cluster C(0, t, G0) to a branching
process. Let A0 = {(0, t)}, and for i = 1, 2, . . ., let Ai denote the set of
points in Y that reach (0, t, G0) in a directed path of i older neighbours in
C(0, t, G0). For each (zj , tj) ∈ Ai, there exists at least one (zk, tk) ∈ Ai−1

such that zj ∈ zk + Gk and tj < tk ≤ t. Recall also that G0, G1, G2, . . .
are i.i.d. and independent of Y . Moreover, conditional on (zk, tk, Gk) with
(zk, tk) ∈ Gi−1, the points zj ∈ Z with tj < tk and zj ∈ zk + Gk form a
Poisson process on zk + Gk with intensity tkλ ≤ tλ. Consequently,

E[#Ai|Ai−1] ≤
∑

(zk ,tk)∈Ai−1

tλE [|Gk|] = tb#Ai−1.

Taking the conditional expectation over the points in Ai−1 given #Ai−1, we
obtain

E[#Ai|#Ai−1] ≤ tb#Ai−1.
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Using that #A0 = 1 supplies the base case of an induction that yields
E[#Ai] ≤ (tb)i. So, for 0 ≤ t < 1/b,

g(t) =
∞

∑

i=0

E[#Ai] ≤
∞

∑

i=0

(tb)i = 1/(1− tb).

Lemma 3. There exists a fixed B <∞ such that for all t ∈ [0, 1], g(t) ≤ B.
Moreover, (6) remains true.

Proof. As in the proof of Lemma 1,

g(t) ≤ 1 + E

[

N
∑

i=1

#C(zi, ti, Gi)

]

, (10)

where {(z1, t1), . . . , (zN , tN)} are the older neighbours of (0, t, G0). Condi-
tional on G0, these older neighbours form a Poisson process on G0× [0, t)×Ω.
Hence

E

[

N
∑

i=1

#C(zi, ti, Gi)

]

=E

[

E

[

N
∑

i=1

#C(zi, ti, Gi)

∣

∣

∣

∣

G0

]]

=λ

∫ t

0

E

[
∫

G0

∫

Ω

E [#C(z, s, G)|G0] dQ(G) dz

]

ds

(11)

=λ

∫ t

0

E

[
∫

G0

∫

Ω

E [#C(z, s, G)] dQ(G) dz

]

ds (12)

= λ

∫ t

0

g(s) E

[
∫

G0

dz

]

ds (13)

= b

∫ t

0

g(s) ds, (14)

using Slivnyak-Mecke’s theorem and Fubini’s theorem in (11), the fact that
G0 is independent of Y + in (12), (9) in (13), and (8) in (14). Consequently,
we have again established (6). The remainder of the proof can then be
completed as in Lemma 1, using instead of (5) the fact that

g(t) ≤ 1/[1− 1/(2b)] whenever 0 ≤ t ≤ 1/(2b). (15)

Here (15) follows from Lemma 2.

19



With Lemma 3 in hand, the proof of Theorem 2 is identical to that of
Theorem 1.

Inhomogeneous intensity Now, consider the further extension where
the intensity λ is replaced by a locally integrable intensity function λ(z)
so that Y + is a Poisson process on R

d × [0, 1] × Ω with intensity measure
λ(z) dz dt dQ(G). In this case, b(z) = E[#(Z ∩ (z + G0))] and g(t, z) =
E[#C(z, t, z + G0)] are no longer independent of z, and so new definitions
are needed:

b := sup
z

E [#(Z ∩ (z + G0))] ,

g(t) := sup
z

E [#(C(z, t, z + G0)] .

When λ is a constant function these new definitions reduce to the previous
ones. Assume that b <∞, noticing that

b = sup
z

E

[
∫

G0

λ(x− z) dx

]

.

In the proofs of Lemmas 2 and 3 some equalities change to less than or equal
to statements, but otherwise the proofs remain unchanged. Hence Theorem 2
still holds using these more general definitions of b and g(t).

3.4 Speeding up the algorithm

In Algorithm 1, when the point z with time stamp t is considered, all points
in the primary Poisson process within distance R to z are generated. This,
however, is wasteful, since only those neighbours that have a time stamp
smaller than t can possibly affect z. This ball of radius R about z, BR(z), is
then added to the set U .

By only generating points in BR(z) with times stamps smaller than t,
the algorithm becomes much faster and gives rise to our Algorithm 2. The
set U in Algorithm 1 is replaced in Algorithm 2 by a subset V of space-
time, and when the points with time stamp less than t are generated, the
space-time cylinder BR(z) × [0, t] is added to V . Generation of points in
(BR(z)× [0, t])\V is accomplished by first generating points in Br(z)× [0, t],
and then retaining those points that lie outside of V . Using the same primary
Poisson process in the two algorithms, Algorithm 2 generates fewer points
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than Algorithm 1. In fact, for high primary intensities λ the distribution
of times {ti} of retained points is clustered close to zero so the reduction in
running time is substantial. When b > 1000 this reduction often exceeded
three orders of magnitude in our trials.

Algorithm 2 Perfect simulation of Matérn III

Input: W ⊂ R
d of finite volume, λ > 0, R > 0

Output: XW = XIII ∩W , a Matérn III process within the window W
1: XW ← ∅, V ←W × [0, 1]
2: draw YV ← Poi(V, λ)
3: while YV ∩ (W × [0, 1]) 6= ∅ do

4: let (z, t) be the point in YV with smallest time
5: draw Y ′ ← Poi

(

[(BR(z)× [0, t]) \ V ], λ
)

6: V ← V ∪ (BR(z)× [0, t])
7: YV ← YV ∪ Y ′

8: if Y ′ = ∅ then

9: YV ← YV \
(

BR(z)× [0, 1]
)

10: if z ∈W then XW ← XW ∪ {z} end if

11: end if

12: end while

4 Packing densities

For a stationary hard core process X in R
d with hard core R > 0 and intensity

ρ <∞, the packing density τ is the volume fraction taken up by the (disjoint)
balls of radius R/2 centered at the points; for an arbitrary Borel set A ⊂ R

d

of positive and finite Lebesgue measure |A|,

τ =
1

|A|E
∣

∣

∣

∣

⋃

x∈X

(

BR/2(x) ∩A
)

∣

∣

∣

∣

,

which by stationarity does not depend on the choice of A. By Campbell’s
theorem (see, e.g., Stoyan et al., 1995, p. 103),

τ = ρωd(R/2)d. (16)
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Furthermore, for Z a stationary Poisson process with intensity λ, the Boolean
model ZR = ∪z∈ZBR/2(z) has expected volume fraction

τ0 := E|ZR ∩ A|/|A| = 1− exp
(

−λωd(R/2)d
)

.

Using an obvious notation, we obtain for Matérn I–III generated by a primary
Poisson process Y with intensity λ > 0 the following relation between the
packing densities

τI < τII < τIII < τ0,

cf. Proposition 1. Note that τi (i = I, II, III) depends on (λ, R) only through
b = λωd Rd. By stationarity in R

d and using (16), we have

τi =
(

b/2d
)

∫ 1

0

pi(t) dt, i = I, II, III, (17)

where pi(t) is the probability that 0 ∈ R
d with associated time t is not

i-thinned by the marked points in Y (i = I,II,III).

4.1 Packing densities for Matérn I and II

Since b is the expected number of primary points in a ball of radius R,
pI(t) = exp(−b) and pII(t) = exp(−bt), and hence by (17),

τI = b e−b/2d, τII = (1− e−b)/2d.

Evidently τI takes its maximum when b = 1, and τII approaches its maximum
as b→∞, with

sup τI = 2−d/e, sup τII = 2−d.

4.2 Packing density for Matérn III

4.2.1 Analytical results

Suppose that {(z1, t1), . . . , (zN , tN)} is the Poisson process of primary marked
points in BR(0)×[0, t); note that N is Poisson distributed with mean bt. Con-
ditional on these primary marked points, for N = n ≥ 1, let qn(z1, t1, . . . , zn, tn)
denote the probability that every (zi, ti) (i = 1, . . . , n) is non-retained after
III-thinning (we say shortly that (zi, ti) is III-thinned) by marked points in
Y \ (BR(0) × [0, 1]). If (0, t) is not III-thinned by Y and t(1) < . . . < t(n)
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are the ordered times, then by induction on i = 1, . . . , n we see that each
(z(i), t(i)) must be III-thinned by some Matérn III points outside BR(0) with
marks less than t. Thus pIII(t) in Equation (17) is given by

pIII(t) = e−bt

[

1 +

∞
∑

n=1

(bt)n

n!

∫

· · ·
∫

qn(z1, t1, . . . , zn, tn) (18)

dνt(z1, t1) · · · dνt(zn, tn)

]

,

where νt denotes the uniform distribution on BR(0)× [0, t]. The earlier lower
bound τIII > τII follows simply by ignoring the sum in (18). It seems chal-
lenging to express qn(z1, t1, . . . , zn, tn) in closed form, and extremely difficult
even to derive a lower bound on q1(z1, t1), since (z1, t1) has to be III-thinned
by some (z2, t2) ∈ Y ∩ ([BR(z1) \ BR(0)] × [0, t1)) which in turn is not III-
thinned. We have also not been successful in establishing a useful upper
bound on qn(z1, t1, . . . , zn, tn).

4.2.2 Simulated results

Algorithm 2 was implemented in the R programming environment (R Devel-
opment Core Team, 2006) and was run on a 2.66GHz dual quad-core Xeon-
based desktop computer at a range of primary intensities, evenly spaced on
a logarithmic scale. All simulations used radius R = 1 on a 10 × 10 square
window W . Running times varied from microseconds per run at the lowest
value of b = 1.0 to five hours per step for the highest value of b = 105.5.
Memory limitations prevented the exploration of higher values of b.

The solid line in Figure 7 gives the estimated packing density τIII of the
Matérn III process as a function of b. Circles indicate values of b at which
simulations were run. Short vertical lines give 99% uncertainty range re-
flecting simulation variability, which was negligible except for the highest
densities. Dashed lines indicate the approximate packing density of points in
generations 1–7; no points of higher generations were observed. Generation 1
has the Matérn II distribution, and quickly reaches its asymptotic value of
τII = 1/4 in d = 2 dimensions.

Feder (1980) offered empirical evidence for his conjecture that the error in
estimating the packing density for the RSA process with n attempts to place
a new disk decreased like n−1/2 in two dimensions. Figure 8 presents a plot
of our estimated packing density against the inverse square root of b for the
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Figure 7: Illustration of dependence of Matérn III packing density τIII on
standardized intensity of primary process (solid curve). Dashed curves are
contributions of points in X(i) for i = 1, 2, ..., 7 (top to bottom). Short
vertical lines at nodes are 99% intervals.

Matérn III process. A linear regression fit to the values from the highest four
intensities is presented as a dashed line; its intercept, the ‘Feder extrapola-
tion’ of the packing density to infinite intensity 1/

√
b ≈ 0, is 0.5468±0.00044,

consistent with reported estimates of RSA intensity at the jamming limit
(0.547± 0.002 by Feder (1980, p. 240), 0.5471± 0.0051 by Hinrichsen, Feder,
and Jøssang (1986, p. 801), 0.5467 ± 0.0003 by Meakin and Jullien (1992,
p. 2030), 0.5473 ± 0.0009 by Tanemura (1979, p. 362), 0.5444 ± 0.0024 by
Tory, Jodrey, and Pickard (1983, p. 444)).
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Figure 8: Extrapolation estimate of τIII following Feder (1980).
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