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Summary. We show how the mean of a monotone function (defined on a state space equipped
with a partial ordering) can be estimated, using ergodic averages calculated from upper and
lower dominating processes of a stationary irreducible Markov chain. In particular, we do not
need to simulate the stationary Markov chain and we eliminate the problem of whether an
appropriate burn-in is determined or not. Moreover, when a central limit theorem applies, we
show how confidence intervals for the mean can be estimated by bounding the asymptotic
variance of the ergodic average based on the equilibrium chain. Our methods are studied in
detail for three models using Markov chain Monte Carlo methods and we also discuss various
types of other models for which our methods apply.
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1. Introduction

Suppose that π is a given target distribution on a state space Ω and we wish to estimate
the mean

µ =

∫

φ(x)π(dx) (1)

for a given real function φ. In many applications it is not known or at least not straight-
forward to generate a stationary chain, so instead a non-stationary chain Y1, Y2 . . . is gen-
erated by Markov chain Monte Carlo (MCMC) and µ is estimated by the ergodic average
∑N

t=M+1 φ(Yt)/(N − M), where M ≥ 0 is an “appropriate” burn-in and N � M is “suf-
ficiently” large, (see, for example, Robert and Casella 2004). This estimator is consistent
provided the chain is irreducible and M is independent of the Y chain. The problem is to
determine M and N so that the estimator is close to µ with a high degree of confidence.

Propp and Wilson (1996) showed how upper and lower dominating processes can be
used for generating a perfect (or exact) simulation of a stationary Markov chain at a fixed
time, provided the chain is monotone with respect to a partial ordering on Ω for which
there exists unique maximal and minimal states. In this paper we introduce similar ideas
but our aim is to obtain reliable estimates of mean values rather than perfect simulations.

More specifically, we consider irreducible Markov chains with π as the invariant distri-
bution and make the following additional assumptions. Let X = (Xt; t = 1, 2, . . .) denote
the possibly unknown equilibrium chain, i.e. X1 ∼ π and hence Xt ∼ π for all t ≥ 1, and
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let

φ̄t =
1

t

t
∑

s=1

φ(Xs)

denote the ergodic average estimating µ. Assume there exist stochastic processes U =
(Ut; t = 1, 2, . . .) and L = (Lt; t = 1, 2, . . .) so that

φ̄L
t ≤ φ̄t ≤ φ̄U

t , t = 1, 2, . . . , (2)

where the ergodic averages

φ̄L
t =

1

t

t
∑

s=1

φ(Ls), φ̄U
t =

1

t

t
∑

s=1

φ(Us) (3)

are consistent estimators of µ. Though U and L will be Markov chains in most of our
detailed examples, they do not need to be so as exemplified in Section 4.1 (explaining why
we write “processes”). To ensure (2) we assume that with respect to a partial ordering ≺
on Ω, U and L are bounding X, i.e.

Lt ≺ Xt ≺ Ut, t = 1, 2, . . . , (4)

and φ is monotone

x ≺ y =⇒ φ(x) ≤ φ(y) (5)

(or, as discussed later on, φ is a linear combination of monotone functions). Then (2) holds,
and so it suffices to consider the processes (φ̄L

t ; t = 1, 2, . . .) and (φ̄U
t ; t = 1, 2, . . .). Con-

sequently, we do not need to simulate the equilibrium chain and we eliminate the problem
of whether an appropriate burn-in is determined or not. Assuming a central limit theorem
applies, we show how confidence intervals for the mean can be estimated by bounding the
asymptotic variance of φ̄t. Note also that to assess if the process (φ(Xt); t = 1, 2, . . .) has
stabilised into equilibrium, it suffices to consider the processes (φ(Lt); t = 1, 2, . . .) and
(φ(Ut); t = 1, 2, . . .). Our methods are studied in detail for three models using MCMC
methods and we also discuss various types of other models for which our methods apply.

Note that in contrast to the Propp-Wilson algorithm we do not require that Ut and
Lt coalesce for all sufficiently large t. Equivalently, we do not require that X is uniformly
ergodic (Foss and Tweedie, 1998). For extensions of the Propp-Wilson algorithm which
may be of relevance for our methods, see the references in Section 5.

The paper is organised as follows. Section 2 presents our ideas in a simple setting for
a random walk, while Section 3 considers a general setting. Section 4 illustrates how our
methods apply on the Ising model and a mixture model in which the weights are unknown.
Finally, Section 5 discusses extensions and application areas of the methods.

2. A simple example

Despite its conceptual ease, the random walk example below is a challenging platform on
which to evaluate the performance of our proposed methods in Section 3.
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2.1. Upper and lower bounds for a random walk
Consider a stationary random walk X = (Xt; t = 1, 2, . . .) on a finite state space Ω =
{0, 1, . . . , k} with transition probabilities

pi = P (Xt+1 = min{i + 1, k}|Xt = i) > 0,

qi = P (Xt+1 = max{i − 1, 0}|Xt = i) = 1 − pi > 0,

for i = 0, 1, . . . , k, and invariant distribution π = (π0, π1, . . . , πk) given by

πi = π0

i−1
∏

j=0

pj/qj+1, i = 1, . . . , k.

We can construct this by a so-called stochastic recursive sequence (SRS). Let X1, R1, R2, . . .
be independent random variables with X1 ∼ π and Rt ∼ Uniform [0, 1], t = 0, 1, . . .. Define
a so-called updating function χ : Ω × [0, 1] → Ω by

χ(i, r) =

{

min{i + 1, k} if r ≤ pi

max{i − 1, 0} otherwise.

Then the SRS is given by

Xt+1 = χ(Xt, Rt), t = 1, 2, . . . .

This construction allows us to bound the equilibrium chain by an upper chain U =
(Ut; t = 1, 2, . . .) and a lower chain L = (Lt; t = 1, 2, . . .) defined by

U1 = k, Ut+1 = χ(Ut, Rt), t = 1, 2, . . . ,

L1 = 0, Lt+1 = χ(Lt, Rt), t = 1, 2, . . . .

Thereby

Lt ≤ Xt ≤ Ut, t = 1, 2, . . . , (6)

and hence also for the ergodic averages

L̄t =
1

t

t
∑

s=1

Ls, X̄t =
1

t

t
∑

s=0

Xs, Ūt =
1

t

t
∑

s=0

Us,

we have that

L̄t ≤ X̄t ≤ Ūt, t = 1, 2, . . . . (7)

By irreducibility, as t grows, L̄t and Ūt converge to µ. Note that (4) and (5) are satisfied
with ≺ given by ≤ and φ the identity function. Indeed (4)-(7) are satisfied if we replace X
by any Markov chain Y using the same coupling construction as above, i.e. when Y1 ∈ Ω is
an arbitrary initial state and Yt+1 = χ(Yt, Rt), t = 1, 2, . . ..
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2.2. Bounding the asymptotic variance for the ergodic average
In this simple example, the mean µ =

∑k

i=1 iπi is easily determined, and so there is no need
for estimating it by an ergodic average. Moreover, it is of course easy to generate X1 from
π, and hence to generate X̄t. However, in more complex situations as considered later in
Sections 3-5, the mean value of interest is unknown and it is usually hard to make a draw
from the invariant distribution. We can instead generate the upper and lower chains and
use (7) (or the extensions considered in the following sections) together with the following
considerations.

Since X is ergodic and Ω is finite, a central limit theorem (CLT) applies:

√
t(X̄t − µ) converges in distribution to Normal(0, σ2) as t → ∞ (8)

where

σ2 =
∞
∑

t=−∞

γ|t| < ∞, γt = Cov(X1, Xt+1). (9)

We estimate σ2 using for example a window type estimator (Geyer, 1992) or batch means
(Ripley, 1987). For specificity, we consider in the sequel a window type estimator

σ̂2
N =

m
∑

t=−m

γ̂|t|,N (10)

based on X1, . . . , XN , but similar considerations will apply for batch means. Here

γ̂t,N =
1

N

N−t
∑

s=1

(Xs+t − X̄N )(Xs − X̄N ), (11)

see, for example, Priestly (1981, pp. 323-324). Geyer’s initial series estimator is given by
letting m = 2l + 1 where l is the largest integer so that the sequence γ̂2t,N + γ̂2t+1,N ,
t = 0, . . . , l, is strictly positive, strictly decreasing and strictly convex. For an irreducible
and reversible Markov chain this provides a consistent conservative estimator of σ2, cf.
Geyer (1992). By (6), (7) and (11), σ̂2

N is bounded from above and below by

σ̂2
max,N =

m
∑

t=−m

a|t|,N , σ̂2
min,N =

m
∑

t=−m

b|t|,N , (12)

where for t ≥ 0,

at,N =
1

N

N−t
∑

s=1

(Us+tUs − Ls+tL̄N − LsL̄N + Ū2
N )

and

bt,N =
1

N

N−t
∑

s=1

(Ls+tLs − Us+tŪN − UsŪN + L̄2
N )

are upper and lower bounds on γ̂t,N . As illustrated below, though σ̂2
max,N is more conser-

vative than σ̂2
N , it can still provide a useful bound.
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2.3. Experimental results: Random walk
We illustrate the difficulties with using these ergodic averages and the bounds of asymptotic
variances with a random walk when pi = p is constant. Further experimental results are
given in Section 3.3. The running mean X̄t and corresponding upper and lower bounds Ūt

and L̄t, t = 1, . . . , N are shown in the left plot of Figure 1 for a run length of N = 10000
iterations when k = 5 and p = 1/2, i.e. µ = 2.5. Corresponding upper and lower bounds on
the variance, σ̂2

max,N and σ̂2
min,N given by (12) are depicted in the right plot of Figure 1 for

N = 1, . . . , 1000. We have also obtained results (not included here) and compared values of
L̄N , X̄N and ŪN together with values of σ̂2

min,N , σ̂2
N and σ̂max,N for various values of p, k and

N . As expected, the bounds become wider as the range k of the random walk increases and
become narrower as the value of p moves away from 0.5. In cases with k ≤ 10, 0.2 ≤ p ≤ 0.5
and N larger than 5000, σ̂2

min,N and σ̂2
max,N are close to σ̂2

N , and the running means seem
to stabilise. However, this can be somewhat misleading because although σ̂max,N may be
small, it may not follow that L̄N ≤ µ ≤ ŪN . This is illustrated in Figure 1.
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Fig. 1. Random walk with k = 5 and p = 0.5. Left plot: Running mean and upper and lower bounds
over 10000 iterations. Right plot: Upper and lower bounds on the variance of the mean over the first
1000 iterations. The middle line is the variance based on the stationary chain. The lower bound is
too close to zero to be easily seen on this plot.

The performance of the bounds should be evaluated in light of the very high autocor-
relation in the chain which increases the conservativeness of Geyer’s variance estimate, and
the inherent variability of a random walk itself. The latter point is exemplified in Figure
2. The left plot of Figure 2 illustrates the behaviour of 100 independent replications of the
running mean of a stationary random walk with k = 5 and p = 0.5 over 1000 iterations.
Although the average of the 100 estimates is close to k/2 at each iteration, the individual
estimates vary considerably: 95% confidence intervals for k/2 are (1.26, 3.70), (1.94, 3.02)
and (2.12, 2.88) for t = 100, 500 and 1000, respectively. The right plot of Figure 2 illustrates
the persistence of this variability for five replications of the running mean of the same ran-
dom walk over a longer run length of 100000 iterations. As in the left plot, the estimates
are quite unstable at t = 1000, ranging from 2.33 to 2.63, but noticeable differences persist
even at t = 100000 with estimates ranging from 2.476 to 2.513.
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Fig. 2. Random walk with k = 5 and p = 0.5. Left plot: One hundred independent simulations of
the running mean over 1000 iterations. Right plot: Five independent simulations of the running mean
over 100000 iterations.

3. General setting and methods

In this section we consider the general setting in Section 1: Assume that (4)-(5) and hence
(2) are satisfied, where the equilibrium chain X is irreducible and φ̄L

t and φ̄U
t are consistent

estimators of µ given by (1). Moreover, as in (8) assume that a CLT applies:

√
t(φ̄t − µ) converges in distribution to Normal(0, σ2) as t → ∞ (13)

where σ2 is defined as in (9) but now γt = Cov(φ(X1), φ(Xt+1)) for t ≥ 0. Sufficient
conditions for the CLT to hold can be found in Meyn and Tweedie (1993), Geyer (1996),
Chan and Geyer (1994) and Roberts and Rosenthal (1998). For instance, it suffices to
establish that X is geometrically ergodic and, if X is reversible, that Eφ(Xt)

2 < ∞.

Assuming that X is reversible, Geyer’s initial series estimator applies (Section 2.2 with
Xt replaced by φ(Xt)): If we for the moment imagine that X1, . . . , XN are observed, then
σ2 is estimated by (10) where now for 0 ≤ t < N ,

γ̂t,N =
1

N

N−t
∑

s=1

(φ(Xs+t) − φ̄N )(φ(Xs) − φ̄N ).

For a real number or function f , write f+ = max{0, f} for its positive part and f− =
max{0,−f} for its negative part, so f = f+ − f−. By (4)-(5) we have that

0 ≤ φ+(Lt) ≤ φ+(Xt) ≤ φ+(Ut), 0 ≤ φ−(Ut) ≤ φ−(Xt) ≤ φ−(Lt),

0 ≤ φ̄L
N+ ≤ φ̄N+ ≤ φ̄U

N , 0 ≤ φ̄U
N− ≤ φ̄N− ≤ φ̄L

N−.
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Hence σ̂2
N is bounded by σ̂2

max,N and σ̂2
min,N given by (12) where now for t ≥ 0,

at,N =
1

N

N−t
∑

s=1

{

φ+(Us+t)φ+(Us) − φ−(Us+t)φ+(Ls) − φ+(Ls+t)φ−(Us) + φ−(Ls+t)φ−(Ls)

− φ+(Ls+t)φ̄
L
N+ + φ+(Us+t)φ̄

L
N− + φ−(Ls+t)φ̄

U
N+ − φ−(Us+t)φ̄

U
N− − φ+(Ls)φ̄

L
N+

+ φ+(Us)φ̄
L
N− + φ−(Ls)φ̄

U
N+ − φ−(Us)φ̄

U
N− + φ̄U 2

N − 2φ̄L
N+φ̄U

N− + φ̄L 2
N

}

(14)

and

bt,N =
1

N

N−t
∑

s=1

{

φ+(Ls+t)φ+(Ls) − φ−(Ls+t)φ+(Us) − φ+(Us+t)φ−(Ls) + φ−(Us+t)φ−(Us)

− φ+(Us+t)φ̄
U
N+ + φ+(Ls+t)φ̄

U
N− + φ−(Us+t)φ̄

L
N+ − φ−(Ls+t)φ̄

L
N− − φ+(Us)φ̄

U
N+

+ φ+(Ls)φ̄
U
N− + φ−(Us)φ̄

L
N+ − φ−(Ls)φ̄

L
N− + φ̄L 2

N − 2φ̄U
N+φ̄L

N− + φ̄U 2
N

}

. (15)

These bounds depend entirely on the upper and lower processes and not on the equilibrium
chain.

3.1. Method 1
Our first method is based on combining (2), (13) and the upper bound on σ̂2

N to obtain a
conservative confidence interval for µ: Asymptotically with at least probability 2(1 − α),

φ̄L
N − qασ̂max,N ≤ µ ≤ φ̄U

N + qασ̂max,N (16)

where σ̂max,N =
√

σ̂2
max,N .

3.2. Method 2
One potential problem with Method 1 is meta-stability: the processes φ̄L

N and φ̄U
N may

appear to have converged at time N , but they have not yet done so, cf. Section 2.3. A more
conservative alternative is to use i.i.d. blocks of upper and lower processes; details follow
below. As illustrated in Sections 3.3, 4.2 and 4.4, the relative merit of one method over the
other depends on the particular model.

Assume that there exist unique elements 0̂, 1̂ ∈ Ω so that 0̂ ≺ x ≺ 1̂ for all x ∈ Ω.
For example, for the random walk in Section 2.1, 0̂ = 0 and 1̂ = k. Further, suppose that

((U
(1)
t , L

(1)
t ), t=1,...,T1

, T1), ((U
(2)
t , L

(2)
t ), t=1,...,T2

, T2), . . . are i.i.d. “blocks”, where T1, T2, . . .
are either equal fixed times or i.i.d. random times so that

U
(i)
1 = 1̂, L

(i)
1 = 0̂, i = 1, 2, . . . ,

U
(1)
t = Ut, L

(1)
t = Lt, t = 1, . . . , T1,

L
(2)
t ≺ Lt+T1

≺ Ut+T1
≺ U

(2)
t , t = 1, . . . , T2,

L
(3)
t ≺ Lt+T1+T2

≺ Ut+T1+T2
,≺ U

(3)
t , t = 1, . . . , T3,
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and so on. For instance, in the case of the random walk in Section 2, we obtain such i.i.d.
blocks when

U
(2)
t+1 = χ(U

(2)
t , Rt+T1

), L
(2)
t+1 = χ(L

(2)
t , Rt+T1

), t = 1, . . . , T2 − 1,

U
(3)
t+1 = χ(U

(3)
t , Rt+T1+T2

), L
(3)
t+1 = χ(L

(3)
t , Rt+T1+T2

), t = 1, . . . , T3 − 1,

etc. We may, for example, choose Ti as the first time ni at which

1

ni

ni
∑

t=1

(

φ(U
(i)
t ) − φ(L

(i)
t )

)

≤ ε (17)

where ε > 0 is a user-specified parameter.
By (4)-(5), for N = T1 + . . . + Tm and m = 1, 2, . . .,

φ̃L
N ≤ φ̄L

N ≤ φ̄N ≤ φ̄U
N ≤ φ̃U

N

where we set

φ̃U
N =

1

N

m
∑

i=1

WU
i , WU

i =

Ti
∑

s=1

φ(U
(i)
s+T0+...+Ti−1

),

φ̃L
N =

1

N

m
∑

i=1

WL
i , WL

i =

Ti
∑

s=1

φ(L
(i)
s+T0+...+Ti−1

),

and T0 = 0. On one hand these new bounds are more conservative: in Method 1, φ̄U
N and

φ̄L
N are consistent estimators of µ, whereas φ̃U

N and φ̃L
N almost surely converge to EW U

1 /ET1

and EWL
1 /ET1, respectively, which in general are different from µ. On the other hand, since

the blocks are i.i.d., we may better “trust” the bounds φ̃U
N and φ̃L

N : if these bounds are
close, we may expect that φ̄U

N and φ̄L
N have been stabilised. If Ti = ni is specified by (17)

then of course
φ̃U

N − φ̃L
N ≤ ε.

Finally, the classical CLT and strong law of large numbers apply for the i.i.d. blocks
so that as m → ∞, φ̃U

N and φ̃L
N are approximately normally distributed with variances

(VarW U
1 )/(m(ET1)

2) and (VarW L
1 )/(m(ET1)

2) provided the moments exist. It is straight-
forward to estimate these moments from the i.i.d. blocks and thereby obtain consistent
estimates σ̃max,N and σ̃min,N for the standard deviations. Thus asymptotically with at
least probability 2(1 − α),

φ̃L
N − qασ̃min,N ≤ µ ≤ φ̃L

U + qασ̃max,N . (18)

3.3. Experimental results: Random walk continued
Consider again a random walk with k = 5 and all pi = p = 0.5, and let φ be the identity
function. Conservative 95% confidence bounds on the running mean based on (16) for
Method 1 are shown in Figure 3 (left plot). Note that longer runs of least 10000 iterations
seem needed, since many of the confidence intervals do not contain 2.5; see also Figure 2.
The procedure for taking i.i.d. blocks under Method 2 is illustrated in Figure 3 (right plot).
Blocks were identified using the criterion given in (17), with ε arbitrarily chosen to be equal
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Fig. 3. Random walk with k = 5 and p = 0.5. Left plot: Conservative 95% confidence bounds
(indicated by crosses) on the running mean when t = 1, . . . , 10000 and Method 1 is used. Right plot:
Method 2 for obtaining L

(i)
t and U

(i)
t when t = 1, . . . , 1000.
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Fig. 4. Random walk with k = 5, p = 0.5, ε = 0.1 and N = 1, .., 500000, depicted at every 10000th
iteration. Left plot: φ̄L

N and φ̄U
N under Method 1 (solid line) and φ̃L

N and φ̃U
N under Method 2 (dashed

lines). Note that φ̄L
N and φ̄U

N are effectively equal for these values of N . Right plot: σ̂max,N under
Method 1 (solid line) and σ̃max,N under Method 2 (dashed line).
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to 0.1. For this example, m = 280 such blocks were identified from N = 100000 iterations.

The solid lines in the figure represent L
(i)
t and U

(i)
t when t = 1, . . . , 1000.

Runs of varying length N were simulated for other random walks with different ranges
k = 5, 10, values of p = 0.2, 0.5 and values of ε = 0.1, 0.01. Comparison of Methods 1 and
2 under these conditions confirmed the greater meta-stability of Method 1, gained at the
expense of a larger variance, for the same number of iterations. The relative merit of one
method over the other depends in particular on the values of k and ε. For example, for
the same N and ε under Method 2, as k increases the value of m decreases and VarW L

1

and VarW U
1 increase because the lower and upper processes are re-initiated at 0 and k,

respectively, for each i.i.d. block. In comparison, under Method 1 the processes are initiated
at 0 and k only at time t = 0 and the variances are computed using all N iterations. The
same behaviour is observed for fixed k and N as ε decreases. The comparative performance
of the means and the upper bound on the variances under the two methods is illustrated in
Figure 4 for k = 5, p = 0.5, ε = 0.1 and N ranging from 10000 to 500000.

4. Other examples

In this section we consider two examples of more complicated models where the methods
in Section 3 are helpful.

4.1. Ising model
Consider an Ising model defined on a square lattice V = {1, ..., M}2 and with the set of
first order edges

E = {{(i1, i2), (j1, j2)} ⊆ V : (i1 − j1)
2 + (i2 − j2)

2 = 1}

defining the neighbourhood relation. The state space is Ω = {±1}V and

π(x) ∝ exp



β
∑

{i,j}∈E

xixj



 , x = (xi)i∈V ∈ Ω,

where β is a real parameter.
For simplicity we consider first a Gibbs sampler with a simple random updating scheme.

The updating function is χ : Ω × V × [0, 1] → Ω with

χ(x, i, r) =

{

(x(1,1), . . . , 1, . . . , x(M,M)) if (1 + exp(−2β
∑

j:{i,j}∈E xj))
−1 ≤ r

(x(1,1), . . . ,−1, . . . , x(M,M)) else

where the 1 or −1 is placed at the ith coordinate. The Gibbs sampler is the SRS

Xt+1 = χ(Xt, It, Rt), t = 0, 1, . . . ,

where I0, R0, I1, R1, . . . are mutually independent, It ∼ Uniform(V ) and Rt ∼ Uniform[0, 1].
Define a partial ordering on Ω by

x ≺ y ⇐⇒ xi ≤ yi for all i ∈ V (19)
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with x = (xi)i∈V and y = (yi)i∈V . Then 1̂ = (1, . . . , 1) and 0̂ = (−1, . . . ,−1) are the
unique maximal and minimal elements. Suppose first that β ≥ 0. Then the Gibbs sampler
is monotone in the sense that

x ≺ y =⇒ χ(x, ·, ·) ≤ χ(y, ·, ·).

Hence we can define upper and lower chains in a similar way as in Section 2.1:

U0 = 1̂, L0 = 0̂, Ut+1 = χ(Ut, It, Rt), Lt+1 = χ(Lt, It, Rt), t = 0, 1, . . . . (20)

If instead β < 0, the Gibbs sampler becomes anti-monotone, and we can use the cross-over
trick of Kendall (1998) (see also Häggström and Nelander, 1998 and Møller, 1999):

U0 = 1̂, L0 = 0̂, Ut+1 = χ(Lt, It, Rt), Lt+1 = χ(Ut, It, Rt), t = 0, 1, . . . .

Then (4) is still satisfied, but U and L are not individual Markov chains.

Since the Gibbs sampler is ergodic and Ω is finite, we obtain the CLT (13). As required,
φ̄L

t and φ̄U
t are consistent estimators of µ (this is obvious when β ≥ 0 and not so hard to

verify in the anti-monote case β < 0). The reason for using the Gibbs sampler instead of
the more efficient Swendson and Wang (1987) algorithm is because the latter algorithm has
a lack of monotonicity (Propp and Wilson, 1996; Mira et al., 2001).

4.2. Experimental results: Ising model
The Gibbs sampler described above is clearly reversible. For the experiments in this section
we used a slightly different algorithm with a systematic updating scheme in which one
iteration consists of 2M2 − 1 Gibbs updates scanning through the elements of V and back
again in reverse order. This double scan Gibbs sampler is also reversible, monotone and
ergodic. The autocorrelation is much smaller under this approach.

Let φ(x) =
∑

i∈V xi which is monotone with respect to (19). By symmetry in the
density, µ = 0 is known. Bounds based on (16) were constructed for Ising models with
M = 5, 10, 64 and parameters β = 0.1, 0.5. The results are illustrated for M = 64, β = 0.1
in Figure 5; the first 100 iterations of the running mean and corresponding upper and
lower bounds under Method 1 are depicted in the left panel, and the right panel shows the
conservative 95% confidence intervals based on (16) for N = 1000.

Method 2 was employed for an Ising model with M = 5 and β = 0.5. With ε = 5, m = 33
blocks were sampled from N = 500 iterations. The estimated mean and standard deviation
for the lower bound were φ̃L

N = −0.0248 and σ̃min,N = 0.00289. The corresponding figures

for the upper bound were φ̃U
N = 0.0321 and σ̃max,N = 0.00386. For comparison, with the

same values of M, β and N , the lower and upper bounds on the standard deviation under
Method 1 were σ̂min,N = 0.0635 and σ̂max,N = 0.0785. In this case the 95%-confidence
interval (16) for Method 1 is about four times wider than the 95%-confidence interval (18)
for Method 2.

4.3. Mixture model
In this section we consider a Bayesian model for a simple mixture distribution, following
similar ideas as in Robert and Casella (2004).
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Fig. 5. Method 1 for an Ising model with M = 64 and β = 0.1. Left plot: Running mean φ̄t and upper
and lower bounds φ̄U

t and φ̄L
t . Right plot: Time series plot of φ̄t and corresponding 95% confidence

intervals.

We assume that we have i.i.d. observations Y1 = y1, . . . , Yn = yn from a two-component
mixture given by the density

f(x|p) = pf1(x) + (1 − p)f2(x)

where the densities f1 and f2 are known and the parameter p follows a conjugate prior
Beta(λ1, λ2). Consider latent variables Zi, i = 1, .., n that allocate observation Yi to com-
ponent j = 1 or 2. Specifically, the Zi given p are i.i.d. with P (Zi = 1|p) = p and
P (Zi = 2|p) = 1 − p, and the Yi given the Zi and p are independent with Yi following fj if
Zi = j. Thus a posteriori we obtain the full conditionals

p| · · · ∼ Beta(λ1 + n1, λ2 + n2),

P (Zi = j| · · · ) ∝ ωjfj(yi), j = 1, 2, i = 1, . . . , n,

where ω1 = p, ω2 = 1 − p and nj is the number of times Zi = j, i = 1, . . . , n.
For ease of exposition, consider first a Gibbs sampler with a random updating scheme,

using inversion at each type of update from the full conditionals: The SRS for the chain
Xt = (pt, Zt,1, . . . , Zt,n) is given by

Xt+1 = ϕ(Xt, It, Rt), t = 0, 1, . . . ,

where It ∼ Uniform{0, 1, . . . , n}, Rt ∼ Uniform[0, 1], the I0, R0, I1, R1, . . . are mutually
independent, and the updating function is specified as follows. In case It = 0 then Xt+1 =
(pt+1, Zt,1, . . . , Zt,n) and pt+1 = F−1(Rt|nt,1), the inverse distribution function of Beta(λ1+
nt,1, λ2 + n − nt,1) (with nt,1 equal to the number of times Zt,i = 1, i = 1, . . . , n). If It =
i ∈ {1, . . . , n} then Xt+1 = (pt, Zt,1, . . . , Zt,i−1, Zt+1,i, Zt,i+1, . . . , Zt,n) where Zt+1,i = 1 if
Rt ≤ ptf1(yi)/[ptf1(yi) + (1 − pt)f2(yi)] and Zt+1,i = 2 otherwise.
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This Gibbs sampler is obviously monotone with respect to the following partial ordering
on [0, 1] × {1, 2}n:

(p, z1, . . . , zn) ≺ (p′, z′1, . . . , z
′
n) ⇐⇒ p ≤ p′, zi ≥ z′i, i = 1, . . . , n.

Furthermore, 1̂ = (1, 1, . . . , 1) and 0̂ = (0, 0, . . . , 0) are the unique maximal and minimal
elements. Hence we define upper and lower chains in the same way as in (20).

Note that pt is the chain of the interest. Since its state space [0, 1] is compact, it can
be shown that the chain is uniformly ergodic. Consequently, for real functions φ(p), the
requirements that φ̄L

t and φ̄U
t are consistent estimators of µ, and the CLT (13) holds, are

satisfied.

4.4. Experimental results: Mixture model
The Gibbs sampler studied above is obviously reversible. For similar reasons as in Sec-
tion 4.2, we used a systematic Gibbs sampler for the experiments in this section (where
one iteration is one scan of the n + 1 components). Reversibility of the target chain pt is
automatically ensured.

We illustrate Method 1 using a two-component normal mixture in which f1 ∼ N(0, 1)
and f2 ∼ N(2, 1). Observations y1, .., y200 were simulated from this mixture with p = 0.3.
Figure 6 depicts the running mean of p and upper and lower bounds for N = 1000 (left
plot) and the corresponding 95% upper confidence bound on p (right plot) computed for
every 1000th iteration to N = 10000. After N = 100, 1000 and 10000 iterations, the re-
spective values of (φ̄L

N , φ̄U
N ) were (0.2743,0.3294), (0.2964,0.3019) and (0.2987,0.2992). The

corresponding values of (σ̂min,N , σ̂max,N ) at these values of N were (0,0.0286), (0,0.00313)
and (0.0363,0.000517). Conservative 95% confidence bounds for p, computed using σ̂max,N ,
were (0.2182,0.3855), (0.2903,0.3080) and (0.2977,0.3002), respectively. For comparison,
under Method 2 with ε = 0.001, the values of (φ̃L

N , φ̃U
N ) after N = 100, 1000 and 10000

iterations were (0.2374,0.5326), (0.2411,0.5148) and (0.2523,0.5115). The corresponding
values of σ̂max,N were 0.0175, 0.00742 and 0.000992, leading to much more conservative
95% confidence bounds for p than those for Method 1 above. In particular, the asymmetry
of the process is reflected in the quite conservative upper bounds φ̄N

U and σ̃max,N . More
generally, the accuracy and precision of the bounds is dependent on the sample composition
and sample size, as well as the values of p and other parameters in the mixture model.

5. Extensions and applications

Our methods also apply when φ is anti-monotone, i.e. when

x ≺ y =⇒ φ(x) ≥ φ(y).

We simply exploit the fact that −φ is monotone. Similarly, our methods easily apply
when φ is a linear combination of monotone functions. In fact many lattice and point
process models are of an exponential family type where the canonical sufficient statistic
t(x) is a linear combination of monotone functions (considering here for simplicity the one
dimensional case of t(x); in the higher dimensional case each coordinate function is often a
linear combination of monotone functions). For the Ising model, for example,

t(x) =
∑

{i,j}∈E

xixj =
1

2

∑

{i,j}∈E

I[Xi = Xj = 1] +
1

2

∑

{i,j}∈E

I[Xi = Xj = −1] − |E|
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Fig. 6. Mixture model with p = 0.3 and normal distributions N(0, 1) and N(2, 1). Left plot: Run-
ning mean and upper and lower bounds for N = 1000. Right plot: 95% upper confidence bounds
computed at t = 1000, 2000, ..., 10000.

where the first term is monotone, the second is anti-monotone and the third is constant;
here I[·] denotes the indicator function and |E| the cardinality of E.

Method 1 easily extends to a time-continuous setting. For example, spatial birth-
death processes have been successfully used for perfect simulation of spatial point processes
(Kendall, 1998; Kendall and Møller, 2000), and Method 1 can straightforwardly be modi-
fied to this case. However, Method 2 does not easily apply in that case, since there is no
maximal element (or more generally, since the dominating Poisson-birth-death process in
Kendall and Møller (2000) is used in a way for obtaining the upper and lower processes
which makes it difficult to obtain i.i.d. blocks). Instead the ideas in Wilson (2000) may be
exploited.

In particular, our methods apply for many stochastic models used in statistical physics
and spatial statistics. Examples include Ising and hard-core models, and many of Besag’s
auto-models (Besag, 1974): the auto-logistic, the auto-binomial, the auto-Poisson and the
auto-gamma model; for coupling constructions, see Møller (1999). Moreover, many spatial
point process models, including the Strauss process and other repulsive pairwise interaction
point process models (Møller and Waagepetersen, 2003) can be handled, using the modi-
fication of Method 1 discussed above. For the area-interaction point process (or mixture
Widow-Rowlinson model, see Widom and Rowlinson, 1970 and Baddeley and van Lieshout,
1995) it is easier to use the coupling construction in Häggström et al. (1999).

On the other hand, it seems that our methods so far are of rather limited importance
for general Bayesian problems, since it is usually not known how to construct the upper
and lower dominating processes, or since the functions φ of interest are often not linear
combinations of monotone functions. Some exceptions are the mixture model in Section 4.3
and the following models.

The Ising model with an external field: this model is equivalent to an auto-logistic model,
and it appears, for example as posterior distributions used for reconstruction problems in
image analysis (Geman and Geman, 1984).
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The auto-gamma model has been used in the Bayesian literature, see Møller (1999) and
the references therein. Møller (1999) and Wilson (2000) show how the U and L processes
can be constructed.

Our methods are suitable for posterior distributions associated with mixtures of expo-
nential families and conjugate priors (Casella et al., 2002) using the upper and lower chains
introduced in Mira et al. (2001), where other examples of applications also are given.

Our methods also apply when using the upper and lower processes for the perfect sim-
ulated tempering algorithms and the Bayesian models considered in Møller and Nicholls
(1999) and Brooks et al. (2002).

In conclusion, our methods apply whenever the Propp and Wilson (1996) algorithm does
or when modifications such as those in Kendall and Møller (2000) do. Moreover, they may
also apply in situations where almost sure coalescence of the upper and lower processes are
not required (see, e.g. Møller, 1999), and it would be interesting to explore such cases, but
we shall refrain from this in the present paper.
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