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Abstract: We extend the boson process first to a large class of Cox processes
and second an even larger class of infinitely divisible point processes. Density
and moment results are studied in detail. These results are obtained in closed
form as weighted permanents, so the extension is called a permanent process.
Temporal extensions and a particularly tractable case of the permanent pro-
cess are also studied. Extensions of the ferminon process along similar lines,
leading to so-called determinant processes, are discussed at the end. While the
permanent process is attractive, the determinant process is repulsive.
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1 Introduction

Cox process models for spatial point processes form a rich class of models for
aggregated point patterns, see e.g. Cox & Isham (1980), Stoyan et al. (1995),
Daley & Vere-Jones (2003), Diggle (2003) and Møller & Waagepetersen (2003).
In applications a spatial point pattern is observed within a bounded window
S ⊂ R

d, and a Cox process restricted to S is a finite random subset X of
S whose distribution is usually specified indirectly by a non-negative random
intensity function Λ = (Λ(x))x∈S such that

∫

S
Λ(x) dx < ∞ almost surely.

Given the random intensity function, X is a Poisson process on S with intensity
function Λ, so the marginal density of the point process X is

f(x) = E



exp

(

|S| −

∫

S

Λ(x) dx

) n
∏

j=1

Λ(xj)



 (1)

for finite point configurations x = {x1, . . . , xn} ⊂ S (see e.g. Møller & Waagepe-
tersen, 2003). Here n(x) = n, the number of points in x, can be any non-negative
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integer; the points in x are pairwise different; the density is with respect to the
unit rate Poisson process on S; the expectation is with respect to Λ; and |S| is
the volume of S.

For models so far considered in the literature, apart from simple cases such
as a mixed Poisson process where Λ is the product of a positive random variable
and a non-negative deterministic function, the expectation in (1) is computable
only by Markov chain Monte Carlo (MCMC) methods. Examples are shot noise
Cox processes (Brix 1999, Møller 2003) and log Gaussian Cox processes (Møller
et al. 1998). Indeed, closed form expressions for densities of other kinds of
spatial point process models are also unknown apart from trivial cases closely
related to Poisson processes. For example, for the important class of Markov
point processes (Van Lieshout 2000), the normalizing constant of the density
cannot be evaluated explicitly.

The absence of a closed form for the density (1) has motivated us to study
a class of flexible Cox process models with intensity function defined for any
positive integer k and real covariance function by C(x, x′), x, x′ ∈ S by

Λ(x) = Z1(x)2 + . . . + Zk(x)2 (2)

where Zj = (Zj(x))x∈S, j = 1, . . . , k are independent zero-mean Gaussian
processes with covariance function C/2. This class is similar in many respects
to the log Gaussian Cox process, except that the density is expressed in terms
of a weighted matrix permanent. Consequently such a point process X is called
a permanent process with parameters α = k/2 and C. The boson (or photon)
process (Macchi 1971 and 1975, Grandell 1976, Daley and Vere-Jones 2003)
corresponds to α = 1. Another special case is a mixed Poisson process, i.e.
when C(x, x′) = c is constant and hence Λ(x) ∼ (c/2)χ2(k) does not depend on
x ∈ S.

Section 2 provides some moment properties of the permanent process and
derives the density, assuming C has a spectral representation. These results
are expressed in terms of sums of products of covariances. For any points
x1, . . . , xn ∈ S, the symbol [C](x1, . . . , xn) denotes the n×n matrix with entries
C(xi, xj). The key building block is the sum of cyclic products

cyp[C](x1, . . . , xn) =
∑

σ:#σ=1

C(x1, xσ(1)) · · ·C(xn, xσ(n))

where σ is a permutation and #σ is the number of cycles. The α-weighted
permanent

perα[C](x1, . . . , xn) =
∑

σ

α#σC(x1, xσ(1)) · · ·C(xn, xσ(n))

is the sum over all permutations. This is a polynomial of degree n in α in which
the coefficient of degree r is the sum of products over permutations having
exactly r cycles. The usual permanent corresponds to α = 1 (Minc 1978).

The density obtained in Section 2 requires 2α to be a positive integer. Sec-
tion 3 shows that if certain weak conditions are satisfied (e.g. C need not be
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a covariance function), the process exists for each α > 0 and is infinitely di-
visible. The process is a Poisson randomization and there exists a non-trivial
conditional limit process as α → 0 given that X is not empty. Furthermore,
Section 3 establishes that the moment properties and the density of X are of a
similar form as in Section 2, so we also call the extended process a permanent
process.

Section 4 discusses temporal extensions of the permanent process. The spe-
cial permanent process in which C is proportional to a projection is discussed in
Section 5; it is called special on account of its striking and unusual properties.
Section 6 concludes with a discussion on how to extend the fermion process
along similar lines as for the boson process; the fermion process is a point pro-
cess dual to the boson process (Bernard & Macchi 1973, Macchi 1975, Daley &
Vere-Jones 2003). Thereby so-called determinant point processes are obtained.
While the permanent process is attractive, the determinant process is repulsive.

Valiant (1979) has shown that exact computation of permanents of general
matrices is a #P (sharp P) complete problem, so no deterministic polynomial-
time algorithm is available. However, polynomial-time algorithms exist for cer-
tain special cases, such as general fixed-rank matrices (Barvinok 1996), and for
approximate Monte-Carlo computation of general non-negative matrices (Jer-
rum et al. 2004). For most statistical purposes, approximate computation of
permanent ratios is sufficient, which is a less demanding task. In addition, ana-
lytic approximations are available for large α. Statistical aspects and algorithms
for calculating weighted permanents, permanent ratios and likelihoods will be
discussed in more detail in future work.

2 The integer case of 2α

Throughout this section 2α is assumed to be a positive integer, so that X is the
Cox process driven by (2). Extensions of the results are given in Section 3.

2.1 Moment properties

For a finite point process with density f with respect to the unit rate Poisson
process Φ on S, the nth order product density is given by ρ(n)(x1, . . . , xn) =
Ef(Φ∪{x1, . . . , xn}) for any n ∈ N and pairwise different points x1, . . . , xn ∈ S,
see e.g. Daley & Vere-Jones (2003). Intuitively, ρ(n)(x1, . . . , xn) dx1 · · ·dxn is
the probability of observing n points from X occurring jointly in each of n
infinitesimally small balls with centers x1, . . . , xn and volumes dx1, . . . , dxn.
Moreover, the nth order factorial moment measure has density ρ(n) with respect
to Lebesgue measure on R

dn.
Since X is a Cox process driven by (2), its nth order product density is given

by
ρ(n)(x1, . . . , xn) = E [Λ(x1) · · ·Λ(xn)] . (3)

Theorem 1 below shows that this is a weighted permanent.
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Lemma 1 Let (Z(x))x∈S be a zero-mean real Gaussian process with covariance
function C/2. For any x1, . . . , xn ∈ S, not necessarily distinct, the joint cumu-
lant of order n of the variables Z(x1)

2, . . . , Z(xn)2 is

cumn(Z(x1)
2, . . . , Z(xn)2) = cyp[C](x1, . . . , xn)/2. (4)

Proof: This is a standard application of the lattice-sum formula (Malyshev
1980, McCullagh 1984) for generalized cumulants as a sum of products of
ordinary cumulants. All Gaussian cumulants are zero except those of order
two, so the result is a sum of products of covariances, Ci1,j1 · · ·Cin,jn

, where
Ci,j = C(xi, xj). Since each value 1, . . . , n occurs once as a first index and once
as a second, (j1, . . . , jn) is a permutation of (i1, . . . , in). Non-cyclic permutations
do not satisfy the lattice connectivity condition, so the sum is restricted to cyclic
permutations. For each cyclic permutation, there are 2n−1 distinct partitions of
the 2n indices that satisfy the connectivity condition all giving rise to the same
product C1,σ(1) · · ·Cn,σ(n)/2

n. Consequently the joint cumulant is one half the
sum of cyclic products.

Theorem 1 For any x1, . . . , xn ∈ S, not necessarily distinct,

E [Λ(x1) · · ·Λ(xn)] = perα[C](x1, . . . , xn). (5)

Proof: Since Λ(x) in (2) is the sum of k i.i.d. random processes, the joint cumu-
lant of order n of Λ(x1), . . . , Λ(xn) is k times the joint cumulant of Z(x1)

2, . . . ,
Z(xn)2, which is given by (4). The joint moment of order n is the sum over
sub-partitions of {1, . . . , n} of cumulant products, one cumulant for each block
of the partition. Since permutation cycles determine the blocks of the partition,
the number of blocks is equal to the number of cycles. As a result, the term
corresponding to the permutation σ has a factor (k/2)#σ, so the sum is the
weighted permanent with weight α = k/2.

In the complex version of Theorem 1, Z1, . . . , Zk are independent zero-
mean complex Gaussian processes with covariance function cov(Zr(x), Z̄s(x

′)) =
δrsC(x, x′), where C is Hermitian. Then the joint cumulant of |Z1(x1)|

2, . . . ,
|Z1(xn)|2 in Lemma 1 is cyp[C](x1, . . . , xn), and the joint moment in Theorem 1
is perk[C](x1, . . . , xn). The result for α = 1 can be found in Macchi (1971, 1975).

By Theorem 1, ρ(n)(x1, . . . , xn) = perα[C](x1, . . . , xn) for any pairwise dis-
tinct x1, . . . , xn ∈ S. In particular, ρ(x) = ρ(1)(x) is the intensity function and,
provided ρ(x)ρ(x′) > 0, g(x, x′) = ρ(2)(x, x′)/(ρ(x)ρ(x′)) is the pair correlation
function. Recall that for a Poisson process, g = 1.

Corollary 1 Let cor(x, x′) = C(x, x′)/(C(x, x)C(x′, x′))1/2 be the correlation
function (provided C(x, x)C(x′, x′) > 0). Then

ρ(x) = αC(x, x), g(x, x′) = 1 + cor(x, x′)2/α. (6)

Note that g ≥ 1, in accordance with the usual interpretation that this in-
dicates aggregation of the points in X. In particular, g → 1 as α → ∞, which
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is to be expected, since X can be viewed as the superposition of k indepen-
dent copies of the permanent process with parameter k = 1. In some sense the
process becomes close to a Poisson process as α → ∞, since Λ(x)/α converges
almost surely to C(x, x).

Non-parametric estimation of the pair correlation function is based on kernel
methods (Stoyan & Stoyan 1995), which may underestimate the support of
cor(x, x′) (particularly, in the extreme case cor(x, x′) = 1 of a mixed Poisson
process). Non-parametric estimation of the inhomogenous K-function is less
problematic (Baddeley et al. 2000): For the moment, assume that we extend
the Cox process and the underlying Gaussian processes to R

d. Clearly, the
moment results above then apply for any points in R

d. When the correlation
function is stationary (i.e. when cor(x, x′) = cor(x− x′) for any x, x′ ∈ R

d), the
permament process is second order reweighted stationary and the inhomogenous
K-function is given by

Kinhom(t) =

∫

‖y‖≤t

g(y) dy =
πd/2

Γ(1 + d/2)
+

1

α

∫

‖y‖≤t

cor(y)2 dy, t ≥ 0.

If the covariance function is stationary (i.e. when C(x, x′) = C(x − x′) for any
x, x′ ∈ R

d), the permanent process is stationary (i.e. its distribution is invariant
under translations in R

d), so ρ(x) = ρ is constant, g(x, x′) = g(x − x′) and the
inhomogeneous K-function agrees with Ripley’s K-function (Ripley 1976 and
1977).

In the case of a log Gaussian Cox process, i.e. if log Λ in (1) is a real Gaussian
process with mean function µ and covariance function C, we have a simpler
result for the product density (Møller et al. 1998):

ρ(n)(x1, . . . , xn) = exp





n
∑

i=1

µ(xi) +

n
∑

i,j=1

C(xi, xj)/2



 .

Unlike the permanent process, however, the density for the log Gaussian Cox
process is not available in closed form: see Section 2.3.

2.2 Conditions

In Section 2.3 and also some times later on we make the following assumptions.
Equip the space L2(S) of square integrable real Borel functions on S with

the usual inner product 〈p, q〉 =
∫

S
p(x)q(x) dx and norm ‖p‖2 = 〈p, p〉1/2.

Suppose that the covariance function has spectral representation

C(x, x′) =
∞
∑

r=0

λrer(x)er(x
′), x, x′ ∈ S (7)

where the er form an orthonormal basis of L2(S) and the eigenvalues λr are
non-negative. Indeed a spectral representation holds for most covariance func-
tions: since L2(S) is a separable Hilbert space, (7) holds with respect to some
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orthonormal basis if and only if C is a compact operator (meaning that for
any bounded sequence {qr} ⊂ L2(S), {Cqr} has a subsequence convergent in
L2(S) where Cqr(x) =

∫

S
C(x, x′)qr(x

′) dx′). For instance, C is compact if it is
continuous and S is compact. See Reed and Simon (1980).

We take

Zj(x) =

∞
∑

r=0

Vj,rer(x)

where the Vj,r are independent N(0, λr/2)-distributed random variables. Clearly,
Z1, . . . , Zk are then independent zero-mean Gaussian processes with covariance
function C/2. Assuming

∞
∑

r=0

λr < ∞ (8)

then
∫

S

Λ(x) dx =

k
∑

j=1

∞
∑

r=0

V 2
j,r (9)

is almost surely finite. Condition (8) means that

En(X) = E

∫

S

Λ(x) dx = α

∞
∑

r=0

λr

is finite.
The rank of C is the number of non-zero eigenvalues. Note that C is a

projection if and only if each λr is either one or zero, and (8) implies then that
rank(C) < ∞. For C proportional to a projection of rank one, the permanent
process is a mixed Poisson process.

For functions h : Sn 7→ [0,∞), we define

∫

Sn

h(x) dx =

∫

S

· · ·

∫

S

h(x1, . . . , xn) dx1 · · · dxn

where for n = 0, we interpret the integral as h(∅), where ∅ is the empty point
configuration. Further, if h(x1, . . . , xn) is a symmetric function, we do not dis-
tinguish between whether x is interpreted as a vector or a point configuration.
Indeed product densities, weighted permanents and many other functions con-
sidered in the sequel are symmetric functions, and it is often convenient just to
write ρ(n)(x), perα[C](x), cyp[C](x) and so on for a finite point configuration
x ⊂ S of n(x) = n points. Finally, we set

ρ(0)(∅) = perα[C](∅) = 1, cyp[C](∅) = 0.

2.3 Density function

Let the situation be as in Section 2.2. In order to derive the density of the
permanent process it is convenient to introduce C̃, Λ̃ = (Λ̃(x))x∈S, X̃ and ρ̃(n)

6



in the same way as above for C, Λ = (Λ(x))x∈S, X and ρ(n), except that we
replace the eigenvalues by

λ̃r = λr/(1 + λr), r = 0, 1, . . . . (10)

Everything is again well-defined, since
∑∞

0 λ̃r ≤
∑∞

0 λr < ∞. Furthermore,
define

D =

∞
∑

r=0

log(1 + λr) = −
∞
∑

r=0

log(1 − λ̃r).

Theorem 2 The density of the permanent process X at any finite point config-
uration x ⊂ S is

f(x) = e|S|−αD perα[C̃](x). (11)

Proof: Combining (1) and (9),

f(x) = e|S|E









k
∏

j=1

∞
∏

r=0

e−V 2

j,r









n
∏

j=1

Λ(xj)









where Vj,r ∼ N(0, λr/2), j = 1, . . . , k, r = 0, 1, . . . are independent. If gr is the

density of N(0, λr/2) and g̃r is the density of N(0, λ̃r/2), then exp
(

−v2
)

gr(v) =

g̃r(v)/(1 + λr)
1/2. Consequently,

E









k
∏

j=1

∞
∏

r=0

e−V 2

j,r









n
∏

j=1

Λ(xj)







 = E





n
∏

j=1

Λ̃(xj)





∞
∏

r=0

(1 + λr)
−α.

Hence, by (5), we obtain (11).

Theorem 2 was first established for the special case of the boson process
(α = 1) by Macchi (1971, 1975) who noted that C̃ is the root of the integral
equation

C̃(x, x′) +

∫

S

C̃(x, y)C(y, x′) dy = C(x, x′).

See also Grandell (1976) and Daley & Vere-Jones (2003).
For n(x) = n,

f(x) ∝ ρ̃(n)(x) (12)

where the constant of proportionality is exp(|S|−αD). Here is an example of a
special kind of shot noise Cox process with a similar property: consider a Cox
process driven by Λ(x) =

∑

Γrqr(x), where qr is a kernel (density function) on
S and the Γr are independent gamma distributed random variables with shape
parameter αr > 0 and scale parameter λr ≥ 0 such that

∑

αrλr < ∞. Let ρ̃(n)

be the nth order product density of the similar process when the λr are replaced
by the λ̃r. Then (12) is still true; the proof is analogous to that of Theorem
2. While Theorem 1 applies for the permanent process, we have not found any
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useful way of computing ρ̃(n) for the shot noise Cox process (unless n is very
small).

Given that a finite point pattern x ⊂ S is observed and f(x) > 0, the
conditional mean of Λ(x) is the Bayes estimate of the intensity at x ∈ S \ x:
For any Cox process with density (1), it can be straightforwardly verified that

E
(

Λ(x)
∣

∣x
)

= f(x ∪ {x})/f(x) (13)

where the expression on the right side is the Papangelou conditional intensity
(see e.g. Møller & Waagepetersen 2003). Since the density of the permanent
process at x is proportional to perα[C̃](x), the Bayes estimate for the intensity
is the α-weighted permanent ratio

E
(

Λ(x)
∣

∣x
)

=
perα[C̃](x ∪ {x})

perα[C̃](x)
. (14)

3 Extensions

In the remainder of this paper, unless otherwise stated, we relax the conditions
in Section 2.2 as follows.

Denote by R0 the set of non-negative real numbers. We assume that α ∈ R0

and C̃ : S2 7→ R0 is symmetric with spectral representation

C̃(x, x′) =
∞
∑

r=0

λ̃rer(x)er(x
′), (15)

norm ‖C̃‖ = sup{|λ̃r|} < 1 and finite sum
∑∞

0 |λ̃r| < ∞. It is convenient here

to re-define C in the form of the power series C =
∑∞

r=1 C̃r, where C̃r(x, x′) =
∑∞

j=0 λ̃r
jej(x)ej(x

′). This series is convergent and coincides with the spectral

representation (7) where λr = λ̃r/(1 − λ̃r). This follows from the facts that
a) ‖C̃‖ < 1 guarantees that the sum

∑∞
1 C̃r(x, x′) converges and b) absolute

summability ensures that

C(x, x′) =

∞
∑

r=1

C̃r(x, x′) =

∞
∑

r=1

∞
∑

j=0

λ̃r
jej(x)ej(x

′) =

∞
∑

j=0

∞
∑

r=1

λ̃r
jej(x)ej(x

′)

=

∞
∑

j=0

λ̃j/(1 − λ̃j)ej(x)ej(x
′) =

∞
∑

j=0

λjej(x)ej(x
′).

Observe also that C is non-negative, since each term C̃r is non-negative.
By admitting negative eigenvalues of C and non-integer values of 2α, the

connection with (2) is severed, so it appears unlikely that the extensions of the
permanent process to be established below are Cox processes in general.
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3.1 Density of the extended process

Theorem 3 For each α ∈ R0, there exists a point process with density (11).

Proof: For integers n ≥ 1,

∫

Sn

cyp[C̃](x) dx =
∑

σ:#σ=1

∞
∑

r1,...,rn=0

∫

Sn

n
∏

j=1

λ̃rj
erj

(xj)erj
(xσ(j)) dx

= (n − 1)!
∞
∑

r1,...,rn=0

∫

S

λ̃r1
er1

(x1)ern
(x1) dx1

∫

S

λ̃r2
er1

(x2)er2
(x2) dx2 · · ·

∫

S

λ̃rn
ern−1

(xn)ern
(xn) dxn

= (n − 1)!

∞
∑

r=0

λ̃n
r (16)

where the second identity follows from Fubini’s theorem, since each cyclic prod-
uct has the same integral. Furthermore, with the convention that cyp[C̃](∅) = 0,

∞
∑

n=0

1

n!

∫

Sn

cyp[C̃](x) dx =
∞
∑

n=1

∞
∑

r=0

λ̃n
r /n = −

∞
∑

r=0

log(1 − λ̃r) = D (17)

where the reversal of the order of summation requires the eigenvalues to be
absolutely summable and less than one in absolute value. For integers r ≥ 0,
define cyp(r)[C̃](x) to be the sum of products over permutations having exactly
r cycles, with the convention cyp(r)[C̃](∅) = 1 and cyp(r)[C̃](x) = 0 if either
r > n(x) or r = 0 < n(x). Then

Dr

r!
=

∞
∑

s1=0

· · ·
∞
∑

sr=0

1

r!s1! · · · sr!

∫

Ss1

· · ·

∫

Ssr

cyp[C̃](x1) · · · cyp[C̃](xr) dx1 · · · dxr

=

∞
∑

n=0

1

n!

∫

Sn

cyp(r)[C̃](x) dx.

Thus for any real α > 0, since perα[C̃](x) =
∑

αr cyp(r)[C̃](x),

∞
∑

n=0

1

n!

∫

Sn

perα[C̃](x) dx = eαD

and this identity also holds for α = 0. Finally, for all α ≥ 0, perα[C̃](x) ≥ 0,
since C̃(x, x′) ≥ 0.

Henceforth, for any α ∈ R0, X or Xα denotes the permanent process as in
Theorem 3 and f or fα is its density:

fα(x) = e|S|−αD perα[C̃](x). (18)

Note that Xα = ∅ almost surely if α = 0 or C̃ ≡ 0.
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3.2 Moment properties

We now show that the product density for any α ∈ R0 is given by perα[C](x).
The first step in the proof is the following lemma.

Lemma 2 Let x = (x1, . . . , xm) be a point in Sm where m ≥ 1. Then

∞
∑

n=0

1

n!

∫

Sn

cyp[C̃](x,y) dy = cyp[C](x).

Note that for m = 0, i.e. x empty, the sum is D, cf. (17), and D 6= cyp[C](∅) if
C 6≡ 0.

Proof: The main difficulty in the proof is notational. For positive integers
r1, . . . , rm, define the asymmetric cyclic product

[C̃r1 , . . . , C̃rm ](x) = C̃r1(x1, x2)C̃
r2(x2, x3) · · · C̃

rm(xm, x1).

Consider a typical term in the expansion of cyp[C̃](x, y1, . . . , yn), initially
keeping m = 2 for simplicity of exposition. A cyclic permutation of (x,y)
beginning from the position of x1 is followed by r1 ≥ 0 ys, then x2 and the
remaining r2 = n − r1 ys. The corresponding integral is

∫

S

· · ·

∫

S

C̃(x1, y1)C̃(y1, y2) · · · C̃(yr1
− 1, yr1

)C̃(y1, x2)

C̃(x2, yr1+1)C̃(yr1+1, yr2+2) · · · C̃(yn−1, yn)C̃(yn, x1) dy1 · · ·dyn

= [C̃r1+1, C̃r2+1](x1, x2).

Since there are n! orders for the components of y, we find that

1

n!

∫

Sn

cyp[C̃](x1, x2,y) dy =

n
∑

r=0

[C̃r+1, C̃n−r+1](x1, x2).

By reversal of the order of summation,

∞
∑

n=0

1

n!

∫

Sn

cyp[C̃](x1, x2,y) dy =

∞
∑

n=0

n
∑

r=0

[C̃r+1, C̃n−r+1](x1, x2)

=

∞
∑

r=0

∞
∑

n=r

[C̃r+1, C̃n−r+1](x1, x2) =

∞
∑

r=0

[C̃r+1, C](x1, x2) = [C, C](x1, x2).

The same argument for general m ≥ 1 gives

∞
∑

n=0

1

n!

∫

Sn

cyp[C̃](x,y) dy =
∑

σ: #σ=1

[C, . . . , C](xσ) = cyp[C](x)

where xσ = (xσ(1), . . . , xσ(m)). This establishes the required result.

10



Theorem 4 For any finite point configuration x ⊂ S with n(x) = m ≥ 1,

ρ(m)(x) = perα[C](x). (19)

Proof: For any integer s ∈ {1, . . . , m}, recalling the definition of ρ(m) from
Section 2.1,

ρ(m)(x) = Efα(Φ ∪ x) =
∞
∑

n=0

e−αD

n!

∫

Sn

perα[C̃](x ∪ y) dy

=
∞
∑

r=s

αr

(r − s)!
e−αD

∑

x1,...,xr

∞
∑

s1=0

· · ·
∞
∑

sr=0

1

s1! · · · sr!
∫

Ss1

· · ·

∫

Ssr

cyp[C̃](x1 ∪ y1) · · · cyp[C̃](xr ∪ yr) dy1 · · ·dyr

where x1, . . . ,xr is any partition of x into r blocks of which s are non-empty. The
factor (r − s)! arises from permutation of blocks containing no xs. Application
of Lemma 2 gives

ρ(m)(x) =
1

m

m
∑

s=1

e−αD
∞
∑

r=s

αr

(r − s)!
cyp[C](x1) · · · cyp[C](xs)D

r−s

the factor Dr−s arising from those blocks in the partition of x∪ y that contain
no xs. Simplification reduces this to

m
∑

s=1

e−αD
∞
∑

r=s

αr−sDr−s

(r − s)!
αs cyp(s)[C](x) = perα[C](x).

which is the required result (19).

Thus, for any α ∈ R0, we obtain (6), noticing that cor(x, x′) has only the
interpretation of a correlation function when the eigenvalues λr are all non-
negative. As α varies from 0 to ∞, the pair correlation function g(x, x′) decreases
from arbitrary large values to one (provided g(x, x′) exists, i.e. C(x, x) > 0
and C(x′, x′) > 0). This indicates again that the degree of aggregation is a
decreasing function of α, cf. Section 2.1. Moreover, if the eigenvalues λr are
non-negative, g(x, x′) ≤ 1 + 1/α.

3.3 Infinite divisibility and simulation

Infinite divisibility of fα means that for each integer n ≥ 1, if Y1, . . . ,Yn

are i.i.d. permanent processes with density fα/n, the superposition ∪Yj is a
permanent process with density fα. To establish this we first establish the
algebraic semi-group property of weighted permanents.

Lemma 3 For any reals α, α′ and finite point configuration x ⊂ S,

perα+α′ [C̃](x) =
∑

w⊆x

perα[C̃](w) perα′ [C̃](x \ w). (20)

11



Proof: The claim is trivially true if x is empty. Assume then that x contains
n > 0 points. For w ⊆ x, denote the complement w̄ = x \ w, let m be the
number of points in w, and let σ1 and σ2 be permutations of 1, . . . , m and
1, . . . , n−m, respectively, i.e. corresponding to the points in w = {w1, . . . , wm}
and w̄ = {w̄1, . . . , w̄n−m}. Further, for a given permutation σ of 1, . . . , n, the
symbol w|w̄ ≥ σ denotes a partition in which w corresponds to a union of cycles
of σ. In this context, σ1 and σ2 correspond to the restriction of σ to w and w̄,
respectively, and #σ = #σ1 + #σ2 is the number of cycles. With this notation,

∑

w:w⊆x

perα[C̃](w) perα′ [C̃](w̄)

=
∑

w:w⊆x

∑

σ1

∑

σ2

α#σ1α′#σ2C̃(w1, wσ1(1)) · · · C̃(wm, wσ1(m))

C̃(w̄1, w̄σ2(1)) · · · C̃(w̄n−m, wσ2(n−m))

=
∑

σ

∑

w:w⊆x, w|w̄≥σ

n!

m!(n − m)!
α#σ1α′#σ2 C̃(x1, xσ(1)) · · · C̃(xn, xσ(n))

=
∑

σ

(α + α′)#σ C̃(x1, xσ(1)) · · · C̃(xn, xσ(n))

which is the required result.

Combining Lemma 3 with the density (18), we see that if Xα and Xα′ are
independent permanent processes, the superposition Xα ∪ Xα′ is a permanent
process with density fα+α′ . Consequently, since fα exists for all α ∈ R0, the
permanent process is infinitely divisible.

In particular this implies infinite divisibility of the number of points N =
n(X), with cumulant generating function

log E
[

etN
]

= −αD + log

(

∞
∑

n=0

etn

n!

∫

Sn

perα[C̃](x) dx1 · · ·dxn

)

= −αD + log

(

∞
∑

n=0

1

n!

∫

Sn

perα[etC̃](x) dx1 · · ·dxn

)

= −αD − α

∞
∑

r=0

log(1 − etλ̃r), t ≤ − log ‖C̃‖. (21)

Thus N is distributed as the sum of independent negative binomial random
variables with probability density functions

Γ(n + α)

Γ(α)n!
λ̃n

r (1 − λ̃r)
α, n = 0, 1, . . . ,

for r = 0, 1, . . . (taking 00 = 1). Consequently, N is over-dispersed and

EN = α

∞
∑

r=0

λ̃r

1 − λ̃r

= α

∞
∑

r=0

λr , VarN = α

∞
∑

r=0

λ̃r

(1 − λ̃r)2
= α

∞
∑

r=0

λr(1 + λr).

12



The probability that Xα is empty is exp(−αD), which tends to one as α → 0.
If we consider the conditional distributions given Xα 6= ∅, we get a non-trivial
limit density f0(x|not ∅) as α → 0, and we let W denote the number of points
in this limiting process.

Corollary 2 For non-empty and finite point configurations x ⊂ S,

f0(x|not ∅) = e|S| cyp[C̃](x)/D (22)

and

P(W = n) = D−1
∞
∑

r=0

λ̃n
r /n, n = 1, 2, . . . . (23)

Moreover, Xα is a Poisson randomization, that is, if R is a Poisson distributed
random variable with mean αD, then Xα is distributed as the superposition of
R i.i.d. point processes with density f0(x|not ∅).

Proof: Equation (17) shows that f0(x|not ∅) is a density with respect to the
unit rate Poisson process on S. From Theorem 3 when α > 0, the conditional
density given that Xα is non-empty is

e|S| perα[C̃](x)/
(

1 − exp(−αD)
)

which tends to (22) as α → 0. Combining (16) and (22) we obtain (23). Finally,
by the same arguments as in the proof of Theorem 3,

P(X ∈ F ) =

∞
∑

n=0

e−αD

n!

∫

Sn

1[x ∈ F ] perα[C̃](x) dx

=

∞
∑

r=0

(αD)re−αD

r!

∞
∑

s1=0

· · ·
∞
∑

sr=0

e−|S|

s1!
· · ·

e−|S|

sr!

∫

Ss1

· · ·

∫

Ssr

1[x1 ∪ . . . ∪ xr ∈ F ]f0(x1|not ∅) · · · f0(xr|not ∅) dx1 · · ·dxr

from which the Possion randomization follows.

From (23) we obtain the expected number of points

EW = D−1
∞
∑

r=0

λ̃r/(1 − λ̃r) =

∞
∑

r=0

λr/D.

As an example of such a limit process, let S = [0, 2π] and C̃(x, x′) = θ(1 −
cos(x − x′))/(2π) for 0 < θ < 1, so C̃(x, x) ≥ 0. The non-zero eigenvalues of C̃
are θ and −θ/2 with multiplicities one and two, respectively. Note that C̃ is not
positive semi-definite, and EW is an increasing function of θ with range (0,∞).

We can simulate from f(x|not ∅) by generating first W = n and second the
n points in W with conditional density

fn(x1, . . . , xn|not ∅) ∝ C̃(x1, x2)C̃(x2, x3) · · · C̃(xn, x1).

13



Gibbs sampling or another Metropolis-Hastings algorithm may easily work for
simulating from the ”full conditionals” with densities

π(xi| · · · ) ∝ C̃(xi−1, xi)C̃(xi, xi+1)

where xn+1 = x1.
This together with the Poisson randomization in Corollary 3 provide one

way of simulating from fα. Alternatively, if 2α is a positive integer, we may
exploit the doubly-stochastic construction of the Cox process Xα, so that we
first simulate the Gaussian processes and second the Poisson process Xα|Λ.

4 Two temporal extensions

Spatial birth-death processes satisfying a detailed balance condition with respect
to fα can easily be constructed, when a birth is the addition of a single point and
a death is the deletion of a single point (Ripley 1977, Møller & Waagepetersen
2003). However, the detailed balance condition requires the evaluation of the
Papangelou conditional intensity (13). Below we consider two other spatio-
temporal constructions.

4.1 An accretion process with independent increments

The Poisson randomization established in Corollary 2 implies there exists a cou-
pling construction of the permanent processes Xα for all α ∈ R0. Interpreting
α = t as time, we obtain a continuous-time jump process (Xt)t≥0, where we
have “evolution by accretion” and “i.i.d. increments”.

The process is constructed as follows: (Xt)t≥0 is constant almost everywhere
except at the jump times, which are independent of the jumps; the jump times
constitute a homogeneous Poisson process on R0 with rate D; the jumps are
i.i.d. point processes with density f0(x|not ∅); and Xt is the superposition of
the jumps happening before or at time t. Note that X0 = ∅.

By Corollary 2, Xt is a permanent process with density ft. The jump process
is clearly Markovian and increasing (Xs ⊆ Xt if 0 ≤ s < t). Hence, for each
0 ≤ s ≤ s + t, the increments Xs and Xs+t \Xs are independent with densities
fs and ft, respectively.

4.2 Second temporal extension

In this section we assume that 2α is a positive integer and the conditions of
Section 2.2 are satisfied.

Consider a spatio-temporal Cox process for which the conditional intensity
function at (x, t) is Λ(x), constant in time, where Λ(x) is given by (2). Let
t > 0 be fixed, and let X ⊂ S be the set of points occurring in [0, t]. That is to
say, X records the position of each point, but not the time of occurrence or the
sequential order. Given Λ, the process is Poisson with intensity function tΛ(x)
for x ∈ S. By Theorem 2, the density of X is given by (11) with λr replaced

14



by tλr. Thus λ̃r = tλr/(1 + tλr), and the corresponding covariance function is
denoted by C̃t. Given that n(X) = n, the conditional density of the points in
Sn is proportional to perα[C̃t](x1, . . . , xn).

For inverse sampling, the number of points is fixed, and the process is ob-
served until the time Tn at which n ≥ 1 points have occurred. What then is the
joint density of Tn and the n points? Let Γ =

∫

S
Λ(x) dx. Given Λ, the points

are i.i.d. in S with density Λ(x)/Γ, and Tn has the gamma distribution with
shape parameter n and mean n/Γ, independent of the n points. The conditional
joint density at (x1, . . . , xn, t) is thus

Λ(x1) · · ·Λ(xn)

Γn
×

tn−1Γn exp(−tΓ)

(n − 1)!
.

By the proof of Theorem 2, the unconditional joint density is

t−1 perα[C̃t](x1, . . . , xn)

(n − 1)!
∏∞

0 (1 + tλr)α
,

and the marginal density on Sn of the points is

fn(x1, . . . , xn) =

∫ ∞

0

t−1 perα[C̃t](x1, . . . , xn)

(n − 1)!
∏∞

0 (1 + tλr)α
dt. (24)

As shown in Section 5.1, unless C is proportional to a projection, this is different
from the conditional density obtained in the preceding paragraph.

The eigenvalues λ̃r = tλr/(1 + tλr) of C̃t are strictly less than one, but
increasing in t with limit one if λr > 0 and zero otherwise as t → ∞. Thus,
if C has finite rank, the limit limt→∞ C̃t is the orthogonal projection having
the same range as C. Moreover, if for example λr = exp(−r) and δ > 0, then
the eigenvalues of C̃t are near one for r < log t − δ log log t and near zero for
r > log t+δ log log t. We interpret this result as saying that C̃t is approximately
a projection of rank log t when t is large. These special permanent processes
are studied in the next section.

5 The special permanent process

Let Q be a projection of rank m:

∫

S

Q(x1, x)Q(x, x2) dx = Q(x1, x2) (25)

and
∫

Q(x, x) dx = m. This means that Q has m unit eigenvalues and the
others are zero. It is assumed throughout this section that κ > 0 is a parameter
and the covariance function C = κQ is a positive multiple of the projection;
equivalently, C̃ = (κ/(1 + κ))Q. The associated point process Xα is called
special on account of its striking and unusual properties.
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5.1 The density function revisited

Corollary 3 Suppose α > 0. For any finite point configuration x ⊂ S, the special
permanent process X has density

f(x) = e|S|(1 + κ)−n(x)−αm perα[C](x) (26)

and the number N of points in X follows a negative binomial distribution,

pn =
Γ(n + mα)

Γ(mα) n!

(

κ

1 + κ

)n(
1

1 + κ

)mα

, n = 0, 1, . . . . (27)

Furthermore, conditional on N = n, the joint density of the n points in X is

fn(x1, . . . , xn) = perα[Q](x1, . . . , xn)Γ(mα)/Γ(n + mα) (28)

and
∫

S

fn+1(x1, . . . , xn, x) dx = fn(x1, . . . , xn). (29)

Proof: We have perα[C̃](x) = perα[C](x)/(1+κ)n(x). Since λ̃r = κ/(1+κ) for m
eigenvalues and λ̃r = 0 otherwise,

∏∞
0 (1 + λr) = (1 + κ)m. Hence (26) follows

immediately from Theorem 3. By (21) N has cumulant generating function
−mα log(1+κ(1− et)) from which (27) follows. Furthermore, (28) follows from
(26) and (27) and the usual relation between f and pnfn:

f(x) = pnfn(x1, . . . , xn) exp(|S|)/n!.

Finally, (29) follows straightforwardly from (25) and (28).

Equation (29) is Kolmogorov’s consistency condition for a stochastic pro-
cess with marginal densities fn. In other words, to each projection Q there
corresponds an infinitely exchangeable process taking values in S, for which the
n-dimensional joint density is fn. Further, (26) implies that (n(x), ρ(n(x))(x))
is a minimal sufficient statistic, and equation (28) states that fn is proportional
to ρ(n). In general, for other non-trivial Cox processes such as log-Gaussian or
shot-noise processes, no simple relationship exists connecting product densities
with the density of the process.

Consider again the space-time setting in Section 4.2, where now C = κQ.
Suppose that the point configuration x = {x1, . . . , xn} has been observed by
inverse sampling with fixed n, and that we wish to predict where the next point
Xn+1 is likely to occur. Since the density fn in (24) reduces to that in (28), and
since fn is the marginal density of fn+1, the conditional density of Xn+1 at x
is

fn+1(x1, . . . , xn, x)

fn(x1, . . . , xn)
=

perα[Q](x1, . . . , xn, x)

(mα + n) perα[Q](x1, . . . , xn)
. (30)

This predictive density is in fact the Bayes estimate of the intensity function
Λ(x)/Γ, i.e. the conditional expected value of the normalized intensity function
at x given the observed point configuration x.
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5.2 Palm distributions

We shall use the following notation. For any non-empty and finite point config-
uration x ⊂ S, let P!(·|x) denote the nth order reduced Palm distribution of the
special permanent process at x. Intuitively, this is the conditional distribution
of X \ x given that x ⊆ X; a formal definition is given in Appendix A (the
Campbell-Mecke theorem (35)-(36)). Finally, Φ denotes the unit rate Poisson
on S and pl(x) is the probability of observing l points under P!(·|x).

Corollary 4 Under the special permanent process, for any α > 0 and non-
empty finite point configuration x ⊂ S with perα[C](x) > 0, the reduced Palm
distribution at x is

P!(F |x) = E

[

1[Φ ∈ F ] exp(|S|) perα[C](Φ ∪ x)

(1 + κ)αm+n(x)+n(Φ) perα[C](x)

]

(31)

where F is any event of point configurations. Particularly, if α = 1 and n(x) = n,

pl(x) =
(l + m + n − 1)!

(m + n − 1)!l!

(

κ

1 + κ

)l(
1

1 + κ

)m+n

, l = 0, 1, . . . . (32)

Proof: See Appendix A.

When α = 1 we consider the “special boson process” and it can be shown
that (31)-(32) remain true if Z1 + iZ2 is a complex Gaussian process. Note that
(32) extends (27). In words, conditional on the event that X contains x, the
distribution of the number of points in X \ x is negative binomial and depends
only on x through the number of points in x. The latter property is remarkable:
In general, for any point process with density f with respect to the unit rate
Poisson process on S,

P!(F |x) = E [1[Φ ∈ F ]f(Φ ∪ x)] /ρ(n)(x)

provided n(x) = n and ρ(n)(x) > 0 (this follows easily by modifying the first
part of the proof above). For a Poisson process, by (35)-(37), P!(F |x) is the
distribution of the process itself independent of the points in x. For a mixed
Poisson process driven by the random intensity function Λ(x) = Rq(x), where
R is a positive random variable and q is a deterministic function,

f(x) = E

[

exp

(

|S| − R

∫

S

q(x) dx

)

Rn
n
∏

1

q(xj)

]

and

ρ(n)(x) = E

[

Rn
n
∏

1

q(xj)

]

,

so the reduced Palm distribution

P!(F |x) = E

[

1[Φ ∈ F ] exp

(

|S| − R

∫

S

q(x) dx

)

Rn+n(Φ)

]

/E [Rn]
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depends only on x through n(x). For the special boson process, P!(F |x) may
depend on the locations of the points in x, but pl(x) depends only on n(x).
Apart from these three cases we are not aware of any other kind of Cox process
where pk(x) depends only on n(x). For instance, for a boson process where C
is not proportional to a projection,

p0(x) = P!(∅|x) =
e−D per[C̃](x)

per[C](x)

depends on the locations of the points in x (here per[C](x) = per1[C](x) is the
usual permanent).

6 The determinant process

An analogous theory in which the fermion process replaces the boson process
follows similar lines, extending the work of Diaconis and Evans (2000) in a
different direction. We sketch this below.

Suppose that C satisfies the conditions of Section 2.2, i.e. C is a covariance
function with spectral representation (7) such that

∑∞
0 λr < ∞. The fermion

(or electron) process is a finite point process with density

f̃1(x) = e|S|−D det[C](x)

with respect to the unit rate Poisson process on S, and its nth order product
density ρ̃(n) is given by

ρ̃(n)(x) = det[C̃](x)

(Benard & Macchi 1973, Macchi 1975, Daley & Vere-Jones 2003). Note that
det[C](x) and det[C̃](x) can be negative if C is not positive semi-definite.

The determinant polynomial

detα[C](x1, . . . , xn) = per−α[−C](x1, . . . , xn),

with α#σ sign(σ) = (−1)n(−α)#σ in place of α#σ, also satisfies the semi-group
convolution property (20). Consequently, for positive integer α the family of
point processes with density

f̃α(x) = e|S|−αD detα[C](x) (33)

is closed under independent superposition. A point process with density f̃α is
called a determinant process. A Poisson process is obtained in the uncorrelated
case, i.e. when C(x, x′) = 0 whenever x 6= x′.

Most of the results established for permanent processes have a dual form for
determinant processes with C and C̃ interchanged. Here are some examples:
Let M denote the number of points in the determinant process. Its cumulant
generating function

log E
[

etM
]

= α

∞
∑

r=0

log(1 + etλr) − αD, t ≤ − log ‖C‖,
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can be obtained directly from the density (33). Thus M is distributed as the
sum of independent binomial random variables with index α and parameter
λr/(1 + λr). Consequently, M is under-dispersed and

M ≤ α × rank(C), EM = α

∞
∑

r=0

λr

1 + λr
, VarM = α

∞
∑

r=0

λr

(1 + λr)2
.

By the argument used in Section 3.2, the nth order product density is

ρ̃(n)(x) = detα[C̃](x). (34)

In particular, the intensity function is αC̃(x, x) and the pair correlation function
is 1− [C̃(x, x′)2/(C̃(x, x)C̃(x, x′))]/α (provided that C̃(x, x) > 0 and C̃(x′, x′) >
0), which is at least 1 − 1/α. Thus, in contrast to the permanent process and
unless the process is Poisson, the points of the determinant process tend to repel
one another, and the degree of repulsion is a decreasing function of α. Further,
the special determinant process in which C = κQ is proportional to a projection
of rank m has conditional densities

detα[Q](x1, . . . , xn)Γ(mα − n + 1)/Γ(mα + 1)

for n ≤ mα only, and these satisfy the Kolmogorov consistency condition up to
this order. Furthermore, M is binomial with index mα and parameter κ/(1+κ),
making it clear that the special determinant process is defined for integer α only.

In general the determinant process cannot be extended to α ∈ (0, 1): if
we claim fα to be a density, then the pair correlation function is as above, so
e.g. continuity of C (or equivalently C̃) implies that 1 − 1/α ≥ 0, and hence
α ≥ 1. Simulation along similar lines as in Section 3.3 seems therefore not
possible. However, the usual birth-death-move Metropolis-Hastings algorithm
(Geyer & Møller 1994) may be computationally feasible, since the Papangelou
conditional intensity is a ratio of weighted determinants. It is not clear whether
any determinant process can be extended to non-integer α ≥ 1.
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Appendix A

By definition, the nth order reduced Palm distribution satisfies the integral
equation:

E
[

∑

h(x1, . . . , xn,X \ x)
]

(35)

=

∫

S

· · ·

∫

S

(∫

h(x1, . . . , xn,y) dP !(y|x)

)

ρ(n)(x) dx1 · · · dxn (36)
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for all measurable non-negative functions h, where the sum in (35) is over all
pairwise different points x1, . . . , xn in X and x = {x1, . . . , xn}. The similar in-
tegral equation for the unit rate Poisson process is the Slivnyak-Mecke theorem:

E
[

∑

h(x1, . . . , xn,Φ \ x)
]

=

∫

S

· · ·

∫

S

E [h(x1, . . . , xn,Φ)] dx1 · · · dxn (37)

where the sum is over pairwise different points x1, . . . , xn in Φ. See, for example,
Møller and Waagepetersen (2003).

Now, (35) is equal to

E
[

∑

h(x1, . . . , xn,Φ \ x)f(Φ)
]

=

∫

S

· · ·

∫

S

E [h(x1, . . . , xn,Φ)f(Φ ∪ x)] dx1 · · ·dxn

=

∫

S

· · ·

∫

S

E

[

h(x1, . . . , xn,Φ) exp(|S|) perα[C](Φ ∪ x)

(1 + κ)m+n+n(Φ)

]

dx1 · · · dxn

using (37) in the first equality and (26) in the second equality. Comparing this
with (36), we obtain (31).

Suppose α = 1 and n(x) = n. By (5) and (31),

pl(x) = E

[

1[n(Φ) = l] exp(|S|) per[C](Φ ∪ x)

per[C](x)(1 + κ)l+m+n

]

=

∫

S

· · ·

∫

S

per[C](x ∪ y)

l! per[C](x)(1 + κ)l+m+n
dy1 · · · dyl

=
E
[

Γ2l
∏n

1 Λ(xj)
]

l! per[C](x)(1 + κ)l+m+n

using a notation as in Section 4.2 with k = 2, and where we have used the
projection property (25) and the fact that α = 1 to obtain the last equation.
By (9) and Basu’s theorem, Γ is (κ/2)χ2(2m)-distributed and independent of
Λ/Γ. Thus

E

[

Γ2l
n
∏

1

Λ(xj)

]

=
E
[

Γ2(l+n)
]

E [
∏n

1 Γ(xj)]

E [Γ2n]
= κl (l + m + n − 1)! per[C](x)

(m + n − 1)!

whereby (32) follows.
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