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Abstract

To the best of our knowledge, this is the first paper which discusses likelihood inference

for a random set using a germ-grain model, where the individual grains are unobserv-

able, edge effects occur, and other complications appear. We consider the case where

the grains form a disc process modelled by a marked point process, where the germs

are the centres and the marks are the associated radii of the discs. We propose to use a

recent parametric class of interacting disc process models, where the minimal sufficient

statistic depends on various geometric properties of the random set, and the density

is specified with respect to a given marked Poisson model (i.e. a Boolean model). We

show how edge effects and other complications can be handled by considering a cer-

tain conditional likelihood. Our methodology is illustrated by analyzing Peter Diggle’s

heather dataset, where we discuss the results of simulation-based maximum likelihood

inference and the effect of specifying different reference Poisson models.
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1 Introduction

In spatial statistics and stochastic geometry, one often models a realization of a planar

random set Y by a germ-grain model UX, where

• X is a marked point process of points ui called germs and associated marks Ki called

primary grains,

• the germs ui constitute a locally finite point process in R2,

• the primary grains Ki are random compact subsets of R2,

• ui + Ki = {ui + x : x ∈ Ki}, the translation of the set Ki by the vector ui, is called a

grain,

• UX is the union of all grains ui +Ki,

see e.g. Hanisch (1981), Cressie (1993), and Stoyan, Kendall and Mecke (1995). It is well-

known that any random closed set whose realizations are locally finite unions of compact

convex sets is a germ-grain model with convex and compact grains (Weil and Wieacker, 1984,

1988). In practice, in order to make statistical inference, one uses a much smaller class of

models, where random-disc Boolean models play the main role, see Stoyan et al. (1995) and

the references therein, and so Y ≈ UX is an approximation. There is a lack of interaction
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under the Boolean model, since X is an independently marked Poisson process. Many authors

have mentioned the need of developing flexible germ-grain models with interaction between

the grains (Diggle, 1981; Hall, 1988; Baddeley and Møller, 1989; Cressie, 1993; Stoyan et al.,

1995; Kendall, Van Lieshout and Baddeley, 1999; Møller and Helisová, 2008).

The present paper considers a new class of interacting disc processes from Møller and

Helisová (2008), illustrated by analyzing Peter Diggle’s heather dataset (Diggle, 1981), which

previously have been modelled by a random-disc (or more general) Boolean model, cf. the

references in Section 2. In particular, to the best of our knowledge, this is the first time that

a paper discusses simulation-based likelihood inference for a germ-grain model. If we observe

only Y ∩W , where W ⊂ R2 denotes a bounded window, statistical inference is complicated

by that

(i) as we observe only the union of the grains within W , the individual grains may be

unobservable and edge effects may occur,

(ii) the model should account for the fact that the marked points (ui, Ki) may interact,

(iii) the grains may only approximately be discs,

(iv) usually only a digital image is observed and the resolution makes it difficult to identify

circular structures.

We discuss and to some extent try to solve these problems, in particular (i)-(ii). Briefly,

we model the geometric properties of the connected components of Y, where results from

Møller and Helisová (2008) become useful, and our model extends the quermass-interaction

disc model in Kendall et al. (1999) and forms a particular class of connected component
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Markov processes (Baddeley and Møller, 1989; Baddeley, Van Lieshout and Møller, 1996;

Møller, 1999; Chin and Baddeley, 2000).

Section 2 reviews previous statistical analyses of Diggle’s heather dataset modelled by a

random-disc Boolean model. Section 3 introduces our connected component Markov process

model, where we specify the density with respect to an ‘appropriate’ reference Poisson disc

process, and we have a first discussion on likelihood inference. The specification of the re-

ference process is discussed further in Section 4 and will be based on the previous analyses

reported in Section 2. Since there may be several reasonable reference processes, Section 5

compares the results of the likelihood analysis based on connected component Markov pro-

cesses defined with respect to different reference processes. Section 6 discusses how well the

estimated models fit the data.

2 Data example and previous analyses

As an illustrative application example, we consider the well known heather dataset first

presented in Diggle (1981). The review in this section on previous statistical analysis of this

dataset is relevant for the subsequent sections.

Figure 1 shows a binary image of the presence of heather (Calluna vulgaris, indicated

by black) in a 10 × 20 m rectangular region W at Jädråas, Sweeden (henceforth units are

meters). Assuming the heather plants grow from seedlings into roughly hemispherical bushes,

a disc process model has a straightforward biological interpretation by identifying heather

bushes and discs. The dataset in Diggle (1981) was coded as a 100 × 200 binary matrix,

while Figure 1 consists of 250×508 pixels. Figure 1 was kindly provided by Adrian Baddeley

4



Figure 1: A redigitisation at higher resolution of the heather dataset.

after the original piece of paper, on which the map was hand-drawn by Peter Diggle, was

processed by Chris Jonker who scanned the paper into a grey-scale image, which was cleaned

up and converted into a binary image, which was smoothed using mathematical morphology

tools.

Diggle (1981) modelled the presence of heather by a stationary random-disc Boolean

model, i.e. the centres ui are given by a stationary Poisson process with intensity β > 0,

and the radii ri are independent and identically distributed and independent of the centres.

Let R denote a generic radius, where units are meters. Diggle modelled its distribution (the

mark distribution) by a left-truncated Weibull-density

κρ(r − δ)κ−1 exp (−ρ(r − δ)κ) , r ≥ δ (1)

where δ, κ, ρ are positive parameters. He estimated the parameters by a minimum con-

trast method based on the covariance function for the indicator function of presence of
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heather, splitting the 10 × 20 m window W into two 10 × 10 m non-overlapping squares

in order to provide some cross validation of the results. His estimates of (β, δ, κ, ρ) were

(2.21, 0.281, 0.281, 20.6) for the left-hand square, and (2.11, 0.226, 1.011, 12.5) for the right-

hand square, corresponding to a mean and standard deviation of R of approximately 0.31 and

0.04 (left-hand square) and 0.31 and 0.08 (right-hand square), and an intensity of around

two bushes per square meter (Diggle, 1981; Hall, 1988). This procedure passed a model

control in Diggle (1981) based on the spherical contact distribution function (as defined in

Section 6), however, as Diggle pointed out after comparing simulation of the fitted models

with the data, the visual impression is not good.

Diggle (1981) observed that his fitted models generate more separate patches than in the

data, and Hall (1985) noticed that Diggle’s estimates of radius standard deviation may be

too small. Ripley (1988) constructed diagnostic tools for the shape of the random set based

on operations from mathematical morphology (as defined in Section 6), which also indicated

that Diggle’s random-disc Boolean model is not fitting well. Hall (1988) noticed that some of

the differences between data and fitted models would diminish if the discs were given ragged

edges.

Hall (1988) considered a stationary Boolean model with germ intensity β and isotropic

convex grains, and assumed that the moments µ1 = E [L(K)] /(2π) and µ2 = E [A(K)] /π

are finite, where A and L mean area and perimeter, respectively. Isotropy means that the

distribution of a generic primary grain K is invariant under rotations about the origin in

R2. Clearly, a stationary Boolean model with circular grains is isotropic with µi = E(Ri),

i = 1, 2, and we let µ = µ1 denote the mean and σ =
√
µ2 − µ2 the standard deviation of

R. Using that the number of grains intersecting a fixed convex set C is Poisson distributed
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with mean β(A(C) + L(C)µ1 + πµ2), and using a quadratic lattice with C corresponding

to an arbitrary vertex, edge, or square, Hall (1988) derived moment equations from which

estimates of β, µ1, µ2 were derived (this procedure is used in Section 4). In comparison with

Diggle’s minimum contrast estimation procedure, Hall’s procedure is computationally much

easier. Hall obtained the estimate 2.36 of β, and taking bushes to be discs, estimates of

about 0.27 m and 0.12 m for µ and σ, respectively. Hall’s estimates of β and µ are roughly

similar to those of Diggle (1981), while Hall’s estimate of σ is about twice as large.

Hall (1988) investigated the correlation structure and the hypothesis of isotropic convex

grains. He provided some evidence of anisotropy (see also Renshaw and Ford, 1983), but

concluded that anisotropy has no important effect on his techniques that assume isotropy.

Comparing Figure 1 with Diggle’s coarser digitization, Adrian Baddeley (personal commu-

nication) noticed a couple of discrepancies: the coarse data has some implausible horizontal

‘spikes’, presumably arising from errors in recording some of the run lengths. Baddeley also

ran a quick spectral analysis using FFT on the new high-resolution data and did not find

any evidence of anisotropy.

Further approaches of fitting Boolean models, in connection to random-discs as well as

other grain structures, are discussed in Dupač (1980), Serra (1980), Cressie (1993), Stoyan

et al. (1995), and Molchanov (1997). Cressie (1993, Section 9.5.3; based on Laslett, Cressie

and Liow, 1985) considered a stationary Boolean model with intensity β and not necessarily

convex grains. He used a method based on marker points (if grains are convex, the marker

point of a grain is its most southwesterly point), or more precisely exposed marker points, i.e.

the marker points on the boundary of Y ∩W (in the case of convex grains, exposed marker

points are called lower convex tangent points in Stoyan et al., 1995). Cressie’s primary
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aim was to estimate β using Laslett’s transformation, which transforms the exposed marker

points into a stationary Poisson process of intensity β. He obtained the estimate 1.16 of

β, i.e. a much lower value than obtained by Diggle (1981) and Hall (1985, 1988). Cressie

noticed that this discrepancy may be partly caused by missing exposed marker points due

to the digitization of the image of heather data. Stoyan et al. (1995, page 95) referred to

several simulation studies, which indicate that a certain method of intensities is the most

precise method. Since this method (Stoyan et al., 1995, page 89) requires to count the lower

convex tangent points of Y ∩W , for the same reason as for the method based on exposed

marker points, it may not work well for the heather dataset. However, as Cressie (1993)

remarked, exposed marker points could be sampled directly as part of the data collection

process.

3 A parametric class of interacting disc process models

Section 3.1 specifies the parametric class of connected component Markov models considered

in this paper, and Section 3.2 discusses various likelihood function used for the statistical

analysis of the heather dataset in Section 5.

3.1 Density

The model is defined as follows, considering circular grains ui +Ki = b(ui, ri), where b(u, r)

denotes a closed disc with centre u and radius r. Since the heather plants also grow outside

W , we let S ⊇ W denote a bounded region and identify X by a finite marked point process

with points ui ∈ S and marks ri ≥ 0. Note that the region S where the points live is unknown
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to us. For any finite marked point configuration x = {(u1, r1), . . . , (un, rn)} ⊂ S × [0,∞),

where n can be any non-negative integer (if n = 0 then x is empty), assume that X has

density

fθ(x) =
1

cθ
exp (θ1A(Ux) + θ2L(Ux) + θ3Ncc(Ux) + θ4Nh(Ux)) (2)

with respect to a reference Poisson process of discs, where A, L, Ncc, and Nh denote

area, perimeter, number of connected components, and number of holes, respectively, θ =

(θ1, θ2, θ3, θ4) is an unknown four-dimensional real parameter, and cθ is a normalizing con-

stant. Note that cθ is not expressible on closed form if θ 6= 0.

Since the pattern of heather in Figure 1 may be assumed to be homogeneous, cf. Diggle

(1981), we let the Poisson reference process be stationary with intensity β > 0. For tech-

nical reasons, we assume that the reference Poisson process of discs has a mark cumulative

distribution function Q on [0,∞) such that

S ⊇ b(u, s) \ b(u, t) and Q(t) > 0 for some s, t, u with ∞ > s > t > 0 and u ∈ R2. (3)

For instance, (3) is satisfied for any bounded S ⊇ W when using Diggle’s mark distribution

(1) and his parameter estimates given in Section 2. The specification of β and Q is im-

portant, since they will control the number of discs and their radii in the reference process,

and hence effect the meaning of the parameter θ in (2). Since the discs are incompletely ob-

served, we propose a pragmatic approach, where we first fit a Boolean disc model and second

consider (2) as an extension of this Boolean model to an interacting disc process model. In

Section 4 different reference Poisson disc process are suggested by using the results discussed

in Section 2.

Combining (3) with Møller and Helisová (2008, Proposition 1), we obtain that (2) is a
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regular exponential family with parameter space

Θ = {(θ1, . . . , θ4) ∈ R4 :

∫
exp

(
πθ1r

2 + 2πθ2r
)
Q(dr) <∞} (4)

and canonical minimal sufficient statistic

T (x) = (A(Ux), L(Ux), Ncc(Ux), Nh(Ux)). (5)

Note that χ(Ux) = Ncc(Ux)−Nh(Ux) is the Euler-Poincare characteristic, and if θ3 + θ4 = 0

then (2) specifies a quermass-interaction process (Kendall et al., 1999) with parameter

(θ1, θ2, θ3) and canonical minimal sufficient statistic (A(Ux), L(Ux), χ(Ux)). Further geomet-

ric characteristics than the four statistics in (5) are incorporated in the connected component

Markov models studied in Møller and Helisová (2008), but they will be hard to determine

from Figure 1 because of the problems (iii)-(iv) (Section 1).

3.2 Likelihood

Using Markov chain Monte Carlo (MCMC) methods, approximate maximum likelihood es-

timates of the parameter θ in (2) can be obtained and test statistics for reduced models

(e.g. a quermass-interaction process, θ3 + θ4 = 0) can be evaluated as explained in Section 5.

This section specifies various likelihood function used in Section 5. For later use, notice that

under the Poisson reference disc process (θ = 0), using a notation as in Section 2,

p = 1− exp
[
−βπ(σ2 + µ2)

]
(6)

is the area fraction covered by Y, and the empirical area fraction is p̂ = A(Y∩W )/A(W ) =

0.5014.
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In order to deal with edge effects, consider for the moment the quermass-interaction

process (θ3 + θ4 = 0) and assume that the reference Poisson process is such that the radii

are (almost surely) bounded by r/2 where r < ∞ is a constant. The quermass-interaction

process is Markov in the sense of Ripley and Kelly (1977) with respect to the neighbour

relation given by overlapping discs, and it satisfies an appealing spatial Markov property

as follows. Let W	r = {u ∈ W : b(u, r) ⊆ W} be the r-clipped window, and split X into

X(1), X(2), X(3) corresponding to discs with centres in W	r, W \W	r, W c, respectively. The

spatial Markov property states that X(1) and X(3) are conditionally independent given X(2),

and the conditional distribution X(1)|X(2) = x(2) has density

fθ1,θ2,θ3(x
(1)|x(2)) =

1

cθ1,θ2,θ3(x
(2))

exp (θ1A(Ux(1)∪x(2)) + θ2L(Ux(1)∪x(2)) + θ3χ(Ux(1)∪x(2)))

with respect to the reference Poisson process restricted to discs with centres in the r-clipped

window (Kendall et al., 1999; Møller and Helisová, 2008). However, in practice it seems

problematic to use this conditional density for likelihood inference, since fθ1,θ2,θ3(x
(1)|x(2))

depends on Ux(2) \W , which in general is not observable.

Instead the following spatial Markov property of a general connected component Markov

processes becomes useful. Split X into X(a), X(b), X(c) corresponding to discs belonging to

connected components of UX which are respectively

(a) contained in the window W ,

(b) intersecting both W and its complement W c,

(c) contained in W c,

see Figure 2. Let x(b) denote any feasible realization of X(b), i.e. x(b) corresponds to a finite
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configuration of discs such that for all K ∈ K(Ux(b)), K intersects both W and W c. By

Møller and Helisová (2008, Proposition 5), conditional on X(b) = x(b), we have that X(a) and

X(c) are independent, and the conditional distribution of X(a) depends only on x(b) through

V = W ∩ Ux(b) and has density

fθ(x
(a)|V ) =

1

cθ(V )
1[Ux(a) ⊆ W \ V ] exp

(
θ · T (x(a))

)
(7)

with respect to the reference Poisson process of discs, where · is the usual inner product.

Note that (7) depends only on what we can observe, and it does not depend on how we chose

S. Therefore, we consider the conditional log likelihood

Lc(θ) = θ · T (x(a))− log cθ(V ) (8)

corresponding to the conditional density (7), where T (x(a)) and V are determined as dis-

cussed below. Since cθ(V ) is not expressible on closed form, we approximate it by MCMC

methods and find an approximate maximum likelihood estimate as discussed in Section 5.

For the heather data, Figure 3 shows the connected components intersecting the boundary

of W (in grey), and we denote the union of these components by Y(b), and set Y(a) =

Y ∩W \Y(b). In (8) we use the approximations Y(a) ≈ Ux(a) and Y (b) ≈ V , cf. Sections 1-2,

where

A(Y(a)) = 45.6, L(Y(a)) = 190, Ncc(Y
(a)) = 32, Nh(Y(a)) = 2. (9)

Here the perimeter was calculated by a method based on intrinsic volume densities (Mrkvička

and Rataj, 2008; for software, see http://home.pf.jcu.cz/~mrkvicka/math/), while the

three other quantities were easily determined. Note that A(V )/A(W ) = 0.2734 as compared

to p̂ = 0.5014 from above, and there is of course a lack of information when inference is

based on the conditional log likelihood (8).
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S

Figure 2: An example of possible realizations of X(a) (the full circles), X(b) (the dashed

circles), and X(c) (the dotted circles).

Figure 3: Heather dataset with the components intersecting the boundary of the observation

window coloured grey.
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In some applications it may even happen that Y(a) = ∅, in which case the maximum

likelihood estimate based on (8) does not exist. Partly for this reason and partly for com-

parison with the conditional maximum likelihood approach based on (8), we also consider

the following unconditional approach. Let S = W and Ỹ = Y ∩W , and approximate the

log likelihood by

Lu(θ) = θ1A(Ỹ) + θ2L(Ỹ) + θ3Ncc(Ỹ) + θ4Nh(Ỹ)− log cθ (10)

where

A(Ỹ) = 100.28, L(Ỹ) = 382.82, Ncc(Ỹ) = 56, Nh(Ỹ) = 6. (11)

Here edge effects occur, since compared to (2) we have replaced Ux by Ỹ, while UX may

expand outside W . However, in fact S should be larger than W , in which case discs b(u, r)

with (u, r) ∈ X, u ∈ S \W , and b(u, r) ∩W 6= ∅ have been ignored. This may possibly to

some extent reduce the problem of edge effects and hence possibly to some extent justify that

in (10) we use the normalizing constant cθ from (2) with S = W . However, for the present

data where the values in (9) are about twice as large as those in (11), results in Section 5.3

will confirm that edge effects do play a crucial role.

4 Specifying the reference processes

We shall later compare results obtained by three rather different reference Boolean models

which are specified by (R1)-(R3) below. Note that we suppress in the notation that the

normalizing constants in the density (2), the conditional likelihood (8), and the unconditional

likelihood (10) depend on the choice of reference process.
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Using an R with unbounded support may imply undesirable restrictions on the parameter

space Θ given by (4). For instance, if we use Diggle’s left-truncated Weibull-density (1) and

his parameter estimate obtained from the left-hand square (see Section 2), we need to assume

that either θ1 < 0 or both θ1 = 0 and θ2 ≤ 0, and if we use his parameter estimate obtained

from the right-hand square, we need to assume that θ1 ≤ 0.

In the sequel we assume that R has bounded support, whereby (3) implies that Θ = R4

is as large as possible. Independent biological evidence suggests that R should be less than

0.5 m (Diggle, 1981), and spatial correlation analysis indicates that R is less than 0.4 m

(Hall, 1985, 1988).

Below we refer to parameter estimates obtained by a method from Hall (1985) for an

isotropic Boolean model. For the method, we use a square lattice, and after some experi-

mentation we decided to work with the side length c1 = 0.48 m. (Then a square roughly

corresponds to 12 pixels in Figure 1 where 1 pixel corresponds to 4 × 3.94 cm.) Within

W , the lattice has n0 = 903 vertices, n1 = 1742 edges, and n2 = 840 squares. Denote

(N0, N1, N2) = (450, 474, 71) the numbers of these vertices, edges, and squares which are not

intersected by Y. Let Ai = log(ni/Ni), i = 0, 1, 2, and let c2 = c21 = 0.2304 m2 be the area

of a square. By Hall’s method, the estimates are given by

β =
1

c2
(A0 − 2A1 + A2) , µ1 =

1

2c1β
(A1 − A0) , µ2 =

A0

πβ
.

We obtain (2.45, 0.26, 0.09) as the estimate of (β, µ1, µ2), and hence (0.26, 0.16) as the esti-

mate of (µ, σ).

Taking µ = 0.26 and σ = 0.16 as estimated above, the three reference Poisson disc

processes are specified by
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(R1) β = 2.45 and R follows the restriction of N(µ, σ2) to the interval [0, 0.50];

(R2) β = 2.45 and R is uniformly distributed on [0, 0.53];

(R3) β = 1.16 and R is uniformly distributed on [0, 0.53].

A normal mark distribution has also been considered in Dupač (1980) and Hall (1988), and

the restriction of N(µ, σ2) to the interval [0, 0.50] corresponds to 88 % of the probability

mass. Under (R1), the mean of R is close to µ, and its standard deviation is 0.12. These

values are close to the estimates of the mean and standard deviation obtained in Hall (1985).

Under both (R2) and (R3), R has mean µ and standard deviation σ. By (6) the area fraction

is p = 0.46 under (R1), p = 0.51 under (R2), and p = 0.29 under (R3), in comparison with

the empirical area fraction p̂ = 0.50 from (6). The apparently too small area fraction under

(R3) is caused by the small value of β = 1.16 taken from Laslett et al. (1985), cf. Section 2.

5 Results obtained by maximum likelihood

In general for any parametric random-disc Boolean model, maximum likelihood inference is

very complicated because of the problems (i) and (iii)-(iv) (Section 1). To handle (i) by the

EM-algorithm (Dempster, Laird and Rubin, 1977) seems impracticable, since we cannot do

the expectation step even if (ii)-(iv) were not an issue. Alternatively, a missing data MCMC

approach may be suggested (Geyer, 1999; Møller and Waagepetersen, 2004), but this would

require us to make simulations from the conditional distribution of the missing data (the

unobserved discs) given the observed data Y ∩ W . Constructing a well mixing MCMC

algorithm for such conditional simulations seems very hard. For such an algorithm, in order
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to fit a parametric random-disc Boolean model, the observed boundary of the random set

may cause that too small discs are too often generated by the algorithm because of (iii)-(iv).

Section 5.1 discusses instead results obtained by simulation-based inference based on the

conditional likelihood Lc(θ) in (8) where we compare the results obtained by using the dif-

ferent reference Poisson disc processes (R1)-(R3) from Section 4. Section 5.3 compare these

results with other results based on the unconditional likelihood Lu(θ) in (10). Although our

connected component Markov model may be viewed as a modification of the Boolean model

obtained by allowing interaction, maximum likelihood based on MCMC methods becomes

feasible, since Lc(θ) and Lu(θ) only depend on the heather data (Figure 1), and general

MCMC importance sampling methods for finding an approximation of the normalizing con-

stant in (8) and in (10) apply. Thereby we can obtain approximate maximum likelihood

estimates (MLE’s), confidence regions, and Wald test statistics, cf. Geyer (1999) and Møller

and Waagepetersen (2004). For the simulations we use the Metropolis-Hastings birth-death

algorithm discussed in Møller and Helisová (2008) with a burn-in of 10,000 iterations and

samples for Monte Carlo estimates based on 1,000,000 iterations.

5.1 Results based on the conditional likelihood

Approximate MLE’s based on Lc(θ) under the full model θ ∈ R4 and when using each of the

reference processes (R1)-(R3) are shown in Table 1. To check our code, for each fitted value

of θ, θ̂ say, we simulated a new Markov chain of length 1,000,000 (again after a burn-in of

10,000 iterations) with equilibrium density fθ̂, and used the average of the 1,000,000 values

of the canonical minimal sufficient statistic in (5) as new data, T̄ say. By the law of large
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θ1 θ2 θ3 θ4

(R1) −2.14 0.89 −1.78 −1.01

95%-CI [−3.68,−0.60] [0.48, 1.31] [−2.28,−1.28] [−2.37, 0.34]

Wald 7.45 17.89 48.96 2.14

(R2) −4.81 1.17 −2.26 −0.69

95%-CI [−6.36,−3.26] [0.75, 1.58] [−2.74,−1.77] [−2.04, 0.66]

Wald 37.04 29.77 83.66 1.01

(R3) −3.67 1.62 −2.25 −0.13

95%-CI [−5.42,−1.93] [1.16, 2.09] [−2.76,−1.73] [−1.49, 1.23]

Wald 17.01 46.67 73.01 0.04

Table 1: Under the full model (i.e. (θ1, θ2, θ3, θ4) ∈ R4), when using each of the reference pro-

cesses (R1)-(R3), the table shows approximate MLE’s and 95%-confidence intervals together

with Wald statistics for testing each of the four hypotheses θi = 0 with i = 1, 2, 3, 4.

numbers, T̄ is expected to be close to the mean Eθ̂T , and since the likelihood equation is

given by EθT = T̄ , we expect the MLE based on T̄ to be close to θ̂. In fact we did obtain

approximate MLE’s very close to those in Tables 1-2, e.g. the difference between the two

estimates is (0.00, 0.00, 0.00, 0.01) when (R1) is the reference process.

Assuming the MLE’s are approximately normally distributed, Table 1 also shows ap-

proximate 95%-confidence intervals as well as the values of Wald statistics for testing each

of the four hypotheses θi = 0 with i = 1, 2, 3, 4. Compared to 3.842, the 95%-quantile in a

χ2-distribution with one degree of freedom, no matter which of the reference Poisson disc

processes we use, the Wald statistic is highly significant except for the hypothesis θ4 = 0.
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This indicates that θi 6= 0, i = 1, 2, 3, and θ4 = 0, meaning that the characteristics of the

connected components given by area, perimeter, and number of components seem all impor-

tant, while the number of holes seems an irrelevant statistic. We have also considered the

hypothesis of a quermass-interaction model (i.e. θ3 + θ4 = 0), where the values of the Wald

statistic were given by 14.49, 16.22, 10.22 when using (R1), (R2), (R3), respectively, so these

values seem highly significant too.

Columns 2-4 in Table 2 are similar to those in Table 1 but concern the reduced model

with (θ1, θ2, θ3) ∈ R3 and θ4 = 0. The results in the two tables are very similar. We

refer to the reduced model as the (A,L,Ncc)-interaction model, since (8) is the log like-

lihood for a regular exponential family model with canonical minimal sufficient statistic

Tr = (A(UX(a)), L(UX(a)), Ncc(UX(a))). Thus the likelihood equation is given by that the

mean E(θ1,θ2,θ3)Tr is equal to the observed value of Tr. For the three fitted models in

Table 2, we obtained Monte Carlo estimates of E(θ1,θ2,θ3)Tr given by (46.45, 192.32, 31.34),

(45.76, 192.15, 32.24), (45.85, 190.79, 31.79), respectively. These estimates are all rather close

to the observation Tr = (45.6, 190, 32), indicating that the approximate MLE’s may be close

to the exact MLE’s. The values in Table 2 of the Wald statistic for testing θi = 0 when

i = 1, 2, or 3, seem again highly significant no matter which reference process is used. For

i = 1, 2, 3, considering the confidence intervals in Table 2, the sign of θi seems effectively

to be the same in all three fitted models. This may indicate that the characteristics of the

connected components given by area, perimeter, and number of components have similar

‘roles’ in all three fitted models.
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Lc Lu

θ1 θ2 θ3 θ1 θ2 θ3

(R1) −2.33 0.92 −1.77 −0.91 −0.02 −1.13

95%-CI [−3.80,−0.85] [0.52, 1.31] [−2.27,−1.26] [−1.83, 0.00] [−0.29, 0.25] [−1.49,−0.78]

Wald 9.54 21.01 46.89 3.80 0.02 39.25

(R2) −4.91 1.18 −2.25 −1.75 1.02 −1.63

95%-CI [−6.48,−3.35] [0.77, 1.59] [−2.75,−1.75] [−2.85,−0.65] [0.70, 1.34] [−2.01,−1.25]

Wald 38.02 32.33 78.78 9.70 39.65 70.81

(R3) −3.71 1.64 −2.25 −3.45 0.74 −1.63

95%-CI [−5.47,−1.95] [1.17, 2.10] [−2.77,−1.74] [−4.41,−2.48] [0.46, 1.01] [−1.98,−1.28]

Wald 17.04 47.11 73.89 49.35 26.82 82.86

Table 2: Under the reduced model (i.e. (θ1, θ2, θ3) ∈ R3 and θ4 = 0), when using each of

the reference processes (R1)-(R3), the table shows approximate MLE’s and 95%-confidence

intervals together with Wald statistics for testing each of the three hypotheses θi = 0 with

i = 1, 2, 3. Columns 2-4 are the results based on the conditional likelihood Lc. Columns 5-7

are the results based on the unconditional likelihood Lu.
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(R1) (R2) (R3)

mean of R 0.28 0.25 0.28

sd of R 0.12 0.13 0.13

intensity 2.57 2.36 1.76

Table 3: Under the reduced model (i.e. (θ1, θ2, θ3) ∈ R3 and θ4 = 0), when using each of the

reference processes (R1)-(R3), the table shows MCMC estimates of the mean and standard

deviation of the typical radius and intensity of bushes.

5.2 The typical radius and intensity of heather bushes

In Section 2, we reported on various results for the mean and variance of the typical radius

R and the intensity of bushes as obtained by Diggle and Hall, and further such results

were reported in Section 4. For comparison with these results, Table 3 summaries the

results obtained by our estimated (A,L,Ncc)-interaction models, and Figure 4 shows the

estimated distribution of the typical radius R (as specified below) together with the densities

of the typical radius under the corresponding reference processes. While our conclusions

earlier have been rather insensitive to the choice of reference process, the distributions in

Figure 4 are sensitive to this choice. In the case where (R1) is the reference process, there

is a rather close agreement between the distributions of R under (R1) respective the fitted

(A,L,Ncc)-interaction model, while the disagreement is pronounced in the two other cases.

The distributions ofR under the fitted (A,L,Ncc)-interaction models with reference processes

(R1) respective (R3) look a bit similar and different from the distribution of R under the

fitted (A,L,Ncc)-interaction model with reference process (R2).
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Figure 4: Estimated distribution of the typical radius under the fitted (A,L,Ncc)-interaction

models with parameters as estimated in Table 2 when using the the reference processes (R1)-

(R3) (from the left to the right). The solid lines show the densities of the typical radius under

the corresponding reference processes.

The distribution of R was estimated as follows. For each of the fitted (A,L,Ncc)-

interaction models from Table 2, let n = 1, 000, 000 be the number of MCMC iterations,

ki the number of discs and r
(i)
j the radius of the j-th disc in the i-th iteration, and

Fi(r) =
1

ki

ki∑
j=1

1
[r

(i)
j ≤r]

the empirical distribution function of the radii obtained at the i-th iteration. The histogram

in Figure 4 is obtained from the average of empirical distribution functions

F̄ (r) =
1

n

n∑
i=1

Fi(r)

which may be interpreted as an estimate of the distribution of a typical radius R under

the estimated (A,L,Ncc)-interaction model, and which we refer to as the (estimated) mark
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distribution. In fact we obtained a very similar distribution if we instead consider the average

F̃ (r) =
1∑n
i=1 ki

n∑
i=1

ki∑
j=1

1
[r

(i)
j ≤r]

.

(not shown in this paper).

5.3 Results based on the unconditional likelihood

Rather different conclusions may be obtained when inference is based on the unconditional

likelihood Lu in (10). This is exemplified in Table 2 when comparing the results in columns

2-4 (based on Lc) with those in columns 5-7 (based on Lu). Probably this difference is mainly

due to edge effects.

6 Model control

In this section, we consider results when checking the fitted (A,L,Ncc)-interaction models

based on the conditional likelihood Lc, but similar conclusions are obtained when instead

the unconditional likelihood Lu is considered.

Figure 5 shows simulated realizations of the random-disc Boolean models (R1)-(R3) and

the fitted (A,L,Ncc)-interaction models. As expected, because of the too low area fraction,

the realization under (R3) looks very different from the others, and the many small con-

nected components obtained under (R1)-(R3) seem less frequent under the fitted (A,L,Ncc)-

interaction models. Since it is hard by eye to check how well the estimated models fit the

heather dataset, we consider in the sequel different summary statistics specified by various

contact distribution functions and covariance functions, as usually considered in stochastic
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Figure 5: Simulations of the Boolean models (R1)-(R3) (first row from the left to the right)

and of the fitted (A,L,Ncc)-interaction models when using the the reference processes (R1)-

(R3) (second row from the left to the right).

geometry (Stoyan et al., 1995), and also shape characteristics obtained by certain operations

from mathematical morphology (Ripley, 1988).

In Sections 6.1-6.2, we consider first a general planar random closed set Z. Assuming in-

variance properties such as stationarity or isotropy of Z, we naturally specify non-parametric

estimates of the summary statistics with edge corrections, where we use a regular quadratic

lattice with vertex set G given by the centroids of the 250×508 pixels in Figure 1. The non-

parametric estimates can immediately be used for checking the Boolean models (R1)-(R3)

which are stationary. They can also be used for checking our fitted (A,L,Ncc)-interaction

models from Table 2, which are finite (marked) point processes and hence non-stationary,

since we supply the non-parametric estimates with 2.5% and 97.5% envelopes obtained from

39 simulations under a fitted model (see e.g. Møller and Waagepetersen, 2004, Section 4.3.4).
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6.1 Contact distribution functions

Given a convex compact set B ⊂ R2 containing the origin, define

D = inf{r ≥ 0 : Z ∩ rB 6= ∅}

where rB = {(rx, ry) : (x, y) ∈ B}. Assuming P(D > 0) > 0, the contact distribution with

structuring element B is defined by

HB(r) = P(D ≤ r|D > 0), r ≥ 0.

In the stationary case of Z, a natural non-parametric estimator is given by

ĤB(r) =

∑
u∈G 1[u 6∈ Z, u+ rB ⊂ W, (u+ rB) ∩ Z 6= ∅]∑

u∈G 1[u 6∈ Z, u+ rB ⊂ W ]
(12)

where we have used the border method (also known as minus sampling) to correct for edge

effects and therefore only consider vertices u with u+ rB ⊂ W . For the structuring element

B, we use

• a unit line segment with endpoints (−0.5 cosϕ,−0.5 sinϕ) and (0.5 cosϕ, 0.5 sinϕ),

where 0 ≤ ϕ < π, and we write Hϕ for HB (the linear contact distribution function),

• a unit disc b(0, 1), and write Hs for HB (the circular/spherical contact distribution

function),

• a unit square [−0.5, 0.5] × [−0.5, 0.5], and write Hq for HB (the quadratic contact

distribution function).

For our random-disc Boolean models (recalling that µ1 = ER),

HB(r) = 1− exp
(
−β
(
L(B)µ1r + A(B)r2

))
(13)
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where L(B) = 2 in the special case of the linear contact distribution function. Let

TB(r) = −1

r
log (1−HB(r)) , r > 0,

and denote T̂B(r) the non-parametric estimate obtained by replacing HB(r) by (12). Then

(13) implies that

Tϕ(r) = 2βµ1, Ts(r) = 2βπµ1 + βπr, Tq(r) = 4βµ1 + βr. (14)

Figure 6 compares the theoretical functions TB(r) given by (14) and either (R1), (R2),

or (R3) with T̂B(r) based on the data and its simulated 2.5% and 97.5% envelopes obtained

under respective (R1)-(R3) and the corresponding three (A,L,Ncc)-interaction models. None

of the Boolean models (R1)-(R3) provide a satisfactory fit, as TB(r) is systematically below

T̂B(r), with the upper 97.5% envelope close to T̂B(r) in most cases of (R1)-(R2), while this

envelope is much below T̂B(r) in case of (R3). In contrast Figure 6 reveals no problems with

any of the three (A,L,Ncc)-interaction models.

6.2 Covariance function

Assuming Z is both stationary and isotropic, its non-centred covariance function is defined

by

C(r) = P(u ∈ Z, v ∈ Z)

for any two points u, v ∈ R2 with distance ‖u − v‖ = r. An unbiased and edge corrected

non-parametric estimator based on the border method is given by

Ĉ(r) =

∑
u,v∈G 1[‖u− v‖ = r, {u, v} ⊂ Z]∑

u,v∈G 1[‖u− v‖ = r]
(15)
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Figure 6: Comparing the theoretical functions TB(r) (dot-dashed lines) with T̂B(r) (solid

lines) based on the data and its simulated 2.5% and 97.5% envelopes obtained under

the Boolean model (R1), (R2), or (R3) (dotted lines) and the corresponding (A,L,Ncc)-

interaction model (dashed lines). The three columns correspond from the left to the right

to results when (R1), (R2), or (R3) is used either as a fitted model or as a reference pro-

cess. For the rows, different structuring elements are specified by (a) the line segment with

ϕ = 0, (b) the line segment with ϕ = π/2, (c) the unit disc b(0, 1), and (d) the unit square

[−0.5, 0.5]× [−0.5, 0.5].
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Figure 7: Comparing the theoretical functions C(r) (dot-dashed lines) with Ĉ(r) (solid lines)

based on the data and its simulated 2.5% and 97.5% envelopes obtained under the Boolean

model (R1), (R2), or (R3) (dotted lines) and the corresponding (A,L,Ncc)-interaction model

(dashed lines). The three columns correspond from the left to the right to results when (R1),

(R2), or (R3) is used either as a fitted model or as a reference process.

provided the denominator is non-zero.

For a random-disc Boolean model,

C(r) = 2p− 1 + (1− p)2 exp

(
βE

[
2R2 arccos

R

2r
− r

2

√
4R2 − r2

])
(16)

where the expectation may be evaluated by numerical methods.

Figure 7 compares the theoretical function C(r) given by (16) and either (R1), (R2), or

(R3) with Ĉ(r) in (15) based on the data and its simulated 2.5% and 97.5% envelopes ob-

tained under respective the Boolean models (R1)-(R3) and the corresponding three (A,L,Ncc)-

interaction models. The figure reveals no misfit for neither (R2) or any of the three (A,L,Ncc)-

interaction models. However, Ĉ(r) is very close to the 97.5%-envelope obtained for (R1),

and there is a clear misfit in case of (R3).
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6.3 Shape characteristics

Following Ripley (1988) in using operations from mathematical morphology, we describe the

shape of Ỹ = Y ∩W as follows. For any set B ⊂ R2 and number r > 0, let |B| = A(B),

B	r = {u ∈ R2 : b(u, r) ⊆ B}, and B⊕r = ∪u∈Bb(u, r). Erosion er, dilation dr, opening or,

and closing cr of Ỹ by the disc b(0, r) are defined by

er =
|Ỹ	r|
|W	r|

, dr =
|Ỹ⊕r ∩W	r|
|W	r|

, or =
|(Ỹ	r)⊕r ∩W	2r|

|W	2r|
, cr =

|(Ỹ⊕r)	r ∩W	2r|
|W	2r|

.

Figure 8 compares these shape-characteristics based on the data with simulated 2.5%

and 97.5% envelopes obtained under respective the Boolean models (R1)-(R3) and the cor-

responding three (A,L,Ncc)-interaction models. In case of dilation and closing, the figure

reveals no clear misfit for neither (R2) or any of the three (A,L,Ncc)-interaction models,

while (R1) and particularly (R3) are not fitting well. Furthermore, in case of erosion and

opening, the figure indicates that any of the six models is not fitting well, possibly since the

heather data are rather smooth while a disc process is naturally more rugged.
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Figure 8: Comparing (a) erosion er, (b) dilatation dr, (c) opening or, and (d) closing cr of

the heather data set (solid lines) with simulated 2.5% and 97.5% envelopes obtained under

the Boolean model (R1), (R2), or (R3) (dotted lines) and the corresponding (A,L,Ncc)-

interaction model (dashed lines). The three columns correspond from the left to the right to

results when (R1), (R2), or (R3) is used either as a fitted model or as a reference process.
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