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Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark.
Email: mly@cs.aau.dk.

Abstract: We consider the following mathematical model for a mobile ser-
vice scenario. Consider a planar stationary Poisson process, with its points
radially ordered with respect to the origin (the anchor); these points may
correspond to locations of e.g. restaurants. A user, with a location different
from the origin, asks for the location of the first Poisson point and keeps
asking for the location of the next Poisson point until the first time that he
can be completely certain that he knows which Poisson point is his nearest
neighbour. The distribution of this waiting time, called the communication
cost, is analysed in detail. In particular the expected communication cost and
the asymptotic behaviour as the distance between the user and the anchor
increases are of interest.

Keywords: nearest-neighbour search; Poisson process; radial simulation al-
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1 Introduction

The mobile Internet offers services that e.g. receive the location of the nearest
point of interest such as a store, restaurant, or tourist attraction, see Yiu et
al. (2008, 2009) and the references therein. Tools from applied probability
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and in particular stochastic geometry should be useful for an analysis of the
performance of such services.

We illustrate this by considering a user located at a given point q ∈ R2

and data points p1, p2, . . . ∈ R2 corresponding to the locations of e.g. stores.
In order to preserve some privacy, the user queries a server for nearby points
but he reports not his correct location q but another location q′ ∈ R2 referred
to as the anchor. An incremental query processing on the server is used so
that the data points are ordered in increasing distance to the anchor. The
user then stops to queries the server as soon as possible, i.e., when the nearest
data point with respect to q can be determined. The waiting time for this to
happen is called the communication cost and is denoted M ; further details
are given in Section 2.

The purpose of this note is to analyse the distribution of M assuming
that the data points follow a stationary Poisson process Φ = {p1, p2, . . .}
with intensity ρ > 0 (see, e.g., Kingman, 1993, or Chapter 3 in Møller and
Waagepetersen, 2004). In particular the expected communication cost and
the asymptotic behaviour as the distance between q and q′ increases are of
interest. Section 3 discusses our results.

2 The communication cost

We use the following notation. By stationarity and isotropy of Φ, we can
without loss of generality take q′ = (0, 0) and q = (l, 0), where l > 0 is the
distance between the anchor and the user location. Let (Ri, θi) ∈ [0,∞) ×
[0, 2π) be the polar coordinates of pi with respect to the anchor (the origin),
and order the data points such that the Ri are increasing, R0 := 0 ≤ R1 ≤
R2 ≤ . . .. Let p = pi if pi be the first NN (nearest-neighbour) to q among
p1, p2, . . .. For i = 1, 2, . . ., let qi denote the first NN to q among the i first
data points p1, . . . , pi, and let R̃i = ‖q− qi‖ denote the distance from q to qi.
Moreover, let B(x, r) = {y ∈ R2 : ‖y − x‖ ≤ r} denote the closed disc with
centre x ∈ R2 and radius r ≥ 0.

Then the communication cost M is defined as the first time m such that
the user can be completely ensured that p = qm when he has only received
p1, . . . , pm from the server, i.e., no matter where the points pm+1, pm+2, . . .
potentially could be located in R2 \B(q′, Rm). In other words, if for m ∈ N,
we define the demand space Dm and the supply space Sm by

Dm = disc(q, R̃m), Sm = disc(q′, Rm),

then
M = inf{m ∈ N : Dm ⊆ Sm} (1)
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(setting inf ∅ =∞). Furthermore,

p = qM (2)

is returned as the NN to q, provided of course M <∞. See Figure 1.

p1

p2

p3

q’
q

Figure 1: An example with M = 3, showing the corresponding demand space
D3 and supply space S3.

3 Results

Since M = 1 implies that p1 lies on the halfline H with endpoint q and
direction q−q′, and this happens with probability zero, we have almost surely
that M ≥ 2 and RM ≥ l. Similarly, with probability one, for m ∈ {2, 3, . . .},
M = m implies that pm cannot be the NN to q among p1, . . . , pm, because
this would imply that pm ∈ H. Moreover, with probability one, the sequence
R1, R2, . . . is strictly increasing to infinity, and so the sequence of supply
spaces S1 ⊂ S2 ⊂ . . . tends to R2. On the other hand, the sequence of
demand spaces decreases. Consequently, by (1) and (2), with probability
one, 2 ≤M <∞, D1 ⊇ D2 ⊇ . . . ⊇ DM , and

p = qM = qM−1, R̃M = R̃M−1, RM ≥ l. (3)

The distribution of M may be estimated by Monte Carlo methods us-
ing a radial simulation algorithm due to Quine and Watson (1984). The
radial simulation algorithm simply utilizes the fact that the squared radial
coordinates R2

1, R
2
2, . . . form a homogeneous Poisson process with intensity

πρ on the positive halfline, so R2
i − R2

i−1, l = 1, 2, . . ., are independent and
exponentially distributed with mean 1/(πρ), and they are independent of the
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angular coordinates θ1, θ2, . . ., which in turn are independent and uniformly
distributed on [0, 2π). The following Lemma 1 follows straightforwardly from
these properties. In Lemma 1, when we consider the first m data points and
ignore their radial ordering, we write {x1, . . . , xm} for the corresponding point
configuration. Moreover, Unif([0, 2π)) denotes the uniform distribution on
[0, 2π), and Γ(α, β) the gamma distribution with shape parameter α and in-
verse scale parameter β.

Lemma 1 For any m ∈ N, we have the following.

(i) R2
m ∼ Γ(m,πρ) is independent of θm ∼ Unif([0, 2π)).

(ii) Conditional on Rm+1 = r, the configuration of the first m points
{x1, . . . , xm} is a binomial point process on B(q′, r) (i.e., the xi are
independent and uniformly distributed on B(q′, r)).

(iii) Conditional on Rm+1 = r, we have that θm ∼ Unif([0, 2π)) is indepen-
dent of Rm, where Rm/r ∼ B(1,m − 1). If m ≥ 2 and we condition
on both Rm+1 = r and (Rm, θm) with Rm = t, then {x1, . . . , xm−1} is a
binomial point process on B(q′, t).

We now turn to exact results for the distribution of the communication
cost M , where its distribution function turns out to be more tractable than
its probability density function, and we can obtain an expression for the
expectation EM . We need the following notation. Let

fm+1(r) = 2
(πρ)m+1

m!
r2m+1 exp

(
−πρr2

)
, r > 0, (4)

denote the density function of Rm+1, cf. (i) in Lemma 1. For r ≥ l and
0 ≤ ϕ < 2π, let

v(ϕ, r) =
(
r2 − l2 sin2 ϕ

)1/2 − l cosϕ. (5)

Finally, for 0 ≤ r − l ≤ s ≤ v(ϕ, r), define

g(r, s) =
|B(q′, r) \B(q, s)|
|B(q′, r)|

= 1− h(r, s)/
(
πr2
)

(6)

where

h(r, s) = |B(q′, r) ∩B(q, s)| (7)

= r2 arccos

(
l2 + r2 − s2

2lr

)
− l2 + r2 − s2

4l2

[
4l2r2 −

(
l2 + r2 − s2

)2]1/2
+ s2 arccos

(
l2 + s2 − r2

2ls

)
− l2 + s2 − r2

4l2

[
4l2s2 −

(
l2 + s2 − r2

)2]1/2
.
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Here | · | denotes area (Lebesgue measure), and we suppress in the notation
that the functions in (5)-(7) depend on l > 0.

Proposition 1 For m = 2, 3, . . ., we have that

P(M > m) =

∫ l

0

fm+1(r) dr+

m

∫ ∞
l

∫ 2π

0

∫ v(ϕ,r)

r−l

s

πr2
g(r, s)m−1fm+1(r) ds dϕ dr (8)

and

EM = 2 + πρl2 −
∫ l

0

[
1 + πρr2

]
exp

(
−πρr2

)
dr+ (9)∫ ∞

l

∫ 2π

0

∫ v(ϕ,r)

r−l
2πρ2sr

[
exp(−ρh(r, s))− exp

(
−πρr2

)]
ds dϕ dr

is finite.

Proof Using (1) and (3), considering each of the cases Rm+1 < l and Rm+1 ≥ l,
we see that the probability that M > m is equal to the sum of two terms,
viz the term

P(Rm ≤ l) =

∫ l

0

fm+1(r) dr

and the term∫ ∞
l

m∑
i=1

P(xi is the NN to q among x1, . . . , xm and

B(q, ‖xi − q‖) 6⊂ B(q′, r) |Rm+1 = r)fm+1(r) dr.

By (ii) in Lemma 1,

P(xi is the NN to q among x1, . . . , xm and (10)

B(q, ‖xi − q‖) 6⊂ B(q′, r) |Rm+1 = r)

=

∫
B(q′,r)\B(q,r−l)

(
|B(q′, r) \B(q, ‖x− q‖)|

|B(q′, r)|

)m−1
1

|B(q′, r)|
dx. (11)

Hence, by making a shift of coordinates from

x = q + s(cosϕ, sinϕ)
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to the polar coordinates (s, ϕ), we obtain (8) after a straightforward calcula-
tion, noticing the following facts: in (11) we can set q = (l, 0) and q′ = (0, 0);
for fixed r > l and ϕ ∈ [0, 2π), since x ∈ B(q′, r) \ B(q, r − l), we obtain
that s ranges from r − l to v(ϕ, r); here the latter bound follows from the
equation ‖(l, 0) + s(cosϕ, sinϕ)‖ = r, which has only one solution because
s > 0. See also Figure 2.

l
q'

xi

q

r

s ϕ

Figure 2: Illustration of the notation used in the proof of Proposition 1. The
function v(ϕ, r) is the upper bound on s considering a case with i data points
such that xi = qi is the nearest-neighbour to q, B(q′, r) is the corresponding
supply space, and B(q, s) is the corresponding demand space.

Since M − 2 is a non-negative discrete random variable, we have that
EM = 2 +

∑∞
m=2 P(M > m). Combining this with (8), we obtain

EM = 2 +

∫ l

0

∞∑
m=2

fm+1(r) dr

+

∫ ∞
l

∫ 2π

0

∫ k(ϕ,r)

r−l

s

πr2

∞∑
m=2

mg(r, s)m−1fm+1(r) ds dϕ dr.

From this and (4), we easily obtain (9).
Since k(ϕ, r) ≤ r + l, it follows from (9) that EM is finite if for some

number r0 > l,

I :=

∫ ∞
r0

∫ r+l

r−l
sr
[
exp(−ρh(r, s))− exp

(
−πρr2

)]
ds dr

is finite. This is indeed the case, since for any ε > 0, if r0 > l+ε is sufficiently
large, then h(r, s) ≥ π(r− l− ε)2 whenever r ≥ r0 and r− l ≤ s ≤ r+ l, and
so

0 ≤ I ≤ 2l

∫ ∞
r0

r2 exp
(
−πρ(r − l − ε)2

)
dr − 2l

∫ ∞
r0

r2 exp
(
−πρr2

)
dr
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where both integrals are finite.

The integrals in (8) and (9) can be evaluated by numerical methods.
In (9), as l increases towards infinity, EM is dominated by the term πρl2,
meaning that the dominating part of the expected communication cost is
proportional to ρ and l2. It is worth noticing that πρl2 is the expected
number of points in the disc b(q′, l).

Note that the distribution of M depends only on (ρ, l) through
√
ρl.

Figure 3 visualizes the difference between EM and its dominant term πρl2

(shown as ‘O’), where for different values of l and with ρ fixed to 1, EM has
been estimated both by using (9) and a numerical method (shown as ‘×’) and
by the Monte Carlo method based on 1000 independent simulations obtained
by the radial simulation algorithm (shown as ‘5’). The axes in Figure 3 are
shown in the log-scale, the estimates of EM obtained by the two methods
are rather close, and the dominating term of EM is seen to converge to EM
as l → ∞. The figure also shows the Monte Carlo estimates of the 5% and
95% quantiles (shown as ‘+’).

Figures 4 and 5 show further Monte Carlo estimates with ρ = 1 and
based on 1000 independent simulations obtained by the radial simulation
algorithm for each tested value of l. Figure 4 suggests an approximate log-
linear relation between

√
VarM/EM and l. Considering values of l ≥ 2, the

regression line in Figure 4 was estimated by the method of least squares to
y = 0.5524x−0.9147, where (x, y) corresponds to (log10 l, log10

√
VarM/EM)

(log10 denotes the logarithm function with base 10). Figure 5 shows four
histograms of the distribution of M corresponding to the simulations with
l = 0.1, 1, 10, 100. For the larger values of l, the distribution of M seems to
be well approximated by a Gaussian distribution.
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Figure 3: Estimates of EM vs. l when ρ = 1 and EM is estimated by the
result in Proposition 1 using a numerical method (shown as ‘×’) and by
the Monte Carlo method (shown as ‘5’), together with the dominant term
πρl2 (shown as ‘O’) and Monte Carlo estimates of the 5% and 95% quantiles
(shown as ‘+’).
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Figure 5: Histograms of the distribution of M corresponding to 1000 inde-
pendent simulations with ρ = 1 and l = 0.1, 1, 10, 100.
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