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Abstract

We consider the following stochastic model for a mobile service scenario.

Consider a stationary Poisson process in Rd, with its points radially ordered

with respect to the origin (the anchor); if d = 2, the points may correspond

to locations of e.g. restaurants. A user, with a location different from the

origin, asks for the location of the first Poisson point and keeps asking for

the location of the next Poisson point until the first time that he can be

completely certain that he knows which Poisson point is his nearest neighbour.

This waiting time is the communication cost, while the inferred privacy region

is a random set obtained by an adversary who only knows the anchor and

the points received from the server, where the adversary ‘does the best’ to

infer the possible locations of the user. Probabilistic results related to the

communication cost and the inferred privacy region are established for any

dimension d ≥ 1. Furthermore, special results when d = 1 and particularly

when d = 2 are derived.
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1. Introduction

The mobile Internet offers services that e.g. receive the location of the nearest point

of interest such as a store, restaurant, or tourist attraction, see [9, 10] and the references

therein. This paper demonstrates that tools from applied probability and in particular

stochastic geometry can be useful when analysing the performance of such services.

The paper considers a setting for a mobile service protocol proposed by [9, 10],

where a user is located at a point q ∈ Rd and a stationary Poisson point process

Φ = {X1, X2, . . .} ⊂ Rd is given; for the problem setting in [9, 10], d = 2 and the

points in Φ may e.g. correspond to the locations of stores. In order to preserve some

privacy, the user queries a server for nearby points in Φ but he reports not his correct

location q but another location q′ ∈ Rd referred to as the anchor. An incremental query

processing on the server is used so that the points X1, X2, . . . are ordered in increasing

distance to the anchor. The user then stops to query the server as soon as possible, i.e.,

when the nearest point in Φ with respect to q can be determined. The waiting time for

this to happen is called the communication cost and is denoted M . Another object of

interest is the inferred privacy region, which is a random set R ⊂ Rd obtained by an

adversary who only knows the location of the anchor and the points received from the

server, where the adversary ‘does the best’ to infer the possible locations of the user.

The precise definitions of M and R are given in Sections 2 and 3, respectively.

The assumption that Φ is a stationary Poisson process is motivated by that this is

the most fundamental spatial point process model in stochastic geometry, and it often

serves as a natural starting point for statistical analysis, see, e.g., [1, 4, 8]. Our objective

is to analyse the distribution of M and various properties of R, where we exploit the

independence properties of the Poisson process to derive analytical results; for other

point process models Monte Carlo simulations will probably be needed. In Section 2,

the distribution and moments for M are derived in detail. Section 3 describes first

the geometric properties of R, and second establishes results related to the probability

that R contains a given point in Rd and the expected value of V , where V = |R| is

the d-dimensional volume of the inferred privacy region.
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2. The communication cost

2.1. Preliminaries

2.1.1. Assumptions: Denote l = ‖q − q′‖ the distance between the anchor and the

user location, and Ri = ‖Xi − q′‖ the distance of Xi to q′. The case where l = 0

turns out to be trivial since Φ is a stationary Poisson process, so we assume that

l > 0. Any point Xi in Φ is a random variable, and we order the points in Φ such

that R0 := 0 ≤ R1 ≤ R2 ≤ . . .. Note that these inequalities are strict almost surely,

and we let Ui = (Xi − q′)/Ri be the unit vector specifying the direction from q′ to

Xi (provided Ri > 0). Denote Z the nearest neighbour to q among X1, X2, . . .. For

i = 1, 2, . . ., let Qi be the nearest neighbour to q among the i first points X1, . . . , Xi,

and set Di = ‖q − Qi‖ (so Z and Qi are almost surely uniquely defined). Denote

B(x, r) = {y ∈ Rd : ‖y − x‖ ≤ r} the closed ball in Rd with centre x ∈ Rd and radius

r ≥ 0. Let | · | denote volume (Lebesgue measure) in Rd, and

ωd = |B(0, 1)| = πd/2/Γ(1 + d/2)

the volume of the d-dimensional unit ball. Finally, denote ρ > 0 the intensity of Φ and

define

α = (ρ|B(0, l)|)1/d = (ωdρ)1/d l.

2.1.2. Radial simulation algorithm: We can easily generate any number of points from

Φ using a radial simulation algorithm due to Quine and Watson [6] and based on the

following properties.

(I) Rd1, R
d
2, . . . form a homogeneous Poisson process on the positive halfline with

intensity ωdρ, i.e., Rd1 − Rd0, R
d
2 − Rd1, . . . are independent and exponentially

distributed with mean 1/(ωdρ);

(II) the sequence Rd1, R
d
2, . . . is independent of the sequence U1, U2, . . .;

(III) the Ui are independent and uniformly distributed on the unit sphere in Rd.

2.1.3. Definition of the communication cost: Denote N = {1, 2, . . .} the set of positive

integers. For i ∈ N, define the demand space by Di = B(q,Di) and the supply space

by Si = B(q′, Ri). Then (Di)i∈N is decreasing, (Si)i∈N is increasing, and we define
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the communication cost as the discrete random variable M given by the first time the

demand space is included in the supply space, that is,

M = inf{i ∈ N : Di ⊆ Si} (1)

(setting inf ∅ = ∞). See Figure 1. In other words, for any m ∈ N, M = m if m

is the first time the user can be completely ensured that Z = Qm when he has only

received X1, . . . , Xm from the server, i.e., no matter where the points Xm+1, Xm+2, . . .

potentially could be located in Rd \ B(q′, Rm). Note that M is almost surely finite

(this is verified in Lemma 1 below), in which case

Z = QM (2)

is returned as the nearest neighbour to q.

X3

’

X

q’ q
X1

X2

Figure 1: An planar example (d = 2) with M = 3 and showing the corresponding demand

space D3 and supply space S3. Note that D2 = D3 and Z = Q2 = Q3.

2.2. Results

For d ≥ 2, we can exclude certain events of zero probability and thereby simplify

the meaning of M and Z as stated in the following lemma, where it should be noticed

that we have strict inclusion in (3); compare (3) with (1) and Figure 1.

Lemma 1. For d ≥ 2, with probability one,

M = inf{m ∈ {2, 3, . . .} : Dm−1 ⊂ Sm} <∞ (3)
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and

Z = QM = QM−1, DM = DM−1, RM ≥ l. (4)

Proof. Clearly, by (1), RM ≥ l. Since M = 1 implies that X1 lies on the halfline

H with endpoint q and direction q − q′, and this happens with probability zero, we

have almost surely that M ≥ 2. Further, with probability one, for m ∈ {2, 3, . . .},

M = m implies that Qm 6= Xm because Qm = Xm would imply that Xm ∈ H which

happens with probability zero. Moreover, with probability one, the sequence R1, R2, . . .

is strictly increasing to infinity, and so the sequence of supply spaces S1 ⊂ S2 ⊂ . . .

tends to Rd. On the other hand, the sequence of demand spaces decreases. Combining

these facts with (1) and (2), we obtain that (3) and (4) hold almost surely.

Let T = ‖Z−q‖ be the distance from the user to its nearest point in Φ, and let Ψ =

Φ∩[B(q′, T+l)\B(q, T )] be the restriction of Φ to the random set B(q′, T+l)\B(q, T ).

Let N denote the number of points in Ψ, and set S = ωdρT
d and

Λ = ρ|B(q′, l + T ) \B(q′, T )| =
(
α+ S1/d

)d
− S =

d−1∑
i=0

(
d

i

)
αd−iSi/d. (5)

Since Φ is a Poisson process, we obtain that

(i) S is exponentially distributed with parameter one;

(ii) conditional on Z, Φ \B(q, T ) is a homogeneous Poisson process on Rd \B(q, T )

with intensity ρ, and Ψ is a homogeneous Poisson process on B(q′, T+ l)\B(q, T )

with its mean number of points equal to Λ;

(iii) in the special case d = 1, the event Z = XM is equivalent to that Z − q has

the same sign as q − q′, so P(Z = XM ) = 1/2, and if Z = XM then N =

M − 1 and Ψ = {X1, . . . , XM−1}, while if Z 6= XM then N = M − 2 and

Ψ = {X1, . . . , XM−1} \ {Z};

(iv) for d ≥ 2, with probability one, N = M − 2 and Ψ = {X1, . . . , XM−1} \ {Z}, cf.

Lemma 1.

These results are now used to obtain the distribution of N (or equivalently M), where

po(α) denotes the Poisson distribution with parameter α.
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Theorem 1. (a) For d = 1, N is independent of Z and follows po(α),

P(M = 1) =
e−α

2
, P(M = m) =

(
αm−1

(m− 1)!
+

αm−2

(m− 2)!

)
e−α

2
, m = 2, 3, . . . , (6)

and M has mean and variance

E(M) = α+ 3/2, V(M) = α+ 1/4, (7)

with α = 2ρl.

(b) For d = 2,

P(M = m) =
∫ ∞

0

(
α2 + 2α

√
s
)m−2

(m− 2)!
e−(α2+2α

√
s+s) ds, m = 2, 3, . . . , (8)

and

E(M) = α2 +
√
πα+ 2, V(M) = (5− π)α2 +

√
πα, (9)

with α =
√
πρ l.

(c) For d ≥ 2, M − 2 conditional on Z follows po(Λ), and

E(M) = 2 +
d−1∑
i=0

(
d

i

)
αd−iΓ

(
1 +

i

d

)
, (10)

V(M) =
d−1∑
i=0

(
d

i

)
αd−iΓ

(
1 +

i

d

)

+
d−1∑
i=1

d−1∑
j=1

(
d

i

)(
d

j

)
α2d−i−j

[
Γ
(

1 +
i+ j

d

)
− Γ

(
1 +

i

d

)
Γ
(

1 +
j

d

)]
. (11)

(d) For d ≥ 1 and any number β, E(Mβ) <∞.

Proof. If d = 1, since Λ = α is then deterministic, (ii) implies that N is independent

of Z and follows po(α). Hence (iii) easily implies (6) and (7), and so (a) follows.

If d ≥ 2, then by (ii), N conditional on Z follows po(Λ), and by (iv), M = N + 2,

so E(M) = 2 + E(Λ) and

V(M) = V(N) = E(V(N |Λ)) + V(E(N |Λ)) = E(Λ) + V(Λ).

Combining this with (5) and that by (i), E(Sβ) = Γ(β+ 1) for β > −1, we obtain after

a straightforward calculation that (10) and (11) hold for d ≥ 2, where (9) is the case

with d = 2. Then (8) immediately follows by combining (5), (i), and the fact that N

conditional on S follows po(Λ). Thereby (b)-(c) are verified.
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For β ≤ 0, Mβ ≤ 1, and so (d) clearly holds. For β > 0, (d) follows immediately

from (a) if d = 1, and from (c) and (5) if d ≥ 2, using again that E(Sβ) = Γ(β + 1).

Hence (d) is verified.

Suppose d = 2 and let erf(α) = (2/
√
π)
∫ α
0

exp(−t2) dt be the ‘error function’. Then

(8) gives

P(M = 2) = exp(−α2) + α
√
π(erf(α)− 1),

which strictly decreases from one to zero as α decreases from zero to infinity. We have

also evaluated the integral in (8) for m = 3, 4, . . . using the computational software

program Maple, but since the number of terms increases fast as m increases we omit

the results here. By (5) and (c), M−2 conditional on S follows po(α2+2α
√
S). Hence,

as α → ∞, (M/α) − α converges in distribution to a mixture of normal distributions

with mean 2
√
S and unit variance.

3. The inferred privacy region

3.1. Preliminaries

3.1.1. Definition of the inferred privacy region Suppose that an adversary knows the

location q′ of the anchor, the termination conditions (1)-(2), the termination time M ,

and the points X1, . . . , XM received from the server, while the location q of the user

is unknown to him. If the adversary then wants to infer the possible locations of q,

the best the adversary can do is to estimate q to be contained in the inferred privacy

region which is a random set R specified below.

Consider the Voronoi tessellation of Rd generated by {X1, . . . , XM}, with cells

Ci = {x ∈ Rd : ‖x−Xi‖ ≤ ‖x−Xj‖, j = 1, . . . ,M}, i = 1, . . . ,M.

The Voronoi cells have disjoint interiors with boundaries of zero volume (with respect

to Lebesgue measure in Rd), and with probability one they are d-dimensional sets

[3, 5]. Note that B(x, ‖x − Xi‖) ⊆ B(q′, r) if and only if ‖x − q′‖ + ‖x − Xi‖ ≤ r.

Consequently, if M ≥ 2 and i ∈ {1, . . . ,M − 1}, the set

Ei = {x ∈ Ci : RM−1 < ‖x− q′‖+ ‖x−Xi‖ ≤ RM} (12)
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consists ‘essentially’ of all possible locations x of the user such that Xi is returned

under the termination conditions as the nearest neighbour to x. By ‘essentially’ we

mean that if x is on the boundary of Ci so that x ∈ Cj for some j < i, then Xi would

not had been returned, but the set of such points x has zero volume and as argued

in comment (E) below, it plays no important rule but is just convenient that we have

included such points in Ei. Moreover, the set of all possible locations x ∈ CM \∪M−1
i=1 Ci

of the user is given by

EM = [q′, XM ] \
M−1⋃
i=1

Ci, (13)

where [q′, XM ] is the closed line segment with end points q′ and XM , and we set

∪M−1
i=1 Ci = ∅ if M = 1. The inferred privacy region is therefore given by

R =
M⋃
i=1

Ei. (14)

Figure 2 shows an example of R when d = 2 and the points are generated by the radial

simulation algorithm in Section 2.1.2.

3.1.2. Comments: Some remarks are in order.

(A) If M = 1 then simply R = EM = [q′, XM ].

(B) If 1 ≤ i ≤ M − 1 then by (12), Ei = Ci ∩ (Fi \ Gi), where Fi and Gi are the

ellipsoidal regions with foci q′ and Xi, such that any point on the boundary has

its sum of distances to the foci equal to RM and RM−1, respectively (see cells

1, . . . , 15 in Figure 2). As illustrated in Figure 2, Ei can be a connected set (see

e.g. cell 1) or a disconnected set (see cell 9) or the empty set (see e.g. cell 3),

GM−1 = [q′, XM−1] is a closed line segment (see cell 15), while for 1 ≤ i ≤M−2,

Fi and Gi are almost surely of dimension d.

(C) If M ≥ 2 then EM is the line segment given by the intersection of [q′, XM ] and

the interior of CM , cf. (13) (see cell 16 in Figure 2).

(D) If d ≥ 2, EM has zero d-dimensional volume, and the adversary could exclude

both the possibility that M = 1 and the possibility that XM is the nearest point

in Φ to the user, since the event that M = 1 or x ∈ [q,XM ] has probability zero.

(E) Recalling the considerations in connection to (12) concerning the boundary points

of the Voronoi cells, note that R = ∪Mi=1E
′
i, where E′i = Ei \ ∪i−1

j=1Cj is exactly
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q

Figure 2: A planar inferred privacy region R (the solid lines except those on the boundary of

the square) defined by M = 16 points (the triangles marked 1, . . . , 16) and the anchor q′. The

Voronoi tessellation with nuclei X1, . . . , XM is shown as dotted lines. Also the user location

q is shown, but the inferred privacy region is unchanged if any other point in R had been the

location of the user.

the set of all possible locations x of the user such that Xi is returned under

the termination conditions as the nearest neighbour to x (setting ∪i−1
j=1Cj = ∅ if

i = 1). Clearly, Ei \ E′i has zero volume.

3.2. Results

The volume of the inferred privacy region, V = |R|, is a ‘measure of privacy’ with

mean value

E(V ) =
∫
p(x) dx, (15)

where for any location x ∈ Rd,

p(x) = P(x ∈ R)
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is the probability that x is in the inferred privacy region. Writing Z = q + TU , then

U is a uniformly distributed unit vector in Rd, T and U are independent, and T d is

exponentially distributed with rate ρωd, so Z has density function

f(z) = ρ exp
(
−ρωd‖z − q‖d

)
. (16)

Our strategy is first to determine the conditional probability

p(x|z) = P(x ∈ R|Z = z),

second to calculate

p(x) =
∫
p(x|z)f(z) dz, (17)

and finally to obtain E(V ) from (15).

For any number s and set A ⊆ Rd, define sA = {sa : a ∈ A} and q′ +A = {q′ + a :

a ∈ A}. To stress that the distribution of R and V depend only on (q′, ρ, l) and (ρ, l),

respectively, write R(q′,ρ,l) for R, and V(ρ,l) for V . Let R(ρ,l) = R(o,ρ,l) be the case

with q′ = o, the origin in Rd, and note that R(q′,ρ,l) ∼ q′ + R(ρ,l), where ∼ means

‘is distributed as’. Since (1/l)Φ is a Poisson process with intensity ρld, we obtain the

following scaling properties,

R(ρ,l) ∼ lR(ρld,1), V(ρ,l) ∼ ldV(ρld,1). (18)

Consequently, for distributional properties of the inferred privacy region and in partic-

ular for calculating EV , it suffices to consider the case with l = 1 and q′ = o.

In the remainder of this paper, we restrict attention to finding p(x) and EV when

d ≥ 2. Theorem 2 below establishes an expression of p(x|z); similar techniques apply

in the special case d = 1, but the details are then somewhat more complicated since

we have to account for each of the cases where Z = XM and Z 6= XM , cf. (iii) (above

Theorem 1).

Let 1[·] denote the indicator function. For x, y ∈ Rd and r, s, t ≥ 0, define

c(r, s, t) = |B(x, s) ∩B(y, t)| if r = ‖x− y‖
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and

p(x, y, t) = 1[‖x− q′‖+ ‖y − x‖ ≥ t+ l] exp
(
− ρ{ωd[(‖x− q′‖+ ‖y − x‖)d − (t+ l)d]

− c(‖x− q′‖, t+ l, ‖y − x‖) + c(‖x− q‖, t, ‖y − x‖)}
)

+ 1[‖x− q′‖+ ‖y − x‖ < t+ l] exp
(
− ρ
{
ωd
[
(t+ l)d − td − (‖x− q′‖+ ‖y − x‖)d

+ ‖y − x‖d
]

+ c(l, t, ‖x− q′‖+ ‖y − x‖)− c(‖x− q‖, t, ‖y − x‖)
})

. (19)

Note that c(r, s, t) = 0 if r ≥ s + t or s = 0 or t = 0, and c(r, s, t) = ωd min{sd, td} if

r = 0. If d = 2, r < s+ t, and r, s, t > 0, then

c(r, s, t) = s2 arccos
(
r2 + s2 − t2

2rs

)
− r2 + s2 − t2

4r2
[
4r2s2 −

(
r2 + s2 − t2

)2]1/2
+ t2 arccos

(
r2 + t2 − s2

2rt

)
− r2 + t2 − s2

4r2
[
4r2t2 −

(
r2 + t2 − s2

)2]1/2
.

Theorem 2. For d ≥ 2 and x, z ∈ Rd, letting t = ‖z − q‖, then

p(x|z) = p(x, z, t)+

ρ

∫
1 [y ∈ B(q′, t+ l) \B(q, t), z ∈ B(q′, ‖x− q′‖+ ‖y − x‖) \B(x, ‖y − x‖)]

p(x, y, t) dy. (20)

Proof. We start by verifying that

p(x, y, t) = p1(x, y, t)p2(x, y, t), (21)

where

p1(x, y, t) = exp
(
−ρωd max{0, (‖x− q′‖+ ‖y − x‖)d − (t+ l)d}

)
and

p2(x, y, t) =

exp
(
− ρ|{B(q′, t+ l) \B(q, t)} \ {B(q′, ‖x− q′‖+ ‖y − x‖) \B(x, ‖y − x‖)}|

)
.

Note that

p1(x, y, t)p2(x, y, t) =1[‖x− q′‖+ ‖y − x‖ ≥ t+ l]p1(x, y, t)p2(x, y, t)

+ 1[‖x− q′‖+ ‖y − x‖ < t+ l]p2(x, y, t). (22)
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If ‖x − q′‖ + ‖y − x‖ ≥ t + l, then B(q, t) ⊆ B(q′, t + l) ⊆ B(q′, ‖x − q′‖ + ‖y − x‖),

and so

p2(x, y, t) = exp (−ρ [c(‖x− q′‖, t+ l, ‖y − x‖)− c(‖x− q‖, t, ‖y − x‖)]) . (23)

If ‖x−q′‖+‖y−x‖ < t+ l, then B(x, ‖y−x‖) ⊆ B(q′, ‖x−q′‖+‖y−x‖) ⊆ B(q′, t+ l)

and B(q, t) ⊆ B(q′, t + l), and so if Ac = Rd \ A denotes the complement of a set

A ⊆ Rd,

|{B(q′, t+ l) \B(q, t)} \ {B(q′, ‖x− q′‖+ ‖y − x‖) \B(x, ‖y − x‖)}|

= |B(q′, t+ l) ∩B(q, t)c ∩ [B(q′, ‖x− q′‖+ ‖y − x‖)c ∪B(x, ‖y − x‖)] |

= |B(q′, t+ l) ∩B(q, t)c ∩B(q′, ‖x− q′‖+ ‖y − x‖)c|

+ |B(q′, t+ l) ∩B(q, t)c ∩B(x, ‖y − x‖)|

=
[
|B(q′, t+ l)| − |B(q, t)| − |B(q′, ‖x− q′‖+ ‖y − x‖)|

+ |B(q, t) ∩B(q′, ‖x− q′‖+ ‖y − x‖)|
]

+ [|B(x, ‖y − x‖)| − |B(q, t) ∩B(x, ‖y − x‖)|]

(24)

Now, (21) follows from (19) and (22)-(24).

Denote Z(x) the almost surely unique nearest point to x in {X1, . . . , XM} = Ψ ∪

{Z,XM} (so Z(q) = Z). By (12)-(14) and (D) in Section 3.1.2,

P(x ∈ R|Z) = P(Z = Z(x), RM−1 < ‖x− q′‖+ ‖Z − x‖ ≤ RM |Z)

+ E

(
N∑
i=1

1 [Xi = Z(x), RM−1 < ‖x− q′‖+ ‖Xi − x‖ ≤ RM ]
∣∣∣∣Z
)
. (25)

By (iv) (above Theorem 1), with probability one,

Z = Z(x)⇔ [Ψ ∪ {XM}] ∩B(x, ‖Z − x‖) = ∅.

Conditional on Z, RdM − (T + l)d is exponentially distributed and independent of

Ψ, cf. (ii) (above Theorem 1). Therefore, ignoring the null set where ‖Z − q′‖ =

‖x− q′‖+ ‖Z − x‖ (i.e., ‖Z − q′‖ < ‖x− q′‖+ ‖Z − x‖ almost surely),

P(Z = Z(x), RM−1 < ‖x− q′‖+ ‖Z − x‖ ≤ RM |Z)

=P(‖x− q′‖+ ‖Z − x‖ ≤ RM , XM 6∈ B(x, ‖Z − x‖)|Z)

P(Ψ ⊂ B(q′, ‖x− q′‖+ ‖Z − x‖) \B(x, ‖Z − x‖)|Z)

=p1(x, Z, T )p2(x, Z, T ), (26)
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using in the last equality that ‖x−q′‖+‖Z−x‖ ≤ RM implies that XM 6∈ B(x, ‖Z−x‖),

since B(x, ‖Z − x‖) ⊆ B(q′, ‖x− q′‖+ ‖Z − x‖). Moreover,

E

(
N∑
i=1

1 [Xi = Z(x), RM−1 < ‖x− q′‖+ ‖Xi − x‖ ≤ RM ]
∣∣∣∣Z
)

=E
( N∑
i=1

1[[(Ψ \ {Xi}) ∪ {Z,XM}] ∩B(x, ‖Xi − x‖) = ∅,

(Ψ \ {Xi}) ∪ {Z} ⊂ B(q′, ‖x− q′‖+ ‖Xi − x‖), ‖x− q′‖+ ‖Xi − x‖ ≤ RM ]
∣∣∣∣Z)

=ρ
∫

1 [y ∈ B(q′, T + l) \B(q, T ), Z ∈ B(q′, ‖x− q′‖+ ‖y − x‖) \B(x, ‖y − x‖)]

P(‖x− q′‖+ ‖y − x‖ ≤ RM , XM 6∈ B(x, ‖y − x‖)|Z)

P (Ψ ⊂ B(q′, ‖x− q′‖+ ‖y − x‖) \B(x, ‖y − x‖)|Z) dy

=ρ
∫

1 [y ∈ B(q′, T + l) \B(q, T ), Z ∈ B(q′, ‖x− q′‖+ ‖y − x‖) \B(x, ‖y − x‖)]

p1(x, y|Z)p2(x, y|Z) dy, (27)

using in the second equality the Slivnyak-Mecke formula for the Poisson process Φ\{Z}

conditional on Z [2, 7] (or see Theorem 3.2 in [4]), and using in the last equality a

similar argument as when we obtained the last equality in (26). Finally, from (25)-(27)

we obtain (20).

Recall that p(x) is the probability that x belongs to the inferred privacy region.

Clearly, p(q) = 1 since q ∈ R. For x 6= q and l fixed, both p(x) and E(V ) approach 0

as ρ tends to ∞. This follows by combining (15)–(17) and (19)–(20). It is interesting

to study how p(x) varies as a function of x when d = 2. Figure 3 plots the contours of

p(x) when ρ = 1 and l = 1. Observe that contours with high p(x) are located close to

the point q = (1, 0). Contours with low p(x) appear as circle-like shapes, with centre

q′ = (0, 0) and in pairs, with radii below 1.0 and above 1.0, respectively. Figure 4

shows the contours of p(x) when ρ = 10 and l = 1. This function resembles that of

Figure 3, except that the region with high p(x) is shrinked significantly.

Two methods are employed to evaluate E(V ) when d = 2. Again we take q′ = (0, 0)

and q = (l, 0). The first method is Monte Carlo, which executes 10,000 instances of the

radial simulation algorithm in Section 2.1.2 until the termination time M is determined.

For each simulation, we estimate the area of V by using an 100× 100 square grid over
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Figure 3: Contours of p(x), when ρ = 1, l = 1, and d = 2.
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Figure 4: Contours of p(x), when ρ = 10, l = 1, and d = 2.

the domain [−RM , RM ]2 which contains R. The value of E(V ) is then estimated by the

average area obtained from all simulations. The second method is numeric integration,
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using the following setting when l = 1 and ρ = 1, 2, 5, 10, 20, 50, 100.

• The integral in (20) is computed by using a 100× 100 square grid in the region

[−(t+ l), (t+ l)]2. All possible points y such that the indicator function in (20)

is equal to one must be located inside such a region.

• The integral in p(x) =
∫
p(x|z)f(z) dz is computed by using a 100× 100 square

grid in the region [−3l, 3l]2. In fact p(x) is effectively zero outside this region and

seemingly only limited value is lost even though the full space R2 is not used as

the domain for numeric integration.

• For ρ = 1, 2, 5, 10, 20, 50, the integral in E(V ) =
∫
p(x) dx is computed by using

a 100 × 100 square grid in the region [−3l, 3l]2. Like above, only limited value

is lost when [−3l, 3l]2 is used as the bounding region. For ρ = 100, after first

using the same method and comparing with the Monte Carlo estimate, we found

it appropriate to use polar coordinates (θ, r) for x and a 100 × 100 square grid

for (θ, r) in the domain [0, 2π)× [0.75, 1.25). Outside this domain p(x) is almost

zero.

Figure 5a shows E(V ) as a function of ρ when l = 1 and d = 2. Observe that the

value obtained by numeric integration is close to the corresponding value obtained by

Monte Carlo. Figure 5b plots E(V ) as a function of l when ρ = 1 and d = 2. This plot

is just obtained from the results in Figure 5a using (18). For ρ = 100, the difference

between the values obtained by numeric integration and Monte Carlo becomes more

visible (the estimates of E(V ) when (ρ, l) = (100, 1) and obtained using a square grid

for respective x and its polar coordinates are 0.0160 and 0.0182 as compared to the

Monte Carlo estimate 0.0176). Note that E(V ) appears to be an increasing function

of l, with a decreasing slope.
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