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Summary. We define residuals for point process models fitted to spatial point pattern data, and
propose diagnostic plots based on them. The residuals apply to any point process model that
has a conditional intensity; the model may exhibit spatial heterogeneity, interpoint interaction
and dependence on spatial covariates. Some existing ad hoc methods for model checking
(quadrat counts, scan statistic, kernel smoothed intensity, Berman’s diagnostic) are recovered
as special cases.
Diagnostic tools are developed systematically, using an analogy between our spatial residuals
and the usual residuals for (non-spatial) generalised linear models. The conditional intensity
λ plays the role of the mean response. This makes it possible to adapt existing knowledge
about model validation for GLM’s to the spatial point process context, giving recommendations
for diagnostic plots. A plot of smoothed residuals against spatial location, or against a spatial
covariate, is effective in diagnosing spatial trend or covariate effects. Q–Q plots of the residuals
are effective in diagnosing interpoint interaction.

Keywords: Berman’s diagnostic, Berman-Turner device, estimating equations, exponential
energy marks, generalised linear models, Georgii-Nguyen-Zessin formula, K function, kernel
smoothing, Ogata residual, Papangelou conditional intensity, Pearson residuals, pseudolikeli-
hood, Q–Q plots, quadrat counts, residual plots, scan statistic, space-time point processes.

1. Introduction

Recent work on statistical methods for spatial point pattern data has made it easy to fit a
wide range of models to real data in applications. Parametric inference, model selection, and
goodness-of-fit testing are also feasible with Markov chain Monte Carlo (MCMC) methods.

However, tools for checking or criticising the fitted model are quite limited. There is
currently no analogue for spatial point patterns of the comprehensive strategy for model
criticism in the linear model, which uses tools such as residual plots and influence diagnos-
tics to identify unusual or influential observations, assess model assumptions one-by-one,
and recognise the form of departures from the model. Indeed it is widespread practice in
the statistical analysis of spatial point pattern data to focus primarily on comparing the
data with a homogeneous Poisson process (“complete spatial randomness”, CSR), which
is generally the null model in applications, rather than the fitted model. The paucity of
model criticism in spatial statistics is a weakness in applications, especially in areas such
as spatial epidemiology where fitted models may invite very close scrutiny.
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Accordingly, this paper sets out to develop residuals and residual plots for models fitted
to spatial point patterns. Our goal is a coherent strategy for model criticism in spatial
point process models, resembling the existing methods for the linear model. This depends
crucially on finding the right definition of residuals for a spatial point process model fitted
to point pattern data. Additionally we must develop appropriate plots and transformations
of the residuals for assessing each component (“assumption”) of the fitted model, with a
statistical rationale for each plot.

Our definition of residuals is a natural generalisation of the well-known residuals for point
processes in time, used routinely in survival analysis. It had been thought that no such
generalisation exists for spatial point processes, because of the lack of a natural ordering
in two-dimensional space, and that the analysis of spatial point patterns necessitated a
quite different approach (Cox and Isham, 1980, Section 6.1; Ripley, 1988, Introduction).
Nevertheless the generalisation from temporal to spatial point processes is straightforward
after one crucial change. The key is to replace the usual conditional intensity of the process
(or hazard rate of the lifetime distribution) by the Papangelou conditional intensity of the
spatial process. Antecedents of this approach are to be found in the work of Stoyan and
Grabarnik (1991).

Next, diagnostic plots are developed systematically, by exploiting an analogy between
point process models and generalised linear models (GLM’s). The Papangelou conditional
intensity λ of the spatial point process corresponds, under this analogy, to the mean re-
sponse in a GLM. The spatial point process residuals introduced in this paper correspond
to the usual residuals for Poisson loglinear regression. The components of a point process
model (spatial trend, dependence on spatial covariates, interaction between points of the
pattern) correspond to model terms in a GLM. Thus the well-understood diagnostic plots
for assessing each term in a GLM can be carried across to spatial point processes.

Section 2 presents motivating examples. Section 3 offers a review and critique of current
techniques. Section 4 reviews existing theory of residuals for point processes in time and
space-time. Section 5 introduces spatial point process models and the essential background
for our definition of residuals. Section 6 describes the diagnostic of Stoyan and Grabarnik.
Our new residuals for spatial point processes are defined in Sections 7 and 8. Properties
of the residuals are studied in Section 9. Sections 10–12 develop diagnostic plots for as-
sessing each component of a spatial point process model. Sections 13–14 discuss practical
implementation and scope of the techniques.

2. Motivating examples

Figure 1 depicts the Japanese black pines data of Numata (1964), analysed by Ogata and
Tanemura (1981, 1986). Dots indicate the locations of 204 seedlings and saplings of Japanese
black pine (Pinus Thunbergii) in a 10 × 10 metre square sampling region within a natural
forest stand. It is of interest to assess evidence for spatial heterogeneity in the abundance
of trees, and for positive or negative ‘interaction’ between trees.

One of many possible approaches to Figure 1 is to fit a parametric statistical model
to the pattern. The model is a spatial point process, which may be formulated to exhibit
spatial heterogeneity and/or interpoint interaction. Formal testing and model selection may
then be used to decide whether heterogeneity and interaction are present, and in what form.

Practical parametric modelling of spatial point pattern data was pioneered by Besag
(1975, 1978), Ripley (1977), Diggle (1978), Ogata and Tanemura (1981) and others. For
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Fig. 1. Japanese black pines (seedlings and saplings) data of Numata (1964). Data kindly supplied
by Professors Y. Ogata and M. Tanemura.

surveys, see Diggle (2003, Chapters 5–7) and Møller and Waagepetersen (2003a,b). Recently
developed algorithms make it easy to fit a wide range of point process models to real
data in applications, by pseudolikelihood methods (Baddeley and Turner, 2000, 2005a,b).
Likelihood and Bayesian inference are also feasible for many models using MCMC methods
(Geyer and Møller, 1994; Geyer, 1999; Møller and Waagepetersen, 2003a).

For the Japanese pines data, Ogata and Tanemura (1981, 1986) formulated several para-
metric models, involving heterogeneity and pairwise interaction between points. Maximum
likelihood estimation was performed using a specialised numerical approximation. In their
definitive analysis (Ogata and Tanemura, 1986), the Akaike information criterion favoured
a 12-parameter model for the Japanese pines data, containing moderately strong hetero-
geneity and quite strong short-range inhibition between points.

It would be prudent to check this analysis, using a formal goodness-of-fit test and some
informal validation of the fitted model. As far as we are aware, this has not been attempted.
While some techniques are available for checking a point process model (see Section 3), most
of them do not apply to a model involving both heterogeneity and interaction. Our goal is
to provide tools for validation of a quite general point process such as this one.

Fig. 2. Copper ore deposits (◦) and lineaments (—) in an area of Queensland. Southern half of
original data. North at top. Reproduced by kind permission of Dr. J. Huntington and Dr. M. Berman.

Figure 2 is a subset of data introduced and analysed by Berman (1986). It represents an
intensive geological survey of a 158 × 35 km region in central Queensland. Dots mark the
locations of 57 copper ore deposits. Line segments represent 90 geological features visible
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on a satellite image; they are termed lineaments and believed to consist largely of geological
faults. It would be of great interest to predict the occurrence of copper deposits from the
lineament pattern.

Thus, the lineament pattern constitutes a ‘spatial covariate’ which might be included
in the analysis. The null model (no dependence on the lineaments) postulates that copper
deposits are a homogeneous Poisson process. Alternative models postulate, for example,
that the density of copper deposits depends on distance from the nearest lineament.

Several analyses (Berman, 1986; Berman and Turner, 1992; Foxall and Baddeley, 2002)
have concluded there is no covariate effect. What is missing is a critical assessment of
the validity of the assumptions behind these analyses. The influence of different parts of
the data should also be investigated, since a comparison of the analyses has fortuitously
identified some influential observations (Foxall and Baddeley, 2002, Section 5.3).
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Fig. 3. Cases of cancer of the larynx (•) and lung (+) in the Chorley-South Ribble area, and the
location of an industrial incinerator (⊕). Ordnance survey coordinates in km.

Figure 3 shows a spatial epidemiological dataset presented and analysed by Diggle (1990)
and Diggle and Rowlingson (1994). There are two point patterns, giving the precise domicile
locations of new cases of cancer of the larynx (58 cases) and of the lung (978 cases), recorded
in the Chorley and South Ribble Health Authority of Lancashire during 1974–1983. The aim
is to assess evidence for an increase in the incidence of cancer of the larynx in the vicinity
of a now-disused industrial incinerator, whose position is also indicated. The lung cancer
cases serve as a surrogate for the spatially varying density of the susceptible population.

Diggle (1990) assumes the laryngeal cancer cases form a Poisson point process, with
unknown intensity λ(u) at spatial location u. The null model, that there is no incinerator
effect, states that λ(u) is proportional to the density of the susceptible population at u.
In alternative models, λ(u) also depends on distance from the incinerator. Diggle (1990)
and Diggle and Rowlingson (1994) fit models of both types by maximum likelihood and
find that the model of best fit includes an incinerator effect. Goodness-of-fit testing and
informal validation of the model are carried out by transforming it to a uniform Poisson
process on the real line (Diggle, 1990, Section 3.2).

The careful discussion by Diggle (1990) notes many caveats on epidemiological inter-
pretation of the fitted model, and identifies questions for further investigation, notably the
spatial clustering of disease cases. Clustered models cannot be fitted using the techniques
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of Diggle (1990) and Diggle and Rowlingson (1994), which apply only to Poisson processes.
While the model-checking techniques in Diggle (1990, Section 3.2) can detect the presence
of clustering (as a departure from a fitted Poisson process), they cannot be used to validate
a clustered point process model for the data. Thus, further analysis of the Chorley-Ribble
data depends on tools for fitting and validating more general point process models.

Our goal, then, is to develop informal techniques to validate a point process model of
general form that has been fitted to spatial point pattern data. The techniques should
help us to recognise the presence — or the fitted model’s misspecification — of spatial
heterogeneity, interpoint interaction, and covariate effects in the data.

3. Current methods

Current techniques for checking a fitted spatial point process model are described by Van
Lieshout (2000, Chapter 3), Diggle (2003, pp. 89–90, 100–103, 106, 110–111, 114, 133–143)
and Møller and Waagepetersen (2003a, Chapter 4).

In his influential paper Ripley (1977) developed an exploratory analysis of interpoint
interaction, assuming the data are spatially homogeneous . A useful summary statistic is the
nonparametric estimator K̂ of Ripley’s K function, essentially a renormalised empirical dis-
tribution of the pairwise distances between observed points. For the homogeneous Poisson
process (CSR) the true value of K is known. A discrepancy between K̂ and the theoretical
K function for CSR indicates positive or negative association between points, and suggests
appropriate models. A Monte Carlo goodness-of-fit test of any fitted model can also be
conducted, by comparing the values of K̂ for the data with those from simulations of the
model (Besag and Diggle, 1977). See surveys in Cressie (1991), Diggle (2003), Møller and
Waagepetersen (2003a), Ripley (1981), Ripley (1988), Stoyan et al. (1995) and Stoyan and
Stoyan (1995).

Difficulties arise if we wish to validate a fitted model that also includes heterogeneity, or
when we wish to detect heterogeneity in the data. The estimator K̂ is affected by spatial
inhomogeneity as well as by spatial dependence between points. It can still be used as the
basis for a Monte Carlo test of goodness-of-fit; but the interpretation of any deviations in
K̂ is now ambiguous. Thus, in practice, the use of the K function in model criticism is
restricted to cases where the fitted model is homogeneous and the data are still assumed to
be homogeneous.

To overcome this limitation, modifications of K̂ (and of other statistics) have been pro-
posed. Local Indicators of Spatial Association (LISA) (Anselin, 1995; Cressie and Collins,

2001b,a; Getis and Franklin, 1987), are localised versions of summary functions such as K̂.
The K function has also been adapted to inhomogeneous point processes where the spatial
trend is known (Baddeley et al., 2000). However, if the trend has to be estimated when

estimating K, the interpretation of deviations in K̂ is not always clear, as shown by the
conflicting examples in Diggle (2003, Sections 7.1.1 and 8.2.1).

When the fitted model is an inhomogeneous spatial Poisson process, a powerful diag-
nostic tool is to transform it to a Poisson process on the real line, with uniform intensity
1 on an interval (Ripley, 1982, p. 180; Brillinger and Preisler, 1986; Diggle, 1990; Schoen-
berg, 1999; Diggle, 2003, Section 3.2). This can be used to validate the model, as is done
commonly in survival analysis (Cox and Lewis, 1966, Chapter 3; Andersen et al., 1993;
Venables and Ripley, 1997, Chapter 12). Departure from unit intensity in the transformed
space suggests a misspecified spatial trend, while departure from exponential distribution
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of the inter-arrival times is evidence of interpoint interaction. However the form of depar-
tures from the model may not be easy to recognise in the transformed space. In the spatial
setting, this diagnostic is restricted to Poisson models, apart from some special processes
(Merzbach and Nualart, 1986; Nair, 1990, Cressie, 1991, pp. 766-770).

The advent of practical MCMC algorithms for simulating and fitting point process mod-
els (Geyer and Møller, 1994; Geyer, 1999; Møller and Waagepetersen, 2003a) has made it
possible to test for the presence of spatial trend or interaction within the context of a
parametric model. However, tools for model criticism are still lacking.

Finally, some writers have introduced diagnostics analogous to the residuals from a
fitted GLM. The diagnostic of Stoyan and Grabarnik (1991) is described in Section 6.
Lawson (1993) defined a ‘deviance residual’ for heterogeneous Poisson processes. For space-
time point processes, Diggle et al. (1995) constructed a residual by comparing a space-
time K function with the product of two K functions in time and in space, while Ogata
(1988) formed residuals based on the ratio of a nonparametric intensity estimate to the
model’s conditional intensity. In spatial epidemiology, spatially varying relative risk may be
estimated nonparametrically or modelled (semi-)parametrically; differences between these
two estimates yield an estimated residual relative risk, e.g. Diggle (2003, pp. 133–143).
Wartenberg (1990) canvassed exploratory methods for outliers, leverage and influence in
spatial point patterns.

4. Residuals in time and space-time

Residuals and diagnostics for point processes in one-dimensional time were developed in
the 1970’s for applications to signal processing (Lewis, 1972; Brillinger, 1978, 1994) and
survival analysis (Andersen et al., 1993). If Nt denotes the number of arrivals (points of
the process) in the time interval [0, t], define the conditional intensity

λ(t) = E[dNt | Ns, s < t]/dt,

(if it exists), that is, λ(t) is the instantaneous arrival rate of the point process given the
history of the process prior to time t (Karr, 1985, p. 69 ff.). Residuals can be constructed
from the fact that the innovation or error process

I(t) = Nt −
∫ t

0

λ(s) ds (1)

is a martingale with E[I(t)] = 0 when the model is true (Karr, 1985, Theorem 2.14, p.
60). In practice, when a point process model with a parameter θ is fitted to data, the

parameter estimate θ̂ would be plugged in to an expression for λ(t) = λθ(t) to obtain a

fitted conditional intensity λ̂(t) = λbθ(t), and we compute the raw residual process

R(t) = Nt −
∫ t

0

λ̂(s) ds.

Increments of R(t) are analogous to the raw residuals (observed minus fitted values) in a
linear model, while increments of I(t) would be analogous to the ‘errors’ (observed minus
expected values) which are not observable. The adequacy of the fitted model can be checked
by inspecting whether R(t) ≈ 0. Various plots and transformations of R(t) are useful
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diagnostics for a fitted point process model (Lewis, 1972; Brillinger, 1978; Venables and
Ripley, 1997).

The likelihood of the point process on the interval [0, t] is (Karr, 1985, Thm 2.31, p. 71)

Lθ(t) =


∏

ti≤t

λθ(ti)


 exp

(
−

∫ t

0

λθ(s) ds

)

where t1, t2, . . . denote the successive arrival times of the point process. Hence the score
Uθ(t) is closely related to the innovations:

Uθ(t) =
∑

ti≤t

∂

∂θ
log λθ(ti) −

∫ t

0

∂

∂θ
λθ(s) ds =

∫ t

0

∂

∂θ
log λθ(s) dIθ(s).

The fact that Eθ[Uθ(t)] = 0 follows from the martingale property of Iθ(t).
Analogous residuals for space-time point processes were developed for applications to

earthquake modelling (Ogata, 1988; Vere-Jones, 1970).

5. Spatial point process models

5.1. Notation and assumptions
A spatial point pattern is a dataset

x = {x1, . . . , xn}

consisting of the (unordered) locations x1, . . . , xn of points observed in a bounded region
W of the plane R

2. Note that the number of points n = n(x) ≥ 0 is not fixed in advance.
Our aim is to validate a parametric spatial point process model which has been fitted to x.
The model may be very general indeed, and the method used to fit the model is arbitrary.
We assume only that the model has a probability density fθ(x) with respect to the unit
rate Poisson process on W , and that fθ satisfies the positivity condition

if fθ(x) > 0 and y ⊂ x then fθ(y) > 0 (2)

for any finite point patterns x,y ⊂ W . For example, a homogeneous Poisson process
with intensity β has density f(x) = αβn(x), where α represents a normalising constant
throughout this paper. An inhomogeneous Poisson process with intensity function b(u), u ∈
W has density f(x) = α

∏n
i=1 b(xi). A pairwise interaction point process has

f(x) = α




n(x)∏

i=1

b(xi)





∏

i<j

c(xi, xj)


 (3)

where b(u) ≥ 0, u ∈ W is the ‘activity’ and c(u, v) = c(v, u) ≥ 0, u, v ∈ W is the ‘interac-
tion’. The activity function b can be used to model spatial variation in the abundance of
points, while the interaction function c can be used to model association between points.

For any finite point process satisfying (2), a theorem of Ripley and Kelly (1977) states
that the density can be expressed in “Gibbs” form

f(x) = exp {V0 + V1(x) + V2(x) + . . . + Vn(x)} (4)
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(where n = n(x)) for unique functions Vk called the potentials of order k. Here V0

determines the normalising constant and Vk is of the form Vk(x) =
∑

y vk(y), where
vk(y) ∈ [−∞,∞) and the sum is over all subsets y ⊆ x with n(y) = k. Although the
Gibbs form might not be the simplest representation of the model, we can use it to inspect
the model’s properties. In particular, interpoint interaction is determined by the potentials
of higher order, V≥2(x) = V2(x) + V3(x) + . . . + Vn(x). If V≥2 is identically zero, then the
model reduces to a Poisson process with intensity function b(u) = exp(v1({u})).

5.2. Papangelou conditional intensity
For spatial point processes, the lack of a natural ordering in two-dimensional space im-
plies that there is no natural generalisation of the conditional intensity of a temporal or
spatio-temporal process given the “past” or “history” up to time t. Instead, the appropri-
ate counterpart for a spatial point process is the Papangelou conditional intensity λ(u,x)
(Papangelou, 1974) which conditions on the outcome of the process at all spatial locations
other than u.

Detailed theory may be consulted in Daley and Vere-Jones (1988, pp. 580–590) and Karr
(1985, Section 2.6). For our purposes the following, very simplified, account is adequate.
Suppose X is any finite point process in W with a probability density f(x) which satisfies
the analogue of the positivity condition (2). For u ∈ W with u 6∈ x, define

λ(u,x) = f(x ∪ {u})/f(x) (5)

if f(x) > 0, and λ(u,x) = 0 otherwise. For u ∈ x, define

λ(u,x) = λ(u,x \ {u}). (6)

Then (6) holds for all u ∈ W . Loosely speaking, λ(u,x) du is the conditional probability
that there is a point of X in an infinitesimal region of area du containing u, given that the
rest of the point process coincides with x.

For example, the Poisson process with intensity function b(u), u ∈ W has conditional
intensity λ(u,x) = b(u). The general pairwise interaction process (3) has

λ(u,x) = b(u)

n∏

i=1

c(u, xi), u 6∈ x.

For non-Poisson processes, in general λ(·,x) is discontinuous at the data points xi because
of (6). For a general point process, (4) leads to a Gibbs representation

log λ(u,x) = v1(u) +
∑

i

v2({u, xi}) +
∑

i<j

v3({u, xi, xj}) + . . . , u 6∈ x. (7)

The Papangelou conditional intensity λ of a finite point process uniquely determines its
probability density f and vice versa (because of (2)). For Markov point processes (Ripley
and Kelly, 1977; Van Lieshout, 2000) it is convenient to model X by λ rather than by f ,
since λ plays the same role as the local characteristics do for Markov random fields when
specifying local Markov properties. The normalising constant of f is eliminated in (5). Most
simulation procedures are specified in terms of λ. See Møller and Waagepetersen (2003a).



Residual analysis 9

It can be verified directly for finite point processes that

E

[ ∑

xi∈X

h(xi,X \ {xi})
]

= E

[∫

W

h(u,X)λ(u,X) du

]
(8)

where h(u,x) is any nonnegative function. Equation (8) and its extension to R
2 for infi-

nite point processes are called the Georgii-Nguyen-Zessin (GNZ) formula (Georgii, 1976;
Nguyen and Zessin, 1979). In the present paper (8) becomes the basic identity for deriving
diagnostics and residuals. We assume both sides of (8) are finite when required.

6. Stoyan–Grabarnik diagnostic

Stoyan and Grabarnik (1991) were the first to exploit the GNZ formula (8) for model
checking. Assume λ(·, ·) > 0. Take

h(u,x) = hB(u,x) = 1{u ∈ B}/λ(u,x) (9)

where 1{. . .} is the indicator function and B ⊆ W is a given subset. Then (8) becomes

E

[ ∑

xi∈X∩B

1

λ(xi,X)

]
= E

[∫

B

1 du

]
= |B| (10)

where |B| denotes the area of B. This states that, if each point xi of X is weighted by the
reciprocal of its Papangelou conditional intensity mi = 1/λ(xi,X), called the “exponential
energy mark” by Stoyan and Grabarnik, then the total weight for all points xi of X that
fall in a nominated region B,

M(B) =
∑

xi∈X∩B

mi,

has expectation EM(B) = |B| under the model. The variance of M(B) was also computed
by Stoyan and Grabarnik (1991) for the case of a “stationary” pairwise interaction process
(i.e. when the function b is constant, c(u, v) = c(u− v) and the process is extended to R

2).
While other functions h could be substituted in (8), the judicious choice (9) made by Stoyan
and Grabarnik is effectively the only one in which the integral in (8) is trivial.

Write λθ(s,x) for the Papangelou conditional intensity under a parametric model with

density fθ. In practice this would be replaced by a plug-in estimate λ̂(u,x) = λbθ(u,x).

Stoyan and Grabarnik proposed that the fitted weights m̂i = 1/λ̂(xi,x) associated with the

data points xi, and their sums M̂(B) =
∑

i 1{xi ∈ B}m̂i, could be used for exploratory
data analysis and goodness-of-fit testing, in that (a) points xi with extreme values m̂i may

indicate ‘outliers’; (b) regions B with extreme values of M̂(B) − |B| may indicate regions

of irregularity; (c) the global departure M̂(W ) − |W | may be used to test goodness-of-fit
or to test convergence of MCMC samplers. Applications were not presented in Stoyan and
Grabarnik (1991); proposal (a) was tried by Särkkä (1993, pp. 49–50) and proposal (b) by
Zhuang et al. (2005).

If λ(u,x) may take zero values, a few difficulties arise with the Stoyan-Grabarnik tech-
nique. For instance, the ‘hard core’ process obtained by setting c(u, v) = 1{‖u− v‖ > δ}
in (3), where δ > 0, has λ(u,x) = b(u) if ‖u− ξ‖ > δ for all points xi in x, and λ(u,x) = 0
otherwise. The sum M(B) is still well-defined, since there is zero probability of obtaining
a realisation in which λ(xi,X) = 0 for some xi ∈ X. However, equation (10) does not hold.
We resolve this problem in Section 8.2.
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7. Residuals for spatial point processes

We now start to define our spatial residuals.

7.1. Innovations
Consider a parametric model for a spatial point process X with density fθ. We assume only
that fθ satisfies (2). Define the innovation process of the model by

Iθ(B) = n(X ∩ B) −
∫

B

λθ(u,X) du (11)

for any set B ⊆ W , where n(X∩B) denotes the number of random points falling in B. This
definition is closely analogous to the residuals in time and space-time, except for the use
of the Papangelou conditional intensity. The innovations Iθ constitute a (random) signed
measure, with a mass +1 at each point xi of the spatial point process, and a negative density
−λ(u,X) at all other spatial locations u. They satisfy

Eθ[Iθ(B)] = 0,

by setting h(u,x) = 1{u ∈ B} in (8). Increments of the innovation process Iθ are analogous
to errors in a linear model. The GNZ formula (8) can be restated as

Eθ

[∫

B

h(u,X \ {u}) dIθ(u)

]
= 0

corresponding to the martingale properties of the innovations for temporal and spatio-
temporal point processes.

The direct connection between the innovations and the score for point processes in time
(Section 4) is lost for spatial processes, unless they are Poisson. Instead Iθ is closely related
to the pseudoscore, the derivative of the log pseudolikelihood of the point process defined
by

log PL(θ,x) =
∑

xi∈x

log λθ(xi,x) −
∫

W

λθ(u,x) du (12)

(Besag, 1978; Jensen and Møller, 1991) since the pseudoscore can be written

∂

∂θ
log PL(θ,x) =

∫

W

∂

∂θ
log λθ(u,x) dIθ(u). (13)

Applying (8) to h(u,x) = ∂
∂θ log λθ(u,x) shows that the pseudoscore has mean zero under

the model. For Poisson processes the pseudolikelihood and likelihood are equivalent, so (13)
is a direct connection between the innovations and the score.

7.2. Raw residuals
Given data x, and using a general parameter estimate θ̂ = θ̂(x), we define the raw residuals

Rbθ(B) = n(x ∩ B) −
∫

B

λ̂(u,x) du (14)



Residual analysis 11

where λ̂ = λbθ. Increments of Rbθ correspond to the raw residuals in a linear model. The raw
residuals Rbθ(B) are a signed measure on W , with atoms of mass 1 at the data points, and

a negative density −λ̂(u,x) at all locations u in W . Methods of visualising these residuals
are proposed in Sections 11–12.

Whereas most previous writers (Lawson, 1993; Särkkä, 1993; Stoyan and Grabarnik,
1991) have defined diagnostic values for the data points xi only, our residuals are also
ascribed to locations u ∈ W which are not points of the pattern. This is related to an
important methodological issue for point processes. In a point pattern dataset, the observed
information does not consist solely of the locations of the observed points of the pattern.
The absence of points at other locations is also informative.

8. Scaled residuals

8.1. Scaling
In statistical modelling it is often useful to scale the raw residuals, for example to compute
standardised residuals. The analogue in our context is to scale the increments of the residual
measure Rbθ. This is done simply by making an alternative choice of the function h in the
GNZ formula (8). For any nonnegative function h(u,x), define the h-weighted innovations

I(B, h, λ) =
∑

xi∈X∩B

h(xi,X \ {xi}) −
∫

B

h(u,x)λ(u,X) du (15)

for the spatial point process with Papangelou conditional intensity λ. We may interpret
∆I(xi) = h(xi,X \ {xi}) as the innovation increment (‘error’) attached to a point xi in X,
and dI(u) = −h(u,X)λ(u,X) du as the innovation increment attached to a background
location u ∈ W . The innovations have mean zero, from (8).

After fitting a parametric model to data x using a parameter estimate θ̂ = θ̂(x), we

compute the fitted conditional intensity λ̂(u,x) = λbθ(u,x). The weight function h may

also depend on θ, in which case we also compute ĥ(u,x) = hbθ(u,x). Then we define the
h-weighted residual measure by

R(B, ĥ, θ̂) = I(B, ĥ, λ̂) =
∑

xi∈x∩B

ĥ(xi,x \ {xi}) −
∫

B

ĥ(u,x)λ̂(u,x) du. (16)

The innovation measure has mean zero, E [I(B, h, λ)] = 0, and we hope that the mean of
the residual measure is approximately zero when the model is true,

Eθ

[
R(B, ĥ, θ̂)

]
≈ 0. (17)

The choice h(u,x) ≡ 1 in (15) and (16) yields the raw innovations (11) and raw residuals
(14). Various other choices of h are discussed in Sections 8.2–8.4.

8.2. Inverse-lambda residuals
The choice h(u,x) = 1/λ(u,x) corresponds to the exponential energy weights (Section 6).
Care is required if λ(u,x) may take zero values. The GNZ formula (8) still holds when h
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may take the value +∞, provided h(xi,X \ {xi}) is finite for all xi ∈ X, and we interpret
h(u,X)λ(u,X) as zero if λ(u,X) = 0. Thus we obtain the innovation measure

I(B, 1/λ, λ) =
∑

xi∈X∩B

1

λ(xi,X)
−

∫

B

1{λ(u,X) > 0} du

which has mean zero. The corresponding choice hθ(u,x) = 1/λθ(u,x) in (16) yields the
residual measure

R(B, 1/λ̂, θ̂) =
∑

xi∈x∩B

1

λ̂(xi,x)
−

∫

B

1{λ̂(u,x) > 0} du. (18)

In order that the residuals be well defined, the estimator θ̂ must have the property that
λbθ(x)(xi,x) > 0 for all xi ∈ x for any pattern x. Zero values for λbθ(x)(u,x) are permitted

for u 6∈ x. We shall call (18) the inverse-λ residuals . They are equivalent to the Stoyan-
Grabarnik diagnostic when λθ(·, ·) > 0.

8.3. Pearson residuals
By analogy with the Pearson residuals for Poisson loglinear regression, we consider the
weight function h(u,x) = 1/

√
λ(u,x) which yields the Pearson innovation measure

I(B, 1/
√

λ, λ) =
∑

xi∈X∩B

1√
λ(xi,X)

−
∫

B

√
λ(u,X) du

which has mean zero, and the corresponding Pearson residual measure

R(B, 1/
√

λ̂, θ̂) =
∑

xi∈x∩B

1√
λ̂(xi,x)

−
∫

B

√
λ̂(u,x) du.

Again, the estimate θ̂ must satisfy λ̂(xi,x) > 0 for all xi ∈ x in order that the Pearson

residuals be well-defined, but zero values for λ̂(u,x) are permitted for u 6∈ x.

8.4. Pseudo-score residuals
If θ is a k-dimensional vector, taking h(u,x) = ∂

∂θ log λθ(u,x) yields vector-valued errors

I(B,
∂

∂θ
log λθ, λθ) =

∑

xi∈X∩B

∂

∂θ
log λθ(xi,X) −

∫

B

∂

∂θ
λθ(u,X) du

and vector-valued residuals

R(B,
∂

∂θ
log λ̂, λ̂) =

∑

xi∈x∩B

[
∂

∂θ
log λθ(xi,x)

]

θ=bθ

−
∫

B

[
∂

∂θ
λθ(u,x)

]

θ=bθ

du. (19)

These residuals are increments of the pseudoscore (13), and thus correspond to the score
residuals in a GLM. The residual (19) can also be interpreted as the pseudoscore in the
domain B, conditional on the data outside B (Jensen and Møller, 1991).

In the case of a Strauss process model, the pseudoscore residuals are closely related to
the K function. This will be explored in a subsequent paper.
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9. Properties of residuals

9.1. Residuals sum to zero
The raw residuals in simple linear regression always sum to zero; a similar phenomenon
occurs for our residuals. Firstly consider the homogeneous Poisson process model, fitted by
maximum likelihood. The raw residual is Rbθ(B) = n(x ∩ B) − n(x)|B|/|W |. In particular
the residual sum for the whole window W is Rbθ(W ) = 0 for any point pattern dataset x.

More generally, suppose we fit a point process model with no spatial trend, having
conditional intensity of the common ‘loglinear’ form λθ(u,x) = exp{β + ηT (u,x)} where
θ = (β, η) and T (u,x) is not constant. If the model is fitted by maximum pseudolikelihood,
we equate (19) to zero with B = W , which implies Rbθ(W ) = 0. The pseudoscore residuals
(for any model with k-dimensional parameter) sum to zero over W .

9.2. Mean residual
Suppose we fit a point process model with parameter θ to a point pattern x using a pa-
rameter estimate θ̂ = θ̂(x). Assume that x is actually a realisation from some other point
process X, whose probability density satisfies the analogue of (2). Then the residuals (16)
have true expectation

E

[
R(B, ĥ, θ̂)

]
=

∫

B

E

[
hbθ(X∪{u})(u,X)λ(u,X) − hbθ(X)(u,X)λbθ(X)(u,X)

]
du (20)

by (8), where E is the expectation for the true process X and λ(u,X) is its true conditional
intensity. This yields for the raw, inverse-lambda, and Pearson residuals respectively

E[R(B, 1, θ̂)] = E

∫

B

[λ(u,X) − λbθ(u,X)] du (21)

E

[
R(B, 1/λ̂, θ̂)

]
=

∫

B

E

[
λ(u,X)

λbθ(X∪{u})(u,X)
− 1{λbθ(X)(u,X) > 0}

]
du (22)

E

[
R(B, 1/

√
λ̂, θ̂)

]
=

∫

B

E


 λ(u,X)√

λbθ(X∪{u})(u,X)
−

√
λbθ(X)(u,X)


 du (23)

(provided λbθ(X)(xi,X) > 0 for all xi ∈ X). Since the true intensity of the process is λ(u) =

E[λ(u,x)], a diagnostic interpretation of (21) is that the raw residuals are estimates of
(negative) bias in modelling the intensity. Equation (22) has a more complex interpretation
relating to relative bias in the fitted conditional intensity.

9.3. Variance of residuals
We have obtained general formulae for the variances of the innovations and residuals, that

is, for var [I(B, h, λ)] and var
[
R(B, ĥ, θ̂)

]
, in terms of the two-point conditional intensity

λ(u, v,x) = λ(u,x \ {v})λ(v,x ∪ {u}) = f(x ∪ {u, v})/f(x \ {u, v}).
See Baddeley et al. (2004, 2005). The variance of the innovations for a general weight
function h is

var [I(B, h, λ)] =

∫

B

E
[
h(u,X)2 λ(u,X)

]
du +

∫

B

∫

B

E [S(u, v,X)] du dv (24)
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where

S(u, v,x) = λ(u,x)λ(v,x)h(u,x)h(v,x) + λ(u, v,x)h(v,x ∪ {u}) [h(u,x ∪ {v}) − 2h(u,x)] .

Substituting h ≡ 1, h(u,x) = 1/λ(u,x) or h(u,x) = 1/
√

λ(u,x) gives the variance of
the raw, inverse-lambda or Pearson innovations, respectively. In the special case of an
inhomogeneous Poisson process with intensity λ(u), these reduce to

var [I(B, 1, λ)] =

∫

B

λ(u) du (25)

var [I(B, 1/λ, λ)] =

∫

B

1

λ(u)
du (26)

var
[
I(B, 1/

√
λ, θ)

]
= |B|. (27)

The first equation is of course the variance and mean of n(X). The last equation is analogous
to the fact that the classical Pearson residuals are standardised, ignoring the effect of
parameter estimation.

It is also possible to give variance formulae under the pairwise interaction model (3). In
this case

λ(u, v,x) = λ(u,x \ {v}) λ(v,x \ {u}) c(u, v)

so the variance of the inverse-lambda innovations is

var [I(B, 1/λ, λ)] =

∫

B

∫

B

1

c(u, v)
du dv +

∫

B

E

[
1

λ(u,X)

]
du − |B|2 (28)

generalising a result of Stoyan and Grabarnik (1991).
For the variance of the residuals, the formulae are more cumbersome, involving charac-

teristics of both the fitted model and the underlying point process (Baddeley et al., 2004,
2005). For example, suppose a Poisson process model with intensity λθ(u) is fitted to
a realisation of a Poisson process with true intensity λ(u). Then the raw residuals have
variance

var [R(B)] =

∫

B

λ(u) du +

∫

B

∫

B

cov(λbθ(X)(u), λbθ(X)(v)) du dv

−2

∫

B

∫

B

E

[
λbθ(X∪{u})(v) − λbθ(X)(v)

]
λ(u) dv du.

In the very special case where a homogeneous Poisson process is fitted to a realisation of a
homogeneous Poisson process with intensity θ, the residual variances are

var
[
R(B, 1, θ̂)

]
= θ |B|(1 − |B|/|W |)

var
[
R(B, 1/λ̂, θ̂)

]
= |B|(|W | − |B|)E

[
1{n(X) > 0}

n(X)

]

var
[
R(B, 1/

√
λ̂, λ̂)

]
= |B|(1 − |B|/|W |).

Note that the residual variances are smaller than the corresponding innovation variances

var [I(B, 1, θ)] = θ |B|, var [I(B, 1/θ, θ)] = |B|/θ and var
[
I(B, 1/

√
θ, θ)

]
= |B|. This is

analogous to the deflation of residual variance in a linear model.
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9.4. Uncorrelated errors
Residuals are easiest to interpret and use when they are independent and identically dis-
tributed. Our spatial residuals do not have independent increments. However, for the large
class of Markov point processes (Van Lieshout, 2000), the residuals have conditional inde-
pendence properties. Suppose that the interpoint interactions have finite range r, in the
sense that the conditional intensity λ(u,x) depends only on points of x that lie within a
distance r of the location u. This embraces Poisson processes, the Strauss process, and
many other standard examples. Let U, V be two subsets of W at least r units apart, i.e.
||u − v|| > r for any u ∈ U and v ∈ V . Then it can be shown that the raw innovations
I(U) = I(U, 1, λ) and I(V ) = I(V, 1, λ) are conditionally independent given X ∩ (U ∪ V )c,
and in particular I(U) and I(V ) are uncorrelated. See Baddeley et al. (2004, 2005). We
conjecture that the innovations and residuals satisfy a strong law of large numbers and a
central limit theorem as the sampling window W expands.

10. Approach to diagnostic plots

10.1. Objectives
In Sections 11 and 12 we develop diagnostic plots based on the residuals. We are guided
by analogy with residual plots for other statistical models (Atkinson, 1985; Collett, 1991;
Davison and Snell, 1991) especially logistic regression (Fowlkes, 1987; Landwehr et al., 1984;
Pregibon, 1981). A specific plot is designed for checking each component (‘assumption’) of
the fitted model: spatial trend, dependence on spatial covariates, interaction between points
of the pattern, and other effects. In particular these plots can check for the presence of such
features when the fitted model does not include them. In general, the plots should detect
mis-specification by the model of the true spatial trend, covariate effects and interpoint
interaction in the data.

10.2. Test examples

(a) (b) (c)

Fig. 4. Simulated patterns: (a) inhomogeneous Poisson process; (b) inhomogeneous inhibited pro-
cess (Strauss process); (c) homogeneous clustered process (Geyer’s saturation model).

Figure 4 shows three simulated examples that we use to test the diagnostics. The
patterns contain 71, 271 and 376 points respectively in the unit square. Figure 4(a) is an
example of ‘trend without interaction’: the Poisson process with intensity function λ(x, y) =
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300 exp{−3x}. Figure 4(b) is an example of ‘trend with (inhibitive) interaction’: a pairwise
interaction process (3) with log-quadratic activity function

b(x, y) = 200 exp(2x + 2y + 3x2) (29)

and the ‘Strauss’ interpoint interaction

c(u, v) =

{
γ if ||u − v|| ≤ r
1 otherwise

(30)

with interaction range r = 0.05 and interaction strength γ = 0.1, corresponding to a strong
negative association between points. The realisation in Figure 4(b) was generated by a
Metropolis-Hastings birth-death-shift algorithm (Geyer and Møller, 1994) in a square of
side 1.2 with periodic boundary conditions, then clipped to the unit square.

Figure 4(c) is an example of ‘(clustered) interaction without trend’: a realisation of
the saturation process of Geyer (1999, Section 3.9.2) which has interpoint interactions of
infinite order. We used the same parameters as in Figure 3.1 of Geyer (1999), namely
interaction range r = 0.05, saturation level c = 4.5, activity β = exp(4.0), and interaction
γ = exp(0.4) ≈ 1.5. Since γ > 1 this is a clustered point process. The simulation procedure
was similar to that for panel (b).

10.3. Analogy with generalised linear models
Here we explain a connection between point process models and GLM’s, which provides
statistical insight. For point process models in time, Lewis (1972) recognised that the dis-
cretised likelihood is formally equivalent to the likelihood of a binomial regression model,
which can be maximised using standard software (Brillinger, 1988, 1994; Lindsey, 1992,
1995). For spatial Poisson point processes, Berman and Turner (1992) developed a simi-
lar approach, which was extended to non-Poisson processes by Clyde and Strauss (1991),
Lawson (1992) and Baddeley and Turner (2000). In the general case, a discretised version
of the log pseudolikelihood (12) is formally equivalent to the loglikelihood of a Poisson log-
linear regression. The conditional intensity λ(u;x) of the point process corresponds to the
mean response of the loglinear regression. In the Gibbs representation (7) of the conditional
intensity, the first order term v1 corresponds to the linear predictor of a GLM, while the
higher order (interaction) terms vk are roughly analogous to the distribution of the errors
in a GLM.

11. Diagnostic plots for spatial trend and covariate effects

This section proposes diagnostics for spatial trend and covariate effects. In the GLM con-
text, useful diagnostics for covariate effects are plots of the residuals against (i) index, (ii)
each explanatory variable included in the model, and (iii) explanatory variables that were
not included in the model, including surrogates for a lurking variable (Atkinson, 1985, pp.
3, 34, 62ff.). Here we explore analogues of these plots.

11.1. Spatial display of residuals
To start, consider two models fitted to Figure 4(a): the “correct” model, inhomogeneous

Poisson with intensity λ(x, y) = β exp{−γx}, with maximum likelihood estimates β̂ = 233,

γ̂ = 2.89; and the “null” model, homogeneous Poisson with intensity β (MLE β̂ = 73).
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The residual measure R has atoms at the points xi ∈ x and a negative density at other
locations u ∈ W . A simple pictorial representation of this is the ‘mark plot’ shown in Fig-
ure 5. It consists of a pixel image of the density component (i.e. with greyscale proportional

to the density ĥ(u,x)λ̂(u,x)) and a symbol plot of the atoms (i.e. a circle centred at each

point xi of x with radius equal to the residual mass ĥ(xi,x \ {xi})). Figure 5 shows this
representation for the two fitted models using the Pearson residuals. The expansion in size
of circles from left to right in the first plot is a consequence of the model.

Pearson residuals Pearson residuals

Fig. 5. Mark plot based on Pearson residuals for models fitted to Figure 4(a). Left: inhomogeneous
Poisson model of correct form. Right: incorrect model, homogeneous Poisson.

The mark plot may sometimes identify ‘extreme’ data points (cf. Figure 14). However the
diagnostic interpretation of the residuals is based primarily on their ‘sums’ over subregions
B using (17).

One strategy is to partition W into disjoint subregions B1, . . . , Bm (for example, dividing
a rectangular window into equal squares Bk) and to evaluate R(Bk, h, θ). Nonzero residuals
suggest a lack of fit. For example, if the fitted model is the homogeneous Poisson process,
the raw residual sum R(B) = n(x ∩ B)− |B|n(x)/|W | is the usual residual for the number
n(x∩B) of data points falling in B. Hence this technique embraces the method of quadrat
counting used in spatial statistics (Diggle, 2003, Section 2.5; Cressie, 1991; Stoyan et al.,
1995). For other models, R(B) is a weighted count with data-dependent, spatially-varying
weights. Such weights have not previously been used in quadrat methods to our knowledge.

A better approach is to smooth the residual measure. Taking a smoothing kernel k(·)
(a probability density on R

2), the smoothed residual field at location u is

s(u) = e(u)

∫

W

k(u − v) dR(v, ĥ, θ̂)

= e(u)

[ ∑

xi∈x

k(u − xi)ĥ(xi,x \ {xi}) −
∫

W

k(u − v)ĥ(v,x)λ̂(v,x) dv

]
(31)

where e(u) is a correction for edge effects in the window W given by e(u)−1 =
∫

W
k(u−v) dv.

The smoothed residual field s may be presented as a contour plot and greyscale image as
shown in Figure 6. Bandwidth selection is discussed in Section 13.

The analogous quantity for the innovations has mean zero,

E

[∫

W

k(u − v) dI(v, h, λ)

]
= 0,
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Fig. 6. Contour plots of kernel-smoothed raw residual field for two models fitted to Figure 4(a). Left:
heterogeneous Poisson model of correct form. Range of smoothed field [−34.3, 54.2] Right: incorrect
model, homogeneous Poisson. Range of smoothed field [−67.0, 145.6]. Smoothing kernel: isotropic
Gaussian with standard deviation 0.14. Same greyscale map in each plot.

and we hope s(u) ≈ 0 if the fitted model is correct. For example, for the raw residuals,

s(u) = e(u)

[ ∑

xi∈x

k(u − xi) −
∫

W

k(u − v)λ̂(v,x) dv

]
= λ∗(u) − λ†(u),

the difference between λ∗(u), a nonparametric, unbiased, kernel-smoothing estimator of
the point process intensity function, and λ†(u), a kernel-smoothed version of the para-
metric estimator of the conditional intensity. These two estimates of intensity should be
approximately equal if the fitted model is correct. Positive values of s(u) suggest the model
underestimates the intensity.

Fowlkes (1987) proposed a smoothed residual plot for binary logistic regression in order
to avoid artefacts of the binary nature of the responses. However this involved smoothing
the responses before computing pseudo-residuals. Here it seems more appropriate to smooth
the residuals after fitting, so that the smoothed residuals still have approximately zero mean
under the model.

Kernel-smoothed estimates of the point process intensity (analogous to λ∗(u)) have been
used as exploratory tools in spatial statistics (Diggle, 2003, Section 8.2). The technique
described here introduces model-dependent, data-dependent and spatially-varying weights
on the data points and centering of the smoothed estimate.

Ogata (1988) proposed a residual for space-time point processes, defined as the ratio of
a kernel-smoothed estimate of the local space-time intensity to a parametric estimate of the
spatial intensity. This might be regarded as analogous to the smoothed residual field of the
inverse-lambda residuals.

11.2. Lurking variable plots
In linear modelling, if we suspect the data may depend on a covariate that was not included
in the model, the usual diagnostic is a plot of the residuals against the covariate (Atkinson,
1985, p. 3, 34, 62). Any systematic pattern in this plot indicates a departure from the
model, and suggests the appropriate modification of the linear predictor.

For point process models, by analogy, we may plot the residuals against a spatial covari-
ate, or against one of the Cartesian coordinates (or some other coordinate), to investigate
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the presence of spatial trend (or to assess whether the true spatial trend differs from that
specified by the fitted model). For a spatial covariate Z(u) defined at each location u ∈ W ,
we may evaluate the residual measure on each sub-level set

W (z) = {u ∈ W : Z(u) ≤ z} (32)

yielding a ‘cumulative residual’ function

A(z) = R(W (z), ĥ, θ̂). (33)

This should be approximately zero if the fitted model is correct. For example, for the raw
residuals,

A(z) = n(x ∩ W (z)) −
∫

W (z)

λ̂(u,x) du. (34)

Notice that Ĥ(z) = n(x ∩ W (z))/n(x) is the empirical cumulative distribution function of
the values of the covariate observed at the data points xi. The function A(z) in (34) is an
adjustment of this empirical c.d.f. to have approximately zero mean under the model.

In Figure 4(a), the lurking variable is the x coordinate. Figure 7 shows plots of A(z)
against z based on the covariate Z(x, y) = x. Thus A(z) is the “sum” of residuals in the
region W (z) to the left of the line x = z.
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Fig. 7. Lurking variable plots for the x coordinate, for two models fitted to the data in Figure 4(a).
Cumulative style, Pearson residuals. Left: model of correct form, inhomogeneous Poisson process
with intensity loglinear in x, fitted to data. Right: incorrect model, homogeneous Poisson process,
fitted to data. Solid line: empirical curve A(x). Dotted lines: pointwise 2σ limits based on (27).

The dotted envelopes in Figure 7 are 2σ limits based on the variance of the innovations
under an inhomogeneous Poisson process. This is an overestimate of the residual variance,
because of variance deflation. We use var [A(z)] ≈ var [I(W (z))] where W (z) is given
in (32). This variance can be estimated using (25)–(27), substituting the fitted Poisson

intensity λ̂(u) for λ(u). In this case we used the Pearson residuals, which are standardised
so that var [I(B)] = |B| regardless of λ. Thus the dotted limits in the left and right panels
of Figure 7 are identical.

The 2σ limits have the usual significance interpretation (pointwise) assuming a central
limit theorem applies. The glaring violation of these bounds by the graph in the right
panel of Figure 7 is ample evidence that a homogeneous trend is inappropriate. In the left
panel there is also a slight excursion beyond the limits for small x, but this should not
be invested with formal significance since the normal approximation may be inaccurate for
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small x (since it relates to a small subset of the data). The lurking variable plot is very
effective in this trivial example.

Alternatively we may plot an approximate derivative of A(z), such as

a(z) =

∫

W

k1(Z(u) − z) dR(u, ĥ, θ̂)

=
∑

xi∈x

k1(Z(xi) − z)ĥ(xi,x \ {xi}) −
∫

W

k1(Z(u) − z)ĥ(u,x)λ̂(u,x) du (35)

where k1 is a one-dimensional smoothing kernel (a probability density on R). If the fitted
model is correct we expect a(z) ≈ 0.

11.3. Four-panel plot
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Fig. 8. Standard presentation of the diagnostic plots. Top left: mark plot. Top right: lurking variable
plot for y coordinate. Bottom left: lurking variable plot for x coordinate. Bottom right: contour plot
of smoothed mark field. Data from Figure 4(a); fitted model is homogeneous Poisson; Pearson
residuals.

Figure 8 shows our standard presentation of the diagnostic plots for spatial trend. At
the top left is the mark plot. The bottom right panel is a contour and image plot of the
smoothed residual field, rendered so that the value s(u) = 0 is always represented by the
same greyscale, for easy interpretation.

At the bottom left is a lurking variable plot for the x coordinate, its x axis aligned
with the x coordinates in the mark plot. At top right is a lurking variable plot for the y
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coordinate, rotated 90 degrees anticlockwise, the y axis aligned with the y coordinates in
the mark plot. We have found that the combination of these two lurking variable plots is
often sufficient to draw attention to a spatial trend when it is present.

11.4. Trend in the presence of interaction
We now turn to the more challenging example in Figure 4(b), a simulation of an inhomo-
geneous Strauss process with log-quadratic activity function (29) and pair interaction (30).
Figure 9 shows the four-panel diagnostic plots for two models fitted to these data. Both
models have the correct interpoint interaction (30) with fixed range r = 0.05 but with γ
estimated. On the left is a fitted model of the correct form, with activity

b(x, y) = β0 exp(β1x + β2y + β3x
2) (36)

where βi are estimated by maximum pseudolikelihood (MPL) yielding (β̂0, β̂1, β̂2, β̂3) =
(180, 1.53, 1.90, 1.35) and γ̂ = 0.24; on the right is an incorrect model with homogeneous

trend b(x, y) ≡ β where β is estimated with MPLE β̂ = 1099, γ̂ = 0.34.
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Fig. 9. Four-panel diagnostic plots for (Left) a model of the correct form (inhomogeneous Strauss
process with log-quadratic activity), and (Right) model with incorrect trend, homogeneous Strauss
process, fitted to the data in Figure 4(b). Dotted lines are 2σ limits for a Poisson model.

In computing residuals from a Strauss model, we encounter an ‘edge effect’ problem.
Suppose the data are only a partially observed realisation of a point process Y in a larger
bounded region S containing W , and let λ(u,x) denote the Papangelou conditional intensity
for Y. Then

λ(u,x) = b(u)γt(u,x) (37)

depends on t(u,x), the number of points of x within a distance r of the location u. When u
lies close to the boundary of W , this number is not observable. To avoid this, we compute
and plot residuals only for those locations u lying inside the clipped window

W	r = {u ∈ W : d(u, W c) ≥ r}
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where d(u, W c) is the distance from u to the boundary of W . When W is the unit square,
W	r = [r, 1 − r]2. We caution that substantial bias may occur if edge effects are ignored.

The dotted lines in Figure 9 are the 2σ limits for the innovations under the Poisson
model and are shown for indicative purposes only. These underestimate the innovation
variance for a Strauss model. We are still developing algorithms for computing residual
variance in non-Poisson models.

The left panel in Figure 9 indicates that the correct model is a tolerably good fit,
although it (correctly) suggests the trend is underestimated. In the right panel, the lurking
variable plot for the x coordinate (bottom left) shows a distinctive and persistent dip, which
strongly indicates that the homogeneous model is inappropriate. The mark plots show a
few data points with large residual mass. Before interpreting these as ‘outliers’ one should
remember the exponential form of the conditional intensity (37) and the small value of
the interaction parameter γ̂ ∼ 0.25. An increase of 1 in the number t(xi,x) of nearby
data points causes the Pearson residual mass to increase by a factor of γ̂−1/2 ∼ 2. This
phenomenon is even more exaggerated for the inverse-lambda residuals, where each extra
neighbour increases the residual mass by a factor of γ̂−1 ∼ 4. This sensitivity is analogous to
the high variance of the Horvitz-Thompson estimator (Horvitz and Thompson, 1952) when
some of the sampling units have small probabilities of being selected. The raw residuals
have no such sensitivity. This suggests that the raw residuals may be the best tool for
investigating outliers in the context of strong interpoint inhibition.

11.5. Applications
11.5.1. Japanese pines data

Ogata and Tanemura (1986) fitted an inhomogeneous pairwise interaction model to Figure 1.
The activity function b was log-cubic (i.e. log b(u) was a cubic polynomial in the Cartesian
coordinates of u) and c was the ‘soft-core’ interaction

c(u, v) = exp

{
−

(
σ

||u − v||

)2/κ
}

, u 6= v (38)

where 0 ≤ σ < ∞ and 0 < κ < 1 are parameters with κ = 0.5 fixed. See also Baddeley and
Turner (2000).

The left side of Figure 10 shows the diagnostic plots for the Ogata-Tanemura model. It
suggests good agreement between the trend in the fitted model and in the data. The right
side shows the diagnostics for the homogeneous soft-core model, i.e. with no trend term
but with soft-core interaction as in the Ogata-Tanemura model. This shows clearly that
the homogeneous model misspecifies the trend. A similar diagnostic plot for the soft-core
model with log-linear trend conveys the same message.

11.5.2. Queensland copper data

A common thread in the analyses of Figure 2 (Berman, 1986; Berman and Turner, 1992;
Foxall and Baddeley, 2002) is to assess the dependence of the point pattern of copper
deposits on proximity to the lineaments. Let the covariate Z(u) be the distance from
the location u to the nearest lineament. This can easily be computed analytically for all
locations in a fine pixel grid. See Figure 11.
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Fig. 10. Diagnostics for two models fitted to the Japanese pines data of Figure 1. Left: soft core with
log-cubic trend. Right: homogeneous soft-core.

Fig. 11. Spatial covariate for the copper data of Figure 2. Thick lines: observed lineaments. Thin
lines: contours of distance to the nearest lineament.

Because of the fine spatial structure of this covariate, the four-panel plot is not useful:
instead a lurking variable plot for the covariate is appropriate. First we fit the null model
of a homogeneous Poisson process. For this model, and for the raw residuals, (34) becomes

A(z) = n(x ∩ W (z)) − n(x)|W (z)|/|W | = n(x)
[
Ĥ(z) − H0(z)

]

where Ĥ(z) = n(x ∩W (z))/n(x) is the empirical c.d.f. of the values of the covariate at the
data points, and H0(z) = |W (z)|/|W | is the empirical c.d.f. of the covariate at all locations

in W . Berman (1986) proposed comparing the two c.d.f.’s Ĥ and H0 by plotting them
against z, as shown in the left panel of Figure 12, and comparing various moments. This is
equivalent to a lurking variable plot for the exponential energy marks (for the homogeneous
Poisson model). The right panel shows a lurking variable plot of the Pearson residuals for
the homogeneous Poisson model. Both plots suggest the model is adequate. Our technique
has the advantage that any fitted model may be treated in the same way.
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Fig. 12. Lurking variable plots for the homogeneous Poisson point process fitted to the Queensland
copper data. Left: Berman’s plot: unnormalised empirical c.d.f. of distance to nearest lineament at
the observed points of the process. Right: cumulative Pearson residuals against distance to nearest
lineament. Pointwise 2σ limits based on equations (25) and (27) respectively.

11.5.3. Chorley-Ribble data

The null model considered by Diggle (1990) states that the point pattern of cases of cancer
of the larynx in Figure 3 is an inhomogeneous Poisson process with intensity λ(u) = β ρ(u)
where β > 0 is a parameter and ρ(u) is the spatially-varying density of the susceptible
population. Cases of lung cancer served as a surrogate for the susceptible population, and ρ
was estimated by kernel smoothing the point pattern of lung cancer cases, using an isotropic
Gaussian kernel with standard deviation σ = 0.15 km as chosen by Diggle (1990).
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Fig. 13. Lurking variable plots of the raw residuals against distance from the incinerator, for the
Chorley-Ribble data. Left: null model. Right: model fitted by Diggle and Rowlingson (1994).

Figure 13 shows lurking variable plots of the raw residuals against distance from the
incinerator, for two models fitted to the Chorley-Ribble data. The left panel is for the null
model of no incinerator effect. It suggests strongly that the null model is not correct, and
that there is increased intensity near the incinerator. Possible explanations discussed by
Diggle (1990) include clustering of disease cases (e.g. due to correlation within families) as
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well as a carcinogenic effect from the incinerator.
The right panel in Figure 13 is for the model of Diggle (1990) that includes an incinerator

effect. It is an inhomogeneous Poisson process with intensity λ(u) = βρ(u)δ(u, θ), where
δ(u, θ) is a parametric function of the distance from u to the incinerator (Diggle, 1990,
equation (6)). We used the parameter values θ obtained by Diggle and Rowlingson (1994).
The right panel gives a slight suggestion that the model fitted by Diggle and Rowlingson
(1994) overestimates the intensity of cases, at distances close to zero and beyond 5 km. The
graph strays outside the 2σ limits close to the origin (distance = 0) but, again, these limits
probably have less than 95% coverage near the origin because the expected number of cases
is small. A more conclusive assessment of significance could be obtained by simulation. The
left panel of Figure 13 can also be used to suggest the functional form of the incinerator
effect term δ(u, θ) as alternatives to equation (6) of Diggle (1990).

The lurking variable plot, for the raw residuals and for a Poisson fitted model, is a
plot of n(x)F̂ (d) − T̂ (d) against d, where F̂ (d) is the empirical c.d.f. of the distances di,

and T̂ (d) =
∫

W (d)
λ̂(u) du. This is closely related to the model-checking technique used in

Berman (1986) and Diggle (1990, Section 3.2). The lurking variable plots for the inverse-
lambda and Pearson residuals also have direct interpretations.

Fig. 14. Left: mark plot of Pearson residuals for the null model fitted to the Chorley-Ribble data,
showing a huge residual at the location (360, 428). Right: radii proportional to log residuals.

Diagnostic plots for the inverse-lambda and Pearson residuals reveal some other incon-
sistencies between the data and the fitted null model. Figure 14 shows an apparent ‘outlier’.
This is a case of laryngeal cancer where the kernel estimate ρ̂(u) is very low. This raises
questions about the appropriateness of the estimator ρ̂, rather than necessarily indicating
an anomalous observation.

The greatest advantage of the lurking variable plot is that it is equally applicable to non-
Poisson point process models. Diggle (1990) mentioned several competing explanations for
the observed elevated incidence of laryngeal cancer near the incinerator, including outliers
and clustering. It is feasible to assess alternative models by computing the analogue of
Figure 13. For example, to assess whether the raised incidence of laryngeal cancer near the
incinerator could be attributable to clustering of disease cases, we fitted a heterogeneous
version of the Geyer saturation process model (Geyer, 1999) to the Chorley-Ribble data,
with first order term proportional to ρ(u). This model allows for either positive or negative
association between points. The fitted model was, however, very close to a Poisson process,
and the lurking variable plots were indistinguishable from the left panel of Figure 13. This
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suggests that clustering (as fitted in this model) does not explain the observations. Further
investigation will be reported elsewhere.

12. Diagnostic plots for interpoint interaction

12.1. Q–Q plots
Next we develop residual plots to validate the interpoint interaction component of a model.
Under the analogy between point processes and GLM’s, interpoint interaction in a point
process is analogous to the distribution of residuals in a GLM. The most appropriate tool for
assessing the distributional assumptions in a GLM is a summary of the empirical distribution
of the residuals, such as a Q–Q plot.

We therefore propose a Q–Q plot comparing empirical quantiles of the smoothed residual
field s(u) to the corresponding expected empirical quantiles for s(u) under the fitted model
(estimated by Monte Carlo). In practice, this would be achieved by computing the values
s(uj) at a fine grid of locations uj in W , and sorting them to obtain the order statistics.
This is done for the data and for a large number of simulated realisations from the fitted
model. To each simulated dataset we fit the same model, performing similar calculations,
and taking the sample mean of the order statistics in the simulated arrays.

Details are as follows. Denote by s(u,x, θ̂) the value of the smoothed residual field at

the location u ∈ W computed for the model with fitted parameter θ̂ on the dataset x. Let
uj , j = 1, . . . , J be fixed locations in W . After fitting the model to the original dataset x

we compute the values of the smoothed residual field s at these locations, sj = s(uj ,x, θ̂),
and sort them to obtain their order statistics s[1] ≤ s[2] ≤ . . . ≤ s[J]. We then generate N

independent simulated realisations of the fitted model x(1), . . . ,x(N). For each n = 1, . . . , N
we fit the model to x(n) with parameter estimate θ̂(n), compute the smoothed residual field

values s
(n)
j = s(uj ,x

(n), θ̂(n)), and obtain order statistics s
(n)
[1] ≤ . . . ≤ s

(n)
[J] . The sample

mean of the jth order statistic ej = 1
N

∑N
n=1 s

(n)
[j] is computed for each j. Thus, we are

estimating the expected jth quantile of s under the model fitted to the original data. A
rationale for using expected quantiles is offered in Gnanadesikan and Wilk (1970). The Q–Q
plot is a scatterplot of the data quantiles s[j] against the mean quantiles ej . To gauge the
significance of any deviations we may add critical intervals for s[j], of pointwise significance

level α, obtained as the sample quantiles, of probability α/2 and 1−α/2, of {s(1)
[j] , . . . , s

(N)
[j] }.

We caution that substantial bias and other artefacts in the Q–Q plot may occur if edge
effects are ignored. The residuals should only be evaluated in the eroded window W	r

where r is the range of interpoint interaction.

12.2. Test example
Figure 4(c) is a homogeneous clustered pattern generated by Geyer’s saturation process.
Figure 15 shows Q–Q plots, based on the Pearson residuals, for models fitted to this pattern.
The left panel of Figure 15 is for a model of the correct form, the homogeneous saturation
process, with the irregular parameters r, c fixed at their correct values. This suggests good
agreement between the fitted model and the data. The right panel is for the (incorrect)
homogeneous Poisson model. It shows clear disagreement between the model and the data.
The smoothed residual field for the data has a heavier left tail, and higher variability, than
the smoothed residual field for simulations from the fitted Poisson model. This is consistent
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with a clustered point pattern. Note the different scales of the left and right panels, and
the wider prediction interval in the left panel.
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Fig. 15. Q–Q plots for spatial point process models fitted to Figure 4(c). Left : model of the correct
form, homogeneous saturation process. Right: homogeneous Poisson process. Dotted lines show
pointwise 95% critical intervals obtained by simulation.

For each Q–Q plot in Figure 15, the smoothed residual field was evaluated at a 40× 40
grid of pixels, and percentiles of these values obtained. The expected percentiles were
estimated (using the 5% trimmed sample mean) from 100 simulated realisations of the
fitted model. For the saturation model (left panel), each realisation was obtained from the
same simulation algorithm as the original data. Total computation time for Figure 15 was
approximately 70 minutes on a 2.0 GHz Linux desktop. For investigative work, adopting a
25×25 pixel grid, using only 40 simulated realisations and 104 Metropolis-Hastings iterations
per realisation, produces a practically useful Q–Q plot in one minute.

A possible alternative to Monte Carlo simulation would be analytic evaluation of the
distribution of s(u) for a given model. This seems to be difficult in general; it is done for the
homogeneous Poisson process in Baddeley et al. (2005). The null distribution of values s(u)
is heavily skewed, justifying the use of the trimmed mean in our Monte Carlo calculations.

12.3. Spatial rationale for interpreting Q–Q plots
Qualitative interpretation of the Q–Q plots requires us to understand the information con-
veyed in the smoothed residual field s(u) in (31). For heuristic purposes, suppose the fitted
model is CSR, and take the smoothing kernel k to be the uniform density on the disc of
radius r centred at the origin, k(u) = 1{||u|| ≤ r}/(πr2). Ignore edge effects by restricting
attention to locations u in W	r. Then the raw residual field is

s(u) =
t(u,x)

λπr2
− 1

where again t(u,x) is the number of points of x within a distance r of the location u. This is
known to contain information about interpoint interaction. The maximum value of t(u,x)
over all locations u ∈ W	r is the scan statistic, a well-known summary statistic used for
detecting clustering (Kulldorff, 1999). The sum of t(xi,x) over all data points xi ∈ x is
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proportional to an estimate of the K function. The zero fraction of t(u,x) is

|{u ∈ W	r : t(u,x) = 0}|/|W	r| = 1 − F̂ (r)

where F̂ is the empirical empty space function of x (using the border method edge correc-
tion). The latter is a popular summary statistic for detecting interpoint interaction (Ripley,
1977; Diggle, 2003; Møller and Waagepetersen, 2003a; Stoyan et al., 1995).

Rules for qualitative interpretation of the Q–Q plots are therefore very similar to the
established rules for interpreting F̂ . If the data pattern is more clustered than the model,
the empirical distribution of s(u) should have heavier tails than the reference distribution,
especially in the left tail. Figure 15 is an example. If the pattern is more inhibited (less
clustered) than the model, the empirical distribution of s(u) should have lighter tails than
the reference distribution, especially in the right tail. See Figure 17. Since it is the tails of
s(u) which are of primary interest, Q–Q plots are the appropriate tool.

12.4. Range of interpoint interaction
Here we test the ability of the Q–Q plots to detect an incorrectly specified interpoint in-
teraction. Recall that the data in Figure 4(c) were generated by a saturation process with
interaction range r = 0.05. Figure 16 shows Q–Q plots for fitted models in which r has
been underestimated or overestimated with an error of 0.01. They clearly show that these
models have incorrectly estimated the interaction. Similar results were obtained for under-
and over-estimation of the interaction range r in the Strauss process.

−4 −2 0 2 4 6

−4
−2

0
2

4
6

Mean quantile of simulations

da
ta

 q
ua

nt
ile

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

Mean quantile of simulations

da
ta

 q
ua

nt
ile

Fig. 16. Q–Q plots for fitted models in which the range of interaction has been underestimated (Left:
r = 0.04) or overestimated (Right, r = 0.06) in the Geyer saturation model with r = 0.05. Fitted to
data in Figure 4(c). Pearson residuals.

12.5. Interaction in presence of trend
The synthetic pattern in Figure 4(b) has log-quadratic spatial trend and a Strauss interpoint
interaction. Figure 17 shows the diagnostic plots for a model with the correct form of spatial
trend, but no interpoint interaction, that is, an inhomogeneous Poisson process with log-
quadratic intensity function (36). The trend plots show no evidence of departure, while the
Q–Q plot demonstrates that this model is quite inappropriate.

Figure 18 shows residual Q–Q plots for two models fitted to Figure 4(b) with the correct
form of the interaction. The left panel is for a model with a trend of the correct form, and
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Fig. 17. Diagnostics for a Poisson process with log-quadratic intensity fitted to the data in Figure 4(b).

suggests that the interaction is modelled correctly. The right panel is for a homogeneous
process, i.e. b(u) is constant. It suggests the observed residuals have heavier left and right
tails than the reference distribution. However this is an artefact of the large spatial variation
in intensity, and shows that gross misspecification of the spatial trend can affect the Q–Q
plots.
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Fig. 18. Q–Q plots for models with the correct interaction (Strauss) fitted fitted to the data in Fig-
ure 4(b). Left: trend of the correct form (log-quadratic). Right: trend of the incorrect form (homoge-
neous).

12.6. Applications
12.6.1. Japanese pines data

The left panel of Figure 19 shows a Q–Q plot for the Ogata-Tanemura model, based on
the Pearson residuals. It suggests the soft core interaction is a good fit. The right panel is
for a homogeneous soft core model. Although the trend is misspecified, the Q–Q plot still
suggests a reasonable fit to the interaction. The conclusion from our analysis here and in
Section 11.5.1 is that the Ogata-Tanemura model is a good fit to the Japanese pines data.
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Fig. 19. Q–Q plots for soft-core models fitted to the Japanese pines data of Figure 1. Left: Ogata-
Tanemura model, log cubic trend. Right: homogeneous trend.

12.6.2. Queensland copper data

Although the lurking variable plots in Figure 12 suggest that a homogeneous Poisson model
for the copper deposits is adequate, these plots are only designed to assess spatial trend.
The copper deposits are clustered, as can be shown using standard techniques such as the
K function or G function, or using our Q–Q plot for a homogeneous Poisson model.

We fitted a homogeneous saturation model to the copper data by maximum profile
pseudolikelihood (Baddeley and Turner, 2000) to obtain r̂ = 1.19 km, ĉ = 2, γ̂ = 2.86,
reflecting quite strong clustering. Diagnostics for this model are shown in Figure 20. The
Q–Q plot suggests that the data may be even more clustered than the fitted model, assuming
the trend is correctly specified; alternatively a covariate effect may be present. Models
involving both covariate effects and strong clustering are investigated by Baddeley and
Turner (2005a).
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Fig. 20. Diagnostics for a homogeneous saturation model fitted to the Queensland copper data. Left:
lurking variable plot against distance to nearest lineament. Right: Q–Q plot. Pearson residuals.

12.6.3. Cells data

An extreme example of interaction is the ‘biological cells’ dataset (Ripley, 1977) shown in
the left panel of Figure 21. It is often modelled by a hard core process (Ripley, 1981; Diggle,
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2003) with hard core radius 0.04 (the window is the unit square). This corresponds to a
homogeneous Strauss process with interaction range r = 0.08 and interaction parameter
γ = 0. A hard core model was fitted by maximum pseudolikelihood with r = 0.08 fixed,
yielding β̂ = 201, 142 with and without edge correction. Four-panel plots of the two models
(not shown) indicate clearly that β̂ = 142 is an underestimate, while β̂ = 201 appears
reasonable.
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Fig. 21. Left: Cells data. Right: Q–Q plot for fitted Strauss process model. Pearson residuals.

The Q–Q plot in the right panel of Figure 21 is for the model with β̂ = 201. The
empirical quantiles have a lighter left tail, suggesting that the data are more tightly packed
than the fitted model. However, in this extreme case, both the fitting algorithm (maximum
pseudolikelihood) and simulation algorithm (Metropolis-Hastings) are known to have poor
performance, and alternatives should be explored (cf. Mase et al., 2001).

In practice, a hard core model is often fitted using algorithms for fitting the Strauss
process, since the hard core model is obtained by setting γ = 0 in the Strauss model.
This introduces a further difficulty with the inverse-lambda residuals. Since the residual
density ĥ(u,x)λ̂(u,x) = 1{λ̂(u,x) > 0} is a discontinuous function of λ̂(u,x), the residuals

are unstable to numerical error when λ̂(u,x) ≈ 0, that is, when γ̂ ≈ 0. The remedy is to
constrain γ to be exactly zero.

13. Computation

This section explains our strategy for computing the spatial residuals. The software imple-
mentation has been incorporated in our library spatstat (Baddeley and Turner, 2005a,b)
in the R package (R Development Core Team, 2004).

13.1. Discretised residual measure
Some discretisation of the residual measure is required for computation. For this paper we
fitted models by maximum pseudolikelihood using the device of Berman and Turner (1992),
although this is not essential to the technique. It is therefore convenient to use the same
discretisation device to compute the residual measure.

In the Berman-Turner device, the observed point pattern x is first augmented by numer-
ous “dummy” points to form a set of quadrature points uj , j = 1, . . . , M . Weights wj are
then associated with the quadrature points uj so that integrals of the form

∫
B g(u) du are
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well approximated by finite sums
∑

j 1{uj ∈ B}wjg(uj). The residual measure R(B, ĥ, θ̂)
will be approximated by

R∗(B) =
∑

uj∈B

(yj − λ̂j)wj ĥj (39)

where ĥj = hbθ(uj ,x \ {uj}), λ̂j = λbθ(uj ,x) and yj = zj/wj , where zj is the indicator equal
to 1 if uj is a data point and 0 for a dummy point. The yj correspond to the responses in
the associated Poisson loglinear regression. An individual summand in (39),

rh
j = (yj − λ̂j)wj ĥj = (zj − λ̂jwj)ĥj , (40)

may be regarded as a residual for the region surrounding the quadrature point uj .

Note that the residuals attached to the data points xi have different meanings in the
continuous theory (Section 7) and in the discrete approximation (40). For example, the raw
residuals defined in Section 7.2 attach unit mass to each data point xi, while the discretised
raw residual r1

j = zj − λ̂jwj is not equal to 1 for a data point; rather it approximates the
residual sum over a region associated with uj .

In other statistical modelling contexts where a weighted likelihood is used, the Pearson

residuals would usually be defined as r∗j =
√

wj

(
yj/λ̂

1/2
j − λ̂

1/2
j

)
so that the sum of squared

Pearson residuals equals the Pearson X2 statistic. However, this does not hold here.

13.2. Bandwidth selection
The bandwidth for the kernel k in (31) could be chosen in several ways. Since the smoothed
raw residual field is closely related to a kernel-smoothed estimate of the point process inten-
sity, we could minimise mean square error (Diggle, 1985; Berman and Diggle, 1989; Stoyan
and Stoyan, 1995, pp. 237–238). Alternatively there are rules of thumb for bandwidth
selection for the pair correlation function (Stoyan and Stoyan, 1995, p. 285).

The bandwidths in this paper were chosen by cross-validation (Wand and Jones, 1995) of
the discretised residuals. Let rj = rh

j denote one of the discretised residuals defined above.
Recall that rj is a quadrature approximation to the residual integral in a region surrounding
uj . By the usual rationale for nonparametric regression, we should apply cross-validation
to the values sj = rj/wj . Let kb(u) = b2k1(u/b) be the kernel of bandwidth b > 0, where
k1 is a fixed probability density on R

2. Then we choose b to minimise C(b) =
∑

i(si − ŝi)
2

where ŝi =
∑

j 6=i aijsj/
∑

j 6=i aij with aij = kb(uj − ui).

14. Scope of application

The residuals are defined for any point process model with a density satisfying the positivity
condition (2). A practical constraint is that the conditional intensity must be computable.
Our current software does not handle two important families of models for clustered pat-
terns, the independent cluster processes and Cox processes. However, the absence of exam-
ples of these models here does not reflect any fundamental limitation of the method.

For a Cox process X driven by a random intensity function Λ(u), u ∈ W (that is, X is
conditionally a Poisson process with intensity function Λ) the conditional intensity is

λ(u,x) = E[Λ(u)|X = x], u 6∈ x. (41)
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The right hand side can be estimated by MCMC methods (Møller et al., 1998; Møller, 2003;
Møller and Waagepetersen, 2003a) so that the residuals can then be computed. The same
calculation is required to implement many MCMC techniques for this model.

The trend plots (Section 11) will have the greatest benefit for models where it is easy to
compute the conditional intensity. This includes (inhomogeneous) pairwise interaction pro-
cesses like the Strauss process, and some infinite-order interactions like Geyer’s saturation
model. For such models the trend plots do not require any simulation.

The Q–Q plots depend on extensive simulation, and therefore compete on a more even
footing with ad hoc methods in spatial statistics; except that the Q–Q plot is already a
familiar tool, and that the residuals are constructed so that they reflect intrinsically any
deviation from the specific model in question.

Our technique requires that the fitted model be a fully-specified point process. It does
not immediately apply to partial likelihood techniques, like that of Diggle and Rowling-
son (1994), which only estimate some of the model’s parameters. However, the missing
parameters can usually be filled in by standard estimators, and our technique then applies.
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