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Abstract

We study a flexible class of finite disc process models with interaction between

the discs. We let U denote the random set given by the union of discs,

and use for the disc process an exponential family density with the canonical

sufficient statistic only depending on geometric properties of U such as the area,

perimeter, Euler-Poincaré characteristic, and number of holes. This includes

the quarmass-interaction process and the continuum random cluster model as

special cases. Viewing our model as a connected component Markov point

process, and thereby establish local and spatial Markov properties, becomes

useful for handling the problem of edge effects when only U is observed

within a bounded observation window. The power tessellation and its dual

graph become major tools when establishing inclusion-exclusion formulae,

formulae for computing geometric characteristics of U , and stability properties

of the underlying disc process density. Algorithms for constructing the power

tessellation of U and for simulating the disc process are discussed, and the

software is made public available.
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1. Introduction

This paper concerns probabilistic results of statistical relevance for planar random

set models given by a finite union of discs U = UX, where X denotes the corresponding

finite process of discs. We distinguish between the case where we can observe the discs

in X and the random set case where only (or at most) U is observed. The latter case

occur frequently in applications and will be of main interest to us.

Our random closed set U is a particular example of a germ-grain model [17], with

the grains being discs. It is well-known that any random closed set whose realizations

are locally finite unions of compact convex sets is a germ-grain model with convex and

compact grains [41, 42]. However, in order to make statistical inference, one needs

to restrict attention to a much smaller class of models such as a random-disc process

model, and indeed random-disc Boolean models play the main role in practice, see [40]

and the references therein. The Boolean model is in an abstract setting given by a

Poisson process of compact sets (the grains) with no interaction between the grains.

Many authors (e.g. [2, 8, 9, 16, 19, 40]) have mentioned the need of developing flexible

germ-grain models with interaction between the grains.

We study a particular class of models for interaction among the discs, specified by

a point process density for X with respect to a reference Poisson process of discs.

The density is assumed to be of exponential family form, with the canonical sufficient

statistic T (X) = T (U) only depending on X through U , where T (U) is specified in terms

of geometric characteristics for the connected components of U , for example, the area

A(U), the perimeter L(U), the number of holes Nh(U), and the number of connected

components Ncc(U). Further geometric characteristics are specified in Section 4.1 in

terms of the power tessellation (e.g. [1]), which provides a subdivision of U (see Figure 2

in Section 3). An important special case of our models is the quarmass-interaction

process, first introduced in Kendall, van Lieshout and Baddeley [19], where T (U) =

(A(U), L(U), χ(U)) and χ(U) = Ncc(U) − Nh(U) is the Euler-Poincaré characteristic

(quarmass-integrals in R2 are linear combinations of A,L, χ). Another special case is

the continuum random cluster model [15, 23, 28], where T (U) = Ncc(U).

We show that the power tessellation and its dual graph are extremely useful when

establishing
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(i) inclusion-exclusion formulae for T (U);

(ii) formulae for computing geometric characteristics of U ;

(iii) Ruelle and local stability of the density of X, and thereby convergence properties

of MCMC algorithms for simulating X.

Among other things we demonstrate that a main geometric result in [19] related to

the issue of Ruelle stability is easily derived by means of the power tessellation and its

dual graph. Furthermore, as explained in Section 4.5, it becomes useful to view our

models as connected component Markov point processes [2, 4, 7, 30] in a similar way

as the Markov connected component fields studied in [32]. In particular, we establish

(iv) local and spatial Markov properties of X, which become useful for handling the

problem of edge effects when only U is observed within a bounded observation

window.

The paper is organized as follows. Section 2 specifies our notation and assumptions,

and discusses a general position property of the discs in X. Section 3 defines and

studies the power tessellation of a union of discs in general position. The main section,

Section 4, studies exponential family properties and the above-mentioned issues (i)-(iv).

Also various examples of simulated realizations of our models are shown in Section 4.

Section 5 discusses extensions of our work and some open problems. Finally, most

algorithmic details are deferred to Appendices A-B.

A substantial part of this work has been the developments of codes in C and R for

constructing power tessellations and making simulations of our models. The codes are

available at www.math.aau.dk/~jm/Codes.union.of.discs.

2. Preliminaries

2.1. Setup

Throughout this paper we use the following notation and make the following as-

sumptions.

By a disc we mean more precisely a two-dimensional closed disc b = {y ∈ R2 :

‖y − z‖ ≤ r} with centre z ∈ R2 and positive radius r > 0, where ‖ · ‖ denotes usual
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Euclidean distance. We identify b with the point x = (z, r) in R2 × (0,∞), and write

b = b(x) = b(z, r). Similarly, we identify point processes of discs bi = b(zi, ri) with

point processes on R2 × (0,∞).

The reference point process will be a Poisson process Ψ of discs; thus the random

set given by the union of discs in Ψ is a Boolean model (e.g. [27]). Specifically, Ψ is

assumed to be a Poisson point process on R2 × (0,∞), with an intensity measure of

the form ρ(z) dz Q(dr), where dz is Lebesgue measure on R2 and Q is an arbitrary

probability measure on (0,∞). In other words, the point process Φ of centres of discs

given by Ψ is a Poisson process with intensity function ρ on R2, the radii of these

discs are mutually independent and identically distributed with distribution Q, and Φ

is independent of the radii. An example of a simulation from such a process is shown

in Figure 1. The concrete specification of ρ and Q is not important for most results

in this paper, but the specification is of course crucial for statistical inference, see [31].

Local integrability of ρ is assumed to ensure that with probability one, Φ ∩ S is finite

for any bounded region S ⊂ R2. Since we can view the radii as marks associated to

the points given by the centres of the discs, we refer to Q as the mark distribution. In

the special case where Q is degenerate at R > 0, we can consider R as a parameter

and identify Ψ with Φ.

Figure 1: A realization of a reference Poisson process with Q the uniform distribution on the

interval [0, 2], ρ(u) = 0.2 on a rectangular region S = [0, 30]× [0, 30], and ρ(u) = 0 outside S.

In the sequel, S denotes a given bounded planar region such that
∫

S
ρ(z) dz > 0.
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The object of primary interest is the random closed set

UX = ∪x∈Xb(x)

where X is a finite point process defined on S × (0,∞). If X = ∅ is the empty

configuration, we let UX = ∅ be the empty set. Note that the centres of the discs are

contained in S but the discs may extend outside S. We assume that X is absolutely

continuous with respect to the reference Poisson process Ψ, and denote the density

by f(x) for finite configurations x = {x1, . . . , xn} with xi = (zi, ri) ∈ S × (0,∞) and

0 ≤ n <∞ (if n = 0 then x is the empty configuration).

We focus on the case where the density is of the exponential family form

fθ(x) = exp (θ · T (Ux)) /cθ (1)

where θ is a real parameter vector, · denotes the usual inner product, T (U) is a statistic

of the same dimension as θ, and cθ is a normalizing constant depending on θ (and of

course also on (T, ρ, Q)). Note that fθ(x) > 0 for all x. Further details on the choice

of T and the parameter space for θ are given in Section 4. Note that (1) is also the

density of the random set UX with respect to the reference Boolean model, and

cθ =exp
(
−
∫

S

ρ(z) dz

)
×
[

exp(θ · T (∅)) +
∞∑

n=1

∫
S

∫ ∞

0

· · ·
∫

S

∫ ∞

0

exp
(
θ · T

(
U{(z1,r1),...,(zn,rn)}

)) n∏
1

ρ(zi) dz1 Q(dr1) · · · dzn Q(drn)
]

(2)

is in general not expressible on closed form (unless θ 6= 0).

As noticed in Section 1, a quarmass-interaction process is obtained by taking T (U) =

(A(U), L(U), χ(U)), where A(U) is the area, L(U) the perimeter and χ(U) the Euler-

Poincaré characteristic of U . We consider here the so-called additive extension of the

Euler-Poincaré characteristic, which is also of primary interest in [19], i.e.

χ(U) = Ncc(U)−Nh(U) (3)

where Ncc(U) is the number of connected components of U and Nh(U) is the number of

holes of U . The special case where Q is degenerate and T (U) = A(U) is known as the

area-interaction point process, Widom-Rowlinson model or penetrable spheres model,

see e.g. [3, 15, 19, 43].
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2.2. General position of discs

It becomes essential in this paper that with probability one, the discs defined by

Ψ are in general position in the following sense. Identify R2 with the hyperplane of

R3 spanned by the first two coordinate axes. For each disc b(z, r), define the ghost

sphere s(z, r) = {y ∈ R3 : ‖y − z‖ = r}, i.e. the hypersphere in R3 with centre z and

radius r. A configuration of discs is said to be in general position if the intersection of

any k + 1 corresponding ghost spheres is either empty or a sphere of dimension 2− k,

where k = 1, 2, . . .. Note that the intersection is assumed to be empty if k > 2, and

a sphere of dimension 0 is assumed to consists of two points. The upper left panel

in Figure 2 shows a configuration of discs in general position; we shall use this as a

running example to illustrate forthcoming definitions.

Lemma 1. For almost all realizations of Ψ = {x1, x2, . . .}, the discs b1 = b(x1), b2 =

b(x2), . . . are in general position.

Proof. By Campbell’s theorem (see e.g. [40]), the mean number of sets of k+1 ghost

spheres whose intersection is neither empty nor of dimension 2− k is given by∫
R2

∫ ∞

0

· · ·
∫

R2

∫ ∞

0

1
[
∩k

0si 6= ∅, dim
(
∩k

0si

)
6= 2− k

]
∏k

0 ρ(zi)
(k + 1)!

dz0 Q(dr0) · · · dzk Q(drk)

where 1[·] is the indicator function and si = s(zi, ri). This integral is zero, since for any

fixed values of r0 > 0, . . . , rk > 0, the indicator function is zero for Lebesgue almost

all (z0, . . . , zk) ∈ R2(k+1).

All point process models for discs considered in this paper have discs in general

position: by Lemma 1, the discs in X with density (1) are in general position almost

surely.

3. Power tessellation of a union of discs

This section defines and studies the power tessellation of a union of discs U = ∪i∈Ibi.

We assume that the discs bi, i ∈ I satisfy the general position assumption (henceforth

GPA).
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3.1. Basic definitions

In this section, there is no need for assuming that the index set I is finite, though

this will be the case in subsequent sections.

For each disc bi (i ∈ I) with ghost sphere si, let s+
i = {(y1, y2, y3) ∈ si : y3 ≥ 0}

denote the corresponding upper hypersphere, and for u ∈ bi, let yi(u) denote the unique

point on s+
i those orthogonal projection on R2 is u. The subset of s+

i consisting of

those points “we can see from above” is given by

Ci = {yi(u) : u ∈ bi, ‖u− yi(u)‖ ≥ ‖u− yj(u)‖ whenever u ∈ bj , j ∈ I},

and the GPA implies that the non-empty Ci have disjoint 2-dimensional relative

interiors. Thus, as illustrated in the upper right panel in Figure 2, the non-empty

Ci form a tessellation (i.e. subdivision) of ∪Is
+
i corresponding to the 2-dimensional

pieces of upper ghost spheres “as seen from above”. Projecting this tessellation onto

R2, we obtain a tessellation of U , see the lower left panel in Figure 2. Below we specify

this tessellation in detail.

Let J = {i ∈ I : Ci 6= ∅}. For i ∈ I, define the power distance of a point u ∈ R2

from bi = b(zi, ri) by πi(u) = ‖u− zi‖2 − r2
i , and define the power cell associated with

bi by

Vi = {u ∈ R2 : πi(u) ≤ πj(u) for all j ∈ I}.

For distinct i, j ∈ I, define the closed halfplane Hi,j = {u ∈ R2 : πi(u) ≤ πj(u)}. Each

Vi is a convex polygon, since it is a finite intersection of closed halfplanes Hi,j . The

power cells have disjoint interiors, and by GPA, each Vi is either empty or of dimension

two. Consequently, the non-empty power cells Vi, i ∈ J constitute a tessellation of R2

called the power diagram (or Laguerre diagram), see [1] and the references therein. In

the special case where all radii ri are equal, we have I = J and the power diagram is a

Voronoi tessellation (e.g. [29, 35]) where each cell Vi contains zi in its interior. If the

radii are not equal, a power cell Vi may not contain zi, since Hi,j may not contain zi.

Let Bi denote the orthogonal projection of Ci on R2. By Pythagoras, for all u ∈ bi,

πi(u) + ‖u− yi(u)‖2 = 0. Consequently, for any i, j ∈ I and u ∈ bi ∩ bj ,

‖u− yi(u)‖ ≥ ‖u− yj(u)‖ if and only if πi(u) ≤ πj(u).
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Thus Bi = Vi∩bi. By GPA and the one-to-one correspondence between Bi and Ci, the

collection of sets Bi, i ∈ J constitutes a subdivision of U into 2-dimensional convex

sets with disjoint interiors. We call this the power tessellation of the union of discs and

denote it by B. Further, if i ∈ J , we call Bi the power cell restricted to its associated

disc bi (clearly, Bi = ∅ if i ∈ I \J). Since Vi may not contain zi, Bi may not contain zi;

an example of this is shown in the lower left panel in Figure 2. We say that a cell Bi is

isolated if Bi = bi. This means that any disc bj , j ∈ I, intersecting bi is contained in

bi; the disc bi is therefore also said to be a circular clump, see [27] and the references

therein.

It is illuminating to consider Figure 2 when making the following definitions. If the

intersection ei,j = Bi ∩ Bj between two cells of B is non-empty, then ei,j = [ui,j , vi,j ]

is a closed line segment, where ui,j and vi,j denote the endpoints, and we call ei,j an

interior edge of B. The vertices of B are given by all endpoints of interior edges. A

vertex of B lying on the boundary ∂U is called a boundary vertex, and it is called an

interior vertex otherwise. Each circular arc on B defined by two successive boundary

vertices is called a boundary edge of B. The circle given by the boundary of an isolated

cell of B is also called a boundary edge or sometimes an isolated boundary edge. The

connected components of ∂U are closed curves, and each such curve is a union of certain

boundary edges which either bound a hole, in which case the curve is called an inner

boundary curve, or bound a connected component of U , in which case the curve is

called an outer boundary curve. A generic boundary edge of B is written as bui, vie

if Bi 6= bi (a non-isolated cell), where the index means that ui and vi are boundary

vertices of Bi, or as ∂bi if Bi = bi. We order ui and vi such that bui, vie is the circular

arc from ui to vi when ∂bi is considered anti-clockwise.

By GPA, any intersection among four cells of B is empty, each interior vertex

corresponds to a non-empty intersection among three cells of B, and exactly three

edges emerge at each vertex. Note that each isolated cell has no vertices and one edge.

Each interior edge ei,j is contained in the bisector (or power line or radical axis) of bi

and bj defined by ∂Hi,j = {u ∈ Rd : πi(u) = πj(u)}. This is the line perpendicular to

the line joining the centres of the two discs, and passing through the point

zi,j =
1
2

(
zi + zj +

r2
j − r2

i

‖zi − zj‖2
(zi − zj)

)
.
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Figure 2: Upper left panel: A configuration of discs in general position. Upper right panel:

The upper hemispheres as seen from above. Lower left panel: The power tessellation of the

union of discs. Lower right panel: The dual graph.

We call Ei,j ≡ ∂Hi,j ∩ bi = ∂Hi,j ∩ bj the chord of bi ∩ bj . Obviously, ei,j ⊆ Ei,j .

The dual graph D to B has nodes equal to the centres zi, i ∈ J of discs generating

non-empty cells, and each edge of D is given by two vertices zi and zj such that ei,j 6= ∅.

See the lower right panel in Figure 2. Note that there is a one-to-one correspondence
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between the edges of D and the interior edges of B.

3.2. Construction

We construct the power tessellation of a finite union of discs by successively adding

the discs one by one, keeping track on old and new edges and whether each disc

generates a non-empty cell or not. The updates are local in some sense and used in

the “birth-part” of the MCMC algorithm in Section 4.7. For details, see Appendix A.

4. Results for exponential family models

This section studies exponential family models for the point process X as specified

by the density f(x) in (1), assuming that the canonical sufficient statistic T (Ux) is a

linear combination of one or more of the geometric characteristics introduced in the

following paragraph. We let supp(Q) denote the support of Q,

Ω = {(z, r) ∈ S × (0,∞) : ρ(z) > 0, r ∈ supp(Q)}

the support of the intensity measure of the reference Poisson process Ψ, and N the

set of all finite subsets x (also called finite configurations) of Ω so that the discs given

by x are in general position. By Lemma 1, X ∈ N with probability one. For ease of

exposition we assume that all realizations of X are in N , and set f(x) = 0 if x 6∈ N .

We let T (x) be given by one or more of the following characteristics of U = Ux if

x ∈ N : the area A = A(U), the perimeter L = L(U), the Euler-Poincaré characteristic

χ = χ(U), the number of isolated cells Nic = Nic(U), the number of connected

components Ncc = Ncc(U), the number of holes Nh = Nh(U), the number of boundary

edges (including isolated boundary edges) Nbe = Nbe(U), and the number of boundary

vertices Nbv = Nbv(U). In the general case,

T = (A,L, χ, Nh, Nic, Nbv) (4)

with corresponding canonical parameter θ = (θ1, . . . , θ6), and we call then X the T -

interaction process. If e.g. θ2 = . . . = θ6 = 0, we set T = A and refer then to the

A-interaction process. Similarly, for the L-interaction process we have θ1 = 0 and

θ3 = . . . = θ6 = 0, for the (A,L)-interaction process we have θ3 = . . . = θ6 = 0,

and so on. A quarmass-interaction process [19] is the special case T = (A,L, χ) and
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θ4 = θ5 = θ6 = 0. Note that (4) specifies Ncc = χ + Nh and Nbe = Nic + Nbv, cf.

Lemma 2 below. Thus a continuum random cluster model [15, 23, 28] is the special

case T = Ncc, θ1 = θ2 = θ5 = θ6 = 0, and θ3 = θ4.

4.1. Exponential family structure

Let

Θ = {(θ1, . . . , θ6) ∈ R6 :
∫

exp
(
πθ1r

2 + 2πθ2r
)

Q(dr) <∞}. (5)

Note that (−∞, 0]2 × R4 ⊆ Θ, and Θ = R6 if supp(Q) is bounded. The following

proposition states that under a weak condition on (S, ρ,Q), the exponential family

density has Θ as its full parameter space and T in (4) as its minimal canonical sufficient

statistic (for details on exponential family properties, see [5]).

Proposition 1. Suppose that S contains a set D = b(u, R1) \ b(u, R2), where ∞ >

R1 > R2 > 0, ρ(z) > 0 for all z ∈ D, and Q((0, R2]) > 0. Then the point process

densities

fθ(x) =
1
cθ

exp (θ1A(Ux) + θ2L(Ux) + θ3χ(Ux) + θ4Nh(Ux) + θ5Nic(Ux) + θ6Nbv(Ux))

(6)

with x ∈ N and θ = (θ1, . . . , θ6) ∈ Θ constitute a regular exponential family model.

Proof. Recall that an exponential family model is regular if it is full and of minimal

form [5]. We verify later in Proposition 6 that fθ is well-defined if and only if θ ∈ Θ,

so the model is full. Let ΨS denote the restriction of Ψ to S × (0,∞). Since

Θ ⊇ (−∞, 0]2 × R4 is of full dimension 6, and since there is a one-to-one linear

correspondence between T in (4) and (A,L,Ncc, Nic, Nbv, Nh), the model is on minimal

form if the statistics A, L, Nic, Ncc, Nbv, Nh are affinely independent with probability

one with respect to ΨS , see [5]. In other words, the model is on minimal form if for

any (α0, . . . , α6) ∈ R7, with probability one,

α1A(UΨS
) + α2L(UΨS

) + α3Nic(UΨS
) + α4Ncc(UΨS

) + α5Nbv(UΨS
) + α6Nh(UΨS

)

=α0 ⇒ α0 = . . . = α6 = 0. (7)

We verify this, using the condition on (S, ρ,Q) imposed in the proposition, and con-

sidering realizations of ΨS as described below, where these realizations consist of



12 J. Møller and K. Helisová

configurations of discs with centres in D and radius ≤ R2. For such configurations,

given by either one disc, two non-overlapping discs, or two overlapping discs, and if

α5 = α6 = 0, we immediately obtain (7). Extending this to situations where only

α6 = 0 and we have three discs with pairwise overlap but no common intersection, we

also immediately obtain (7), and the set consisting of such configurations and where

Nh(UΨS
) = 0 has a positive probability. The condition on (S, ρ,Q) also allow us with

a positive probability to construct a set of realizations of where Nh(UΨS
) = 1, namely

by considering sequences of discs which only overlap pairwise and which form a single

connected component. Thereby, for any (α0, . . . , α6) ∈ R7, with probability one, (7) is

seen to hold.

4.2. Interpretation of parameters

This section discusses the meaning of the parameters θ1, . . . , θ6 in the T -interaction

process (6).

We first recall the definition of the Papangelou conditional intensity λ(x, v) for a

general finite point process X ⊂ S×(0,∞) with an hereditary density f with respect to

the distribution of Ψ (see [33] and the references therein). For all finite configurations

x ⊂ S× (0,∞) and all discs v = (z, r) ∈ S× (0,∞)\x, the hereditary condition means

that f(x) > 0 whenever f(x ∪ {v}) > 0, and by definition

λ(x, v) = f(x ∪ {v})/f(x) if f(x) > 0, λ(x, v) = 0 otherwise.

This is in a one-to-one correspondence with the density f , and has the interpretation

that λ(x, v)ρ(z) dz Q(dr) is the conditional probability of X having a disc with centre

in an infinitesimal region containing z and of size dz and radius in an infinitesimal

region containing r and of size dr, given the rest of X is x.

For functionals W = A,L, . . ., define W (x, v) = W (Ux∪{v}) − W (Ux). The T -

interaction process (6) has an hereditary density, with Papangelou conditional intensity

λθ(x, v) = (8)

exp (θ1A(x, v) + θ2L(x, v) + θ3χ(x, v) + θ4Nh(x, v) + θ5Nic(x, v) + θ6Nbv(x, v))

if x ∪ {v} ∈ N , and λθ(x, v) = 0 otherwise. Note that N is hereditary, meaning that
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x ∈ N implies y ∈ N if y ⊂ x. The process X is said to be attractive if

λθ(x, v) ≥ λθ(y, v) whenever y ⊂ x, x ∈ N (9)

and repulsive if

λθ(x, v) ≤ λθ(y, v) whenever y ⊂ x, x ∈ N . (10)

Note that since quarmass integrals are additive,

A(x, v) = A(bv)−A(bv∩Ux), L(x, v) = L(bv)−L(bv∩Ux), χ(x, v) = 1−Nh(bv∩Ux).

(11)

Proposition 2. We have that

(a) the A-interaction process is attractive if θ1 < 0 and repulsive if θ1 > 0;

(b) under weak conditions, e.g. if S contains an open disc, the L-interaction process

is neither attractive nor repulsive if θ2 6= 0;

(c) under other weak conditions, basically meaning that S is not too small compared

to inf supp(Q) (as exemplified in the proof), the W -interaction processes with

W = χ,Nh, Nic, Nbv are neither attractive nor repulsive if θi 6= 0, i = 3, 4, 5, 6;

(d) under similar weak conditions as in (c), the continuum random cluster model

(i.e. the Ncc-interaction process, where θ3 = θ4 and θ1 = θ2 = θ5 = θ6 = 0) is

neither attractive nor repulsive if θ3 6= 0.

Proof. From (11) follows immediately (a), which is a well-known result [3]. We have

that L(bv∩Ux1) > 0 = L(bv∩U∅) if bv∩bx1 6= ∅. This provides a simple example where

λθ2(x, v) is decreasing or increasing in x if θ2 > 0 or θ2 < 0, respectively. On the other

hand, if S contains an open disc, we may obtain the opposite case. The left panel in

Figure 3 shows such an example, with four discs of equal radii, where the four centres

of the discs can be made arbitrary close, and where L(bv ∩ Ux1,x2,x3) < L(bv ∩ Ux1,x2).

Thereby (b) is verified.

To verify (c)-(d) we consider again discs bv, bx1 , bx2 , . . . of equal radii, since it may

be possible that Q is degenerate.

Suppose that bv∩bx1 = ∅, bv∩bx2 6= ∅, and bx1∩bx2 6= ∅, and let x = {x1, x2}. Then

χ(y, v) = 2 and χ(x, v) = 1 if y = {x1}, while χ(y, v) = 1 and χ(x, v) = 2 if y = {x2}.
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Since χ = Ncc in these examples, we obtain (c) in the case of the χ-interaction process

and (d) in the case of the Ncc-interaction process.

Suppose that bv, bx1 , bx2 have no common intersection but each pair of discs are

overlapping, i.e. they form a hole. If y = {x1, x2} and the hole disappears when we

consider x = {x1, x2, x3}, then Nh(y, v) = 1 and Nh(x, v) = 0. Note that Nbv(y, v) = 4

and it may be possible that Nbv(x, v) = 2, as exemplified in the right panel in Figure 3.

On the other hand, if y = {x1} and x = {x1, x2}, then Nh(y, v) = 0, Nh(x, v) = 1,

Nbv(y, v) = 2, and Nbv(x, v) = 4. Hence we have established (c) in the case of the Nh

and Nbv-interaction processes.

Finally, the case of the Nic-interaction process in (c) follows simply by considering

two overlapping discs and two disjoint discs.

x1 x2

x3

v

x1 x2

x3

v

Figure 3: Examples of four discs of equal radii. Left panel: When we add x3 to {x1, x2} the

dotted arcs disappear and the dashed arc appears, so L(bv ∩ U{x1,x2,x3}) < L(bv ∩ U{x1,x2}).

Right panel: Nbv({x1, x2}, v) = 4 and Nbv({x1, x2, x3}, v) = 2.

Thus, in terms of the ‘local characteristic’ λθ(x, v), we can easily interpret the

importance of the parameter θ1 in the A-interaction process, and also that of θ2 in

the L-interaction process provided Q is degenerate, while the role of the parameters

in the other processes is less clear. Their meaning is better understood in ‘global

terms’ and by simulation studies. Figures 4-7 show some examples of simulated

realizations from a variety of models when the reference Poisson process is as specified

in Figure 1. In comparison with the reference Poisson process, the A-interaction

process with θ1 > 0 respective θ1 < 0 tends to produce realizations with a larger
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respective smaller area A(Ux), and similarly for the W -interaction process, with W =

L, χ,Nh, Nic, Nbv, Ncc, see Figures 4-5 and the upper left and right panels in Figure 6.

However, the interpretation of (θ1, θ2) in the (A,L)-interaction process depends on the

signs and how large these two parameters are, see the last four panels in Figure 6.

Figure 7 shows examples where the minimal sufficient statistic is given by three or

four geometric characteristics, whereby the meaning of the non-zero θi’s specifying the

process becomes even more complicated.

4.3. Geometric characteristics and inclusion-exclusion formulae

Lemmas 2-3 below concern various useful relations between certain geometric char-

acteristics of the union U = Ux and of its power tessellation B = Bx, assuming

x ∈ N . Among other things, the results become useful in connection to computation of

geometric characteristics in Section 4.4 and for the sequential constructions considered

in Sections 3.2 and 4.7 and Appendices A-B.

Define the following characteristics of B = Bx: the number of non-empty cells

Nc = Nc(B), the number of interior edges Nie = Nie(B), the number of edges Ne =

Nbe + Nie, the number of interior vertices Niv = Niv(B), and the number of vertices

Nv = Nbv + Niv. These statistics do not appear in the specification (4) since they

cannot be determined from U but only from B. Furthermore, let N = n(x) denote the

number of discs.

Lemma 2. We have

Nic ≤ Ncc ≤ Nc ≤ N, Nbv = 2Nie − 3Niv (12)

and

χ = Ncc −Nh = Nc −Nie + Niv. (13)

If Nc ≥ 2 and Ncc = 1, then

Nbe = Nbv ≤ 2Nie, 3Nv = 2Ne. (14)

If Nc ≥ 3 and Ncc = 1, then

Nie ≤ 3Nc − 6. (15)

Moreover,

Nbv ≤ 6N (16)



16 J. Møller and K. Helisová

Figure 4: Simulated realizations of the A-interaction process with θ1 = 0.1 (upper left panel)

and θ1 − 0.1 (upper right panel), the L-interaction process with θ2 = 0.2 (middle left panel)

and θ2 = −0.2 (middle right panel), and the χ-interaction process with θ3 = 1 (lower left

panel) and θ3 = −1 (lower right panel).
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Figure 5: Simulated realizations of the Nh-interaction process with θ4 = 3 (upper left panel)

and θ4 = −3 (upper right panel), the Nic-interaction process with θ5 = 0.7 (middle left panel)

and θ5 = −1 (middle right panel), and the Nbv-interaction process with θ6 = 0.2 (lower left

panel) and θ6 = −0.2 (lower right panel).
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Figure 6: Simulated realizations of the Ncc-interaction process with θ3 = θ4 = 0.5 (upper

left panel) and θ3 = θ4 = −0.5 (upper right panel), and the (A, L)-interaction process with

(θ1, θ2) = (1, 1) (middle left panel), (θ1, θ2) = (−1,−1) (middle right panel), (θ1, θ2) =

(0.6,−1) (lower left panel), and (θ1, θ2) = (−1, 1) (lower right panel).



Power diagrams and interaction processes for unions of discs 19

Figure 7: Simulated realizations of the (A, L, Ncc)-interaction process with (θ1, θ2) =

(0.6,−1) and θ3 = θ4 = 2 (upper left panel) or θ3 = θ4 = −1 (upper right panel), the

(A, L, Nic)-interaction process with (θ1, θ2) = (−1, 1) and θ5 = 5 (middle left panel) or

θ5 = −5 (middle right panel), and the (A, L, χ, Nic)-interaction process with (θ3, θ5) = (2,−2)

and (θ1, θ2) = (0.6,−1) (lower left panel) or (θ1, θ2) = (−1, 1) (lower right panel).
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and

Nh = 0 if Nc ≤ 2, Nh ≤ 2Nc − 5 if Nc ≥ 3. (17)

Proof. The inequalities in (12) clearly hold, and the identity in (12) follows from a

simple counting argument, using that each interior edge has two endpoints, and exactly

three interior edges emerge at each interior vertex.

The first identity in (13) is just the definition (3), and the second identity follows

from Euler’s formula.

Assuming Nc ≥ 2 and Ncc = 1, (14) follows from simple counting arguments, using

first that exactly two boundary edges emerge at each boundary vertex, second the

simple fact that Nbv ≤ Nv, and third that exactly three edges emerge at each vertex.

To verify (15), consider the dual graph D. Since we assume that Nc ≥ 3 and

Ncc = 1, D has Nie edges and Nc vertices, and so by planar graph theory [44], since D

is a connected graph without multiple edges, the number of dual edges is bounded by

3Nc − 6.

To verify (16), note that Nbv ≤ 2Nie, cf. (12). Using (15) and considering a sum over

all components, we obtain that Nie is bounded above by the number of components

with two cells plus three times the number of components with three or more cells.

Consequently, Nbv ≤ 6N .

Finally, to verify (17), note that Nh is given by the sum of number of holes of all

connected components of U , and a connected component consisting of one or two power

cells has no holes, so it suffices to consider the case where Ncc = 1 and Nc ≥ 3. Then

by (13), Nh is bounded above by 1 − (Nc − Nie), which in turn by (15) is bounded

above by 2Nc − 5.

Equation (17) is a main result in [19]. Our proof of (17) is much simpler and shorter,

demonstrating the usefulness of the power tessellation and its dual graph. The upper

bound in (17) can be obtained for any three or more discs: If x consists of three discs

b1, b2, b3 such that bi ∩ bj 6= ∅ for 1 ≤ i < j ≤ 3 and b1 ∩ b2 ∩ b3 = ∅, then Nh = 1 and

Nc = 3, so Nh = 2Nc − 5. Furthermore, we may add a fourth, fifth, . . . disc, where

each added disc generates two new holes—as illustrated in Figure 8 in the case of five

discs—whereby Nc = 3, 4, . . . and Nh = 2Nc − 5 in each case.

Kendall, van Lieshout and Baddeley [19] noticed the inclusion-exclusion formula for
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Figure 8: A configurations of five discs with exactly 2Nc − 5 holes.

the functionals W = A,L, χ:

W (Ux) =
n∑
1

W (bi)−
∑

1≤i<j≤n

W (bi ∩ bj) + · · ·+ (−1)n−1W (b1 ∩ · · · ∩ bn) (18)

where the sums involve 2n− 1 terms. Using the power tessellation, inclusion-exclusion

formulae with much fewer terms are given by (12)-(13) for χ and Nbv, and by Lemma 3

below for A and L. In Lemma 3, I1(x), I2(x), and I3(x) denote index sets corresponding

to non-empty cells, interior edges, and interior vertices of Bx, respectively. For later

use in Section 4.5, note that I1(x) and I2(x) correspond to the cliques in the dual graph

Dx consisting of 1 and 2 nodes, respectively, while I3(x) corresponds to the subset of

3-cliques {i, j, k} ∈ Dx with bi ∩ bj ∩ bk 6= ∅ (i.e. bi ∪ bj ∪ bk has no hole). Note that

if {i, j, k} ∈ Dx, then bi ∩ bj ∩ bk 6= ∅ if and only if Ei,j ∩ Ei,k 6= ∅, where the latter

property is easily checked.

Lemma 3. The following inclusion-exclusion formulae hold for the area and perimeter

of the union of discs:

A(Ux) =
∑

i∈I1(x)

A(bi)−
∑

{i,j}∈I2(x)

A(bi ∩ bj) +
∑

{i,j,k}∈I3(x)

A(bi ∩ bj ∩ bk) (19)

=
∑

i∈I1(x)

A(Bi) (20)

and

L(Ux) =
∑

i∈I1(x)

L(bi)−
∑

{i,j}∈I2(x)

L(bi ∩ bj) +
∑

{i,j,k}∈I3(x)

L(bi ∩ bj ∩ bk) (21)

=
∑

e boundary edge of Bx

L(e). (22)

Proof. Equations (19) and (21) are due to Theorem 6.2 in [10], while (20) and (22)

follow immediately.
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Edelsbrunner [10] establishes extensions to Rd of the inclusion-exclusion formulae

given by the second identities in (12), (19), and (21). Note that we cannot replace the

sums in (19) by sums over all discs, pairs of discs, and triplets of discs from x.

4.4. Local calculations

For calculating the area and perimeter, the inclusion-exclusion formulae (20) and

(22) appear to be more suited than (19) and (21) when the computations are done in

combination with the sequential constructions considered in Sections 3.2 and 4.7 and

Appendices A-B. Note that we need only to do “local computations”.

For example, suppose we are given the power tessellation Bold of Uold = ∪n−1
1 bi and

add a new disc bn. When constructing the new power tessellation Bnew of Unew = ∪n
1 bi,

we need only to consider the new set Bn and the old cells in Bold which are neighbours

to Bn with respect to the dual graph of Bnew (see Appendix A). Similarly, when a disc

is deleted and the new tessellation is constructed, we need only local computations

with respect to the discs intersecting the disc which is deleted (see Appendix B); we

study this neighbour relation given by overlapping discs in Section 4.5. Moreover, local

computations are only needed when calculating Nic and Nbv.

In order to calculate (χ,Nh) or equivalently (Ncc, Nh), we could keep track on the

inner and outer boundary curves in our sequential constructions, using a clockwise and

anti-clockwise orientation for the two different types of boundary curves. However,

in our MCMC simulation codes, we found it easier to keep track on Nc, Nie, Niv, and

Ncc, and thereby obtain χ by the second equality in (13), and hence Nh by the first

inequality in (13). In either case, this is another kind of local computation, where the

relevant neighbour relation is the connected component relation studied in Section 4.5.

Finally, let us explain in more detail how we can find the area A. We can easily

determine the total area of all isolated cells of B. Suppose that Bi is a non-empty,

non-isolated cell of B. Let ci denote the arithmetic average of the vertices of Bi. Then

ci ∈ Bi, since Bi is convex. For any three points c, u, v ∈ R2, let ∆(c, u, v) denote the

triangle with vertices c, u, v. If bu, ve is a boundary edge of Bi, let Γ(u, v) denote the

cap of bi bounded by the arc bu, ve and the line segment [u, v]. Then the area of Bi

is the sum of areas of all triangles ∆(ci, u, v), where u and v are defining an (interior

or boundary) edge of Bi, plus the sum of areas of all caps Γ(u, v), where u and v are



Power diagrams and interaction processes for unions of discs 23

defining a boundary edge of Bi.

4.5. Markov properties

The various Markov point process models considered in this section are either

specified by a local Markov property in terms of the Papangelou conditional intensity

or by a particular form of the density given by a Hammersley-Clifford type theorem

[2, 37]. Particularly, we show that it is useful to view the T -interaction process (6) as

a connected component Markov point process, where we show how a spatial Markov

property becomes useful for handling edge effects. Throughout Sections 4.5.1-4.5.5, we

let x ∈ N .

4.5.1. Local Markov property in terms of the overlap relation: Consider the overlap

relation ∼ defined on S × (0,∞) by u ∼ v if and only if b(u) ∩ b(v) 6= ∅. The T -

interaction process is said to be Markov with respect to ∼ if λθ(x, v) depends only on

x through {u ∈ x : u ∼ v}, i.e. the neighbours in x to v. Kendall, van Lieshout and

Baddeley [19] observed that the quarmass-interaction process is Markov with respect

to ∼. The following proposition generalizes this result.

Proposition 3. The T -interaction process with density (6) is Markov with respect to

the overlap relation if and only if θ4 = θ5 = 0.

Proof. In other words, with respect to the overlap relation ∼, we have to verify

that the A,L, χ, and Nbv-interaction processes are Markov, while the Nh and Nic-

interaction processes are not Markov. It follows immediately from (8) and (11) that

the A,L, and χ-interaction processes are Markov, and Figures 9-10 show that the Nh

and Nic-interaction processes are not Markov. If w is a boundary vertex of Ux but

not of Ux∪{v}, then w is contained in the disc v. If instead w is a boundary vertex of

Ux∪{v} but not of Ux, then w is given by the intersection of the boundaries of v and an

x-disc. Consequently, Nbv(x, v) = Nbv(Ux∪{v})−Nbv(Ux) depends on x only through

{u ∈ x : u ∼ v}, so the Nbv-interaction process is Markov. This completes the proof.

As noticed in [19], using the inclusion-exclusion formula (18), the Hammersley-

Clifford representation [37] of the quarmass-interaction process is

f(θ1,θ2,θ3)(x) =
∏
y⊆x

φ(θ1,θ2,θ3)(y) (23)
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x1 x1

x1 x1

x2 x2

x2 x2

x3

x3

v v

v v

Figure 9: An example showing that Nh-interaction process is not Markov with respect to

the overlap relation: both Nh(x, v) = 0 (left panel) and Nh(x, v) = 1 (right panel) depend on

the disc x3 which is not overlapping the disc v.

x1 x1

x1 x1

x2 x2

x2 x2

x3

x3

v v

v v

Figure 10: An example showing that Nic-interaction process is not Markov with respect to

the overlap relation: both Nic(x, v) = −1 (left panel) and Nic(x, v) = 0 (right panel) depend

on the disc x2 which is not overlapping the disc v.

where the interaction function is given by

φ(θ1,θ2,θ3)(x) = exp ((−1)n (θ1A(∩n
1 bi) + θ2L(∩n

1 bi) + θ3χ(∩n
1 bi))) (24)

for non-empty x = {(z1, r1), . . . , (zn, rn)}, and φ(θ1,θ2,θ3)(∅) = 1/c(θ1,θ2,θ3). However,

for at least two reasons, it is the density in (6) of the quarmass-interaction process

rather than the Hammersley-Clifford representation (23) which seems appealing. First,

the process has interactions of all orders, since log φ(θ1,θ2,θ3)(x) can be non-zero no

matter how many discs x specifies, so the calculation of the interaction function (24)

can be very time consuming. Second, (23) seems not to be of much relevance if we

cannot observe X but only UX. This indicates that another kind of neighbour relation

is needed when describing the Markov properties. Two other relations are therefore

discussed below.

4.5.2. Local Markov property in terms of the dual graph: Applying the inclusion-ex-

clusion formulae given by the last identity in (13), (19), and (21), we obtain another

representation of the quarmass-interaction process density, namely as a product of

terms corresponding to the cliques in the dual graph, excluding the case of 3-cliques
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{i, j, k} ∈ Dx with bi ∩ bj ∩ bk = ∅:

f(θ1,θ2,θ3)(x) =
1

c(θ1,θ2,θ3)
×

∏
i∈I1(x)

φ(θ1,θ2,θ3)(xi)×
∏

{i,j}∈I2(x)

φ(θ1,θ2,θ3)({xi, xj}) (25)

×
∏

{i,j,k}∈I3(x)

φ(θ1,θ2,θ3)({xi, xj , xk})

where now

φ(θ1,θ2,θ3)(xi) = exp (θ1A(bi) + θ2L(bi) + θ3) ,

φ(θ1,θ2,θ3)({xi, xj}) = exp (−θ1A(bi ∩ bj)− θ2L(bi ∩ bj)− θ3) ,

φ(θ1,θ2,θ3)({xi, xj , xk}) = exp (θ1A(bi ∩ bj ∩ bk) + θ2L(bi ∩ bj ∩ bk) + θ3) .

This is of a somewhat similar form as the Hammersley-Clifford representation for a

nearest-neighbour Markov point process [2] with respect to the neighbour relation

defined by the dual graph (it is not exactly of the required form, since in (25) we do

not have a product over all u ∈ x but only over those u generating non-empty cells

in Bx). In fact, since it can be verified that the relation satisfies certain consistency

conditions (Theorem 4.13 in [2]), the quarmass-interaction process is not exactly a

nearest-neighbour Markov point process with respect to the dual graph (but it is a

nearest-neighbour Markov point process if instead we consider a relation similar to the

iterated Dirichlet relation in [2]). On the other hand, the identity in (12) implies that

fθ6(x) =
1

cθ6

×
∏

{i,j}∈I2(x)

exp(2θ6)×
∏

{i,j,k}∈I3(x)

exp(−3θ6) (26)

which shows that the Nbv-interaction process is a nearest-neighbour Markov point

process with respect to the dual graph. Moreover, for the Nh and Nic-interaction

processes, it seems not possible to obtain a kind of Hammersley-Clifford representation

with respect to the dual graph. Note that (25) and (26) seem not to be of much

relevance if we cannot observe X but only UX.

4.5.3. Local Markov property in terms of the connected components: In our opinion,

the most relevant results are Propositions 4-5 below, where the first proposition states

that X is a connected component Markov point process [2, 4, 7, 30], and the second

proposition specifies a spatial Markov property. As explained in further detail in [2],

for a connected component Markov point process, the Papangelou conditional intensity



26 J. Møller and K. Helisová

depends only on local information with respect to the connected component relation

∼x defined as follows: for u, v ∈ x, u ∼x v if and only if b(u) and b(v) are contained

in the same connected component K of Ux. Thereby MCMC computations become

“local”, as discussed further in Section 4.7. The spatial Markov property is discussed

in Sections 4.5.4-4.5.5.

Proposition 4. The T -interaction process with density (6) is a connected component

Markov point process.

Proof. The density is of the form

1
cθ

∏
K∈K(Ux)

exp (θ1A(K) + θ2L(K) + θ3χ(K) + θ4Nh(K) + θ5Nic(K) + θ6Nbv(K))

(27)

where K(Ux) is the set of connected components of Ux. Thus, by Lemma 1 in [4]), it

is a connected component Markov point process.

In the discrete case (discs replaced by pixels), a Markov connected component field

[32], which is also assumed to be a second order Markov random field, has a density of

a similar form as (27).

4.5.4. Spatial Markov property in terms of the overlap relation: Consider again the

quarmass-interaction process, and for the moment assume that R = supp(Q) < ∞.

Let W	2R = {u ∈ W : b(u, 2R) ⊆ W} be the 2R-clipped window of points in W

so that almost surely no disc of X with centre in W	2R intersect another disc of X

with centre in W c = S \ W . Split X into X(1), X(2), X(3) corresponding to discs

with centres in W	2R, W \W	2R, W c, respectively. The spatial Markov property [37]

states that X(1) and X(3) are conditionally independent given X(2), and the conditional

distribution X(1)|X(2) = x(2) has density

fθ1,θ2,θ3(x
(1)|x(2)) = (28)

1
cθ1,θ2,θ3(x(2))

exp (θ1A(Ux(1)∪x(2)) + θ2L(Ux(1)∪x(2)) + θ3χ(Ux(1)∪x(2)))

with respect to the reference Poisson process Ψ restricted to discs with centres in the

2R-clipped window. This is also a Markov point process with respect to the overlap



Power diagrams and interaction processes for unions of discs 27

relation restricted to W	2R, since the Papangelou conditional intensity λθ(x(1), v|x(2))

corresponding to (28) is related to that in (8) by

λθ(x(1), v|x(2)) = λθ(x(1) ∪ x(2), v). (29)

However, it is problematic to use this conditional process in practice, since both (28)

and (29) depend on Ux(2) \W which is not observable.

4.5.5. Spatial Markov property in terms of the connected component relation: The

following spatial Markov property is more useful and applies for the general case of

the T -interaction process (6) using that it is a connected component Markov point

process (see also [20, 30]). We split X into X(a), X(b), X(c) corresponding to discs

belonging to connected components of UX which are respectively (a) contained in W ,

(b) intersecting both W and W c, (c) contained in W c, see Figure 11. Furthermore,

let x(b) denote any feasible realization of X(b), i.e. x(b) is a finite configuration of discs

such that K intersects both W and W c for all K ∈ K(Ux(b)).

W

S

Figure 11: Illustrating possible realizations of X(a) (the full circles), X(b) (the dashed circles),

and X(c) (the dotted circles).

Proposition 5. Conditional on X(b) = x(b), we have that X(a) and X(c) are inde-

pendent, and the conditional distribution of X(a) depends only on x(b) through V =
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W ∩ Ux(b) and has density

fθ(x(a)|V ) =
1

cθ(V )
1[Ux(a) ⊆W \ V ] exp

(
θ · T (x(a))

)
(30)

with respect to the reference Poisson process of discs.

Proof. Let Π denote the distribution of Ψ restricted to those finite configurations

of discs with centres in S, and let hθ denote the unnormalized density given by the

exponential term in (27). Recall the ‘Poisson expansion’ (see e.g. [33])

P(X ∈ F ) =
1
cθ

∫
F

hθ(x) Π(dx)

=
1
cθ

exp
(
−
∫

S

ρ(u) du

)
×

∞∑
n=0

1
n!

∫
S

∫
· · ·
∫

S

∫
hθ(x)1[x ∈ F ]ρ(u1) du1Q(dr1) · · · ρ(un) dunQ(drn)

(where the term with n = 0 is read as one if the empty configuration is in the event

F and zero otherwise). From this and (27) we obtain that (X(a),X(b),X(c)) has joint

density

f(x(a),x(b),x(c)) =
1
cθ

1[Ux(a) ⊆W \ Ux(b) ]hθ(x(a))1[Ux(c) ⊆W c \ Ux(b) ]hθ(x(c))

× 1[∀K ∈ K(Ux(b)) : K ∩W 6= ∅, K ∩W c 6= ∅]hθ(x(b))

with respect to the product measure exp
(
2
∫

S
ρ(u) du

)
Π × Π × Π. Thereby the

proposition follows.

The density (30) may be useful for statistical applications, since it accounts for edge

effects and depends only on the union of discs intersected by the observation window

W . It is a hereditary density of a connected component Markov point process with

discs contained in W \ V . Its Papangelou conditional intensity λθ(x(a), v|V ) is simply

given by

λθ(x(a), v|V ) = λθ(x(a), v)1[Ux(a)∪{v} ⊆W \ V ]. (31)

4.6. Stability

Consider the ‘unnormalized density’ hθ(x) = exp(θ · T (x)) corresponding to the

T -interaction process with density fθ given in (6), and recall the definition (5) of the

parameter space Θ. In fact, we have yet not verified that cθ ≡ Ehθ(Ψ∩ (S× (0,∞)) is
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finite for θ ∈ Θ, and hence that fθ = hθ/cθ is a well-defined density with respect to the

reference Poisson process Ψ if θ ∈ Θ. This section discusses two stability properties

which imply integrability of hθ as well as other desirable properties.

4.6.1. Ruelle stability: This means that there exist positive constants α and β such

that hθ(x) ≤ αβn(x) for all x ∈ N (in fact, this and other stability properties

mentioned in this paper need only to hold almost surely with respect to Ψ, however,

for ease of presentation we shall ignore such nullsets). Ruelle stability implies that

cθ ≤ α exp
(
(β − 1)

∫
S

ρ(z) dz
)

< ∞, and we say that fθ = hθ/cθ is a Ruelle stable

density. Other implications of Ruelle stability are discussed in Section 2.1 of [19] and

the references therein.

The main question addressed in [19] is to establish Ruelle stability of the quarmass-

interaction process, and the following proposition provides a very easy proof of this

issue in connection to the general case of the T -interaction process (6) (since the proof is

based on Lemma 2, the usefulness of the power tessellation is once again demonstrated).

Proposition 6. For all θ ∈ Θ, cθ < ∞ and fθ in (6) is a Ruelle stable density. If

θ ∈ R6 \Θ, then cθ =∞.

Proof. Note that a finite product of Ruelle stable functions is a Ruelle stable func-

tion. Let θ0 denote a real parameter. From Lemma 2 follows that χ, Nh, Nic, and

Nbv are bounded above by 6N , so the functions exp(θ0W ), W = χ,Nh, Nic, Nbv

are Ruelle stable for all θ0 ∈ R. Moreover, exp(θ1A + θ2L) is Ruelle stable if a ≡∫
exp

(
πθ1r

2 + 2πθ2r
)

Q(dr) is finite, since exp(θ1A + θ2L) ≤ exp
(
(a− 1)

∫
S

ρ(z) dz
)
.

On the other hand, the first term in the infinite sum in (2) is a times exp(θ3 +

θ5)
∫

S
ρ(z) dz, where

∫
S

ρ(z) dz > 0, cf. Section 2.1. Consequently, cθ =∞ if a =∞.

4.6.2. Local stability: This means that there exists a constant β such that for all x ∈ N

and all v ∈ Ω \ x,

λθ(x, v) ≤ β. (32)

This property is clearly implying Ruelle stability. Local stability is useful when es-

tablishing geometric ergodicity of MCMC algorithms ([13, 33]; see also Section 4.7),

and it is needed in order to apply the dominating coupling from the past algorithm in

[18, 22] for making perfect simulations. Note that a finite product of locally stable
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functions is a locally stable function, since its Papangelou conditional intensity is

given by a product of uniformly bounded Papangelou conditional intensities. The

Papangelou conditional intensity (6) is a product of Papangelou conditional intensities

corresponding to functions hθ0(x) = exp(θ0W (Ux)), with W = A,L, . . . and θ0 =

θ1, θ2, . . ..

As shown below, the picture of whether local stability is satisfied or not depends

much on the particular type of model. When we in the following proposition write ‘in

general’, the proof of the proposition will show examples where locally stability is not

satisfied, depending on how S and supp(Q) are specified, and it should be obvious to

the reader that local stability will not be satisfied in many other cases as well. We let

ε = inf supp(Q) and R = sup supp(Q).

Proposition 7. Local stability is satisfied for

(a) the A-interaction process if and only if θ1 ≤ 0 or R <∞;

(b) the L-interaction process if θ2 = 0, or R < ∞ if θ2 > 0, or ε > 0 and R < ∞ if

θ2 < 0; otherwise in general it is not locally stable;

(c) the χ-interaction process if θ3 ≥ 0, while in general it is not locally stable if

θ3 < 0;

(d) the Ncc-interaction process if θ3 = θ4 ≥ 0 or both θ3 = θ4 < 0 and ε > 0, while it

is not locally stable if θ3 = θ4 < 0 and ε = 0;

(e) the Nic-interaction process if θ5 ≥ 0 or ε > 0, while it is not locally stable if

θ5 < 0 and ε = 0.

Moreover, local stability is in general not satisfied for

(f) the Nh-interaction process unless θ4 = 0;

(g) the Nbv-interaction process unless θ6 = 0.

Proof. Let x ∈ N and v ∈ Ω \ x.

It follows from (11) that λθ1(∅, v) = exp
(
πθ1r

2
)
, λθ1(x, v) ≤ exp

(
πθ1r

2
)

if θ1 ≥ 0,

and λθ1(x, v) ≤ 1 if θ1 ≤ 0. Thereby (a) follows, and in a similar way we verify (b)
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in the case θ2 ≥ 0. It also follows from (11) that the χ-interaction process is locally

stable if θ3 ≥ 0.

To verify (b) in the case θ2 < 0, we suppose first that ε > 0 and R < ∞, and

use an argument which Wilfrid Kendall kindly has point out to us. A boundary edge

corresponding to an angle 0 < ϕ < 2π and a disc of radius r has length ϕr, and it

defines a sector of area ϕr2/2. Since such sectors have disjoint interiors,

A(Ux) ≥
∑

j

ϕjr
2
j /2 ≥ (ε2/2)

∑
j

ϕj

where the sum is over all boundary edges. Hence

L(Ux) =
∑

j

ϕjrj ≤ R
∑

j

ϕj ≤ (2R/ε2)A(Ux) < c

where c is a finite constant (since the discs specified by x have centres in the bounded

region S and their radii are bounded by R, A(Ux) has an upper bound). Consequently,

L(x, v) = L(bv)− L(bv ∩ Ux) ≥ 2πε− c

and so local stability is established when θ2 < 0, ε > 0, and R <∞.

On the other hand, suppose that ε = 0 or R = ∞. Let r denote the radius of bv,

let 0 < δ < r, and consider the infinite configuration of discs of radii δ and centres

at the sites of a equilateral triangular lattice of side length 2δ. The proportion of R2

covered by these discs is the so-called maximal packing degree p = π/
√

12 (a number

independent on how δ is chosen). Now, suppose that x is the subconfiguration of all

such discs contained in bv. As either δ decreases to zero or r increases to infinity,

n(x)δ2/r2 converges to p, and so

L(x, v) = L(bv)− L(bv ∩ Ux) = 2πr − 2πδn(x)

is converging to −∞. Hence if θ2 < 0, the local stability condition is violated, and so

(b) is verified.

To show an example where the χ-interaction process is not locally stable if θ3 < 0,

consider Figure 12. Suppose x = {x1, . . . , xn} corresponds to the pairwise overlapping

small discs in the figure, and bv to the large disc. Then each pair xi, xi+1 together

with bv form one hole, and Nh(bv ∩Ux) = n− 1. Since n may be arbitrary large, using
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again (11), we obtain (c). Notice that bv does not need to be so large compared to

the other discs in Figure 12; it is only chosen in this way for illustrative purposes. For

example, all the discs may be of a very similar size so that still Nh(bv ∩ Ux) = n − 1

(then the discs in x will be much more overlapping than indicated in Figure 12). More

precisely, whether this holds or not depends on how large S is compared to supp(Q).

For instance, if S is a disc with radius R and Ω = S × {2R}, then χ(Ux) = 1 for all

x ∈ N , and so the χ-interaction process is locally stable for all θ3 ∈ R.

For (d), we use that

Ncc(x, v) = 1−#{connected components in Ux which are intersected by bv}. (33)

Hence we immediately obtain local stability if θ3 = θ4 ≥ 0. Suppose instead that

θ3 = θ4 < 0. By (33), Ncc(x, v) has no lower bound if ε = 0, since the discs in x can

be disjoint and still all intersect bv. On the other hand, if ε > 0, then 1−Ncc(x, v) is

at most equal to the maximal number of disjoint discs with radius ε and centres in S.

Thereby (d) is verified. The proof of (e) is similar, using instead that

Nic(x, v) = 1ic(x, v)−#{isolated cells in Ux which are contained in bv}

where 1ic(x, v) is the indicator function which is one if Bv is an isolated cell in Bx∪{v},

and zero otherwise.

The Nh-interaction process with θ4 = 0 and the Nbv-interaction process with θ6 = 0

are nothing but the Poisson process Ψ, and so local stability is obviously satisfied. By

similar arguments as above in the proof of (c) when θ3 < 0, there are in general no

uniform upper and lower bounds on neither Nh(x, v) nor Nbv(x, v). Thereby (f) and

(g) follow.

Figure 12: A configuration x of n = 6 discs intersected by another disc bv such that

#holes(bv ∩ Ux) = n− 1 = 5.
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Proposition 7 immediately extends to the conditional quarmass-interaction process

with density (28) and the conditional T -interaction process in (30). Note that if the

indicator term in (30) is one, it implies that the radius of any disc in x(a) is less than

a constant. Consequently, (a) the conditional A-interaction process given by (30) is

always locally stable, and (b) the L-interaction process given by (30) is locally stable

if either θ2 ≥ 0 or θ2 < 0 and ε > 0, and in general it is not locally stable if θ2 < 0 and

ε = 0.

4.7. MCMC algorithms

For simulation of the T -interaction process (6), the conditional quarmass-interaction

point process with density (28), or the conditional T -interaction process with density

(30), we use a simple version of the birth-death type Metropolis-Hastings algorithm

studied in [13, 14, 33]. For specificity, we consider first the T -interaction process X

with Papangelou conditional intensity λθ(x, v) given by (8).

In the Metropolis-Hastings algorithm, if x is the state at iteration t, we generate a

proposal which is either a ‘birth’ x∪ {v} of a new discs v = (z, r) or a ‘death’ x \ {xi}

of an old disc xi ∈ x. Each kind of proposal may happen with equal probability 1/2.

Define

rθ(x, v) = λθ(x, v)

∫
S

ρ(s) ds

ρ(z)(n(x) + 1)
. (34)

In case of a birth-proposal, v follows the normalized intensity measure of Ψ, i.e. z

and r are independent, z has a density on S proportional to ρ, and r follows the mark

distribution Q. This proposal is accepted as the state at iteration t+1 with probability

min{1,Hθ(x, v)}, where the Hastings ratio is given by Hθ(x, v) = rθ(x, v). In case of a

death-proposal, xi is a uniformly selected point from x, and the Hastings ratio in the

acceptance probability of the proposal is now given by Hθ(x, xi) = 1/rθ(x \ {xi}, xi)

(in the special case where x = ∅, we do nothing). Finally, if neither kind of proposal

is accepted, we retain x at iteration t + 1.

As verified in [14], the generated Markov chain is aperiodic and positive Harris

recurrent, the chain converges towards the distribution of X, and Birkhoff’s ergodic

theorem establishes convergence of Monte Carlo estimates of mean values with respect

to (6). If local stability is satisfied (see Proposition 7), the chain is geometrical

ergodic, and hence a central limit theorem applies for Monte Carlo estimates [6, 33, 38].
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Moreover, from a computational perspective, the important point of the algorithm is

that it only involves calculating the Papangelou conditional intensity, so only local

computations of the statistics appearing in (8) are needed, cf. Sections 4.3-4.5.

In theory we may use any state of N as the initial state of the algorithm, but we

have mainly used three kinds of initial states:

(i) the extreme case of the empty configuration ∅;

(ii) if local stability is satisfied, the other extreme case is given by a realization from

a Poisson process Ξ with intensity measure βρ(z) dz Q(dr), where β is the upper

bound in (32);

(iii) a realization of the reference Poisson process Ψ (an intermediate case of (i)-(ii)

if β > 1).

In fact local stability ensures that the Poisson process in (ii) can be coupled with X so

that X ⊆ Ξ, and this kind of domination can be exploited to make perfect simulations

of X, using a dominating coupling from the past algorithm [21, 22].

The algorithm for simulating from the conditional processes with densities (28) and

(30) is the same except that we replace λθ(x, v) in (34) by the Papangelou conditional

intensities in (29)-(31), and that the state space has of course to be in accordance

with (28) respective (30). The convergence properties and computations are therefore

similar to those discussed above. The initial states are of course slightly different,

where we modify the Poisson process in (ii) or (iii) above as follows. For (28), we

restrict the Poisson process in (ii) or (iii) so that centres are in W	2R. For (30), we

first restrict the Poisson process in (ii) or (iii) so that centres are in W , and second

when we make a simulation from this Poisson process, we finally omit those discs which

are not included in W \ V .

5. Extensions and open problems

We conclude with some remarks on possible extensions of this work and on some

open problems.

We demonstrated the usefulness of the power tessellation in connection to the T -

interaction process (4), and argued why this model is best viewed as a connected
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component Markov point process. For the specification of the sufficient statistic T ,

other geometric characteristics than those in (4) may be of interest to include, e.g.

shape characteristic for the connected components K such as A(K)/L(K)2. The

power tessellation will also be a useful tool for such extensions, not least since local

calculations can be done as discussed in Section 4.4.

We confined ourselves to the case of discs in R2, though many concepts and results

can be extended to the general case of balls in Rd. The planar case d = 2 is already

complicated enough, and indeed the power tessellation in higher dimensions becomes

more complicated, cf. [10]. The planar case is of principal importance for applications

in spatial statistics and stochastic geometry (e.g. [8, 40]), and the spatial case d = 3 is

of particular importance in physics and computational biology (e.g. [11, 24, 25, 26]).

The T -interaction processes provide obviously a large and flexible class of random

models for unions of discs. It would be interesting to get a better understanding of the

importance of the parameters θ1, . . . , θ6, cf. Section 4.2. For instance, how different

are the models which have been simulated in Section 4.2, and how different would a

fitted L-interaction process be if the true model is an A-interaction process? Probably,

to answer such questions, an extensive simulation study will be required.

As noticed in Section 4.6, the dominating coupling from the past algorithm [18,

22] for making perfect simulations requires local stability. Moreover, to make this

algorithm work in practice, some monotonicity property like (9) or an antimonotonicity

property like (10) is useful, but apart from the A-interaction process, our models are

in general neither attractive nor repulsive, cf. Proposition 2. How difficult is it to make

a perfect simulation of e.g. the L-interaction process?

Also extensions of our T -interaction models to infinite configurations of discs would

be of interest, particularly for applications in statistical physics. Such extensions are

possible for quarmass-interaction models, at least if Q has bounded support (see [19]),

but how do we extend the other kind of T -interaction models? The usual approach is

to use a local specification in the sense of Preston [36] or equivalently to specify the

Papangelou conditional intensity for the infinite process [12, 34], but this would require

that the connected components are almost surely bounded. See the somewhat related

discussion in [32] concerning infinite extensions of Markov connected component fields.

A related problem to infinite extensions of T -interaction models is the issue of phase
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transition. The A-interaction model exhibits phase transition, at least if the radii are

all fixed at a constant value [15, 39], but what about other T -interaction models?

Finally, we are currently exploiting the results in this paper when studying the

statistical aspects, in particular likelihood based inference, in a follow up paper [31].
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Appendix: successive construction of power tessellations

This appendix explains how to construct a new power tessellation of a union of discs

by adding a new ball (Appendix A) or deleting an old ball (Appendix B), assuming

that the old power tessellation is known. The constructions can easily be extended to

keep track on the connected components of the union of discs, but to save space we

omit those details.

Appendix A: the case where a new disc is added

Suppose we want to construct a new power tessellation Bnew of a union Unew = ∪n
1 bi

of n ≥ 1 discs in general position, where we are adding the disc bn and we have already

constructed the power tessellation Bold of Uold = ∪n−1
1 bi based on the n − 1 other

discs (if n = 1 then Bold and Uold are empty). More precisely, with respect to Bold,

we assume to know all the old edges. We denote old interior edges by [uold
i,j , vold

i,j ] and

old boundary edges by buold
i , vold

i e or ∂bold
i . We want to construct the new tessellation

Bnew of Unew = Uold ∪ bn by finding its interior edges [unew
i,n , vnew

i,n ] and boundary edges

bunew
n , vnew

n e associated to the new cell Bnew
n . This is done in steps (ii) and (iv) below.

Moreover, to obtain the remaining new edges, we modify old interior edges [uold
i,j , vold

i,j ]

and old boundary edges buold
i , vold

i e or ∂bold
i , noticing that a “modified old edge” can

be unchanged, reduced or disappearing. This is done in steps (iii) and (v) below.

Notice that steps (i), (ii), and (iv) determine the new cells, i.e. which of the sets
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Bnew
1 , . . . , Bnew

n are empty or not.

(i) Considering old discs intersecting the new disc: If bn is contained in some disc

bj with j < n, then Bnew
n is empty and so Bnew = Bold is unchanged. Assume that

bn is not contained in any disc bj with j < n, and without loss of generality that bn

intersects Bold
1 , . . . , Bold

i but not Bold
i+1, . . . , B

old
n−1, where 0 ≤ i ≤ n− 1 (setting i = 0 if

bn has no intersection). Then Bnew
j = Bold

j is unchanged for j = i + 1, . . . , n− 1, so it

suffices below to find the edges of Bnew
1 , . . . , Bnew

i and Bnew
n .

If i = 0 then Bnew
n = bn is an isolated cell with boundary edge ∂bn. In (ii)-(v) we

assume that i ≥ 1.

(ii) Finding the interior edges of Bnew
n : To obtain the interior edges of Bnew

n , for

j = 1, . . . , i, we start by assigning enew
j,n ← [unew

j,n , vnew
j,n ], considering unew

j,n and vnew
j,n

as (potential) boundary vertices given by the endpoints of the chord Ej,n. Further,

for k = 1, . . . , i with k 6= j, if enew
j,n ∩ Hn,k = ∅ (or equivalently unew

j,n 6∈ Hn,k and

vnew
j,n 6∈ Hn,k, since Hn,k is convex) we obtain that enew

j,n ← ∅ and we can stop the

k-loop, else enew
j,n ← enew

j,n ∩Hn,k. In the latter case, either both vertices are contained

in Hn,k and so the edge remains unchanged, or exactly one vertex is not contained

in Hn,k, e.g. unew
j,n 6∈ Hn,k but vnew

j,n ∈ Hn,k, in which case unew
j,n becomes an interior

vertex given by the point enew
j,n ∩ ∂Hn,k while vnew

j,n is unchanged. In this way we find

all interior edges of Bnew
n , and all interior and boundary vertices of Bnew

n .

Since we have assumed that i > 0, Bnew
n is empty if and only if it has no interior

edges.

(iii) Modifying the old interior edges: At the same time as we do step (ii) above,

we also check whether each interior edge eold
j,k = [uold

j,k , vold
j,k ] of Bold with j < k ≤ i

should be kept, reduced or omitted when we consider Bnew (recalling that enew
j,k = eold

j,k

is unchanged if j > i or k > i). We have

enew
j,k = eold

j,k ∩Hj,n = eold
j,k ∩Hk,n.

Thus enew
j,k is empty if uold

j,k 6∈ Hk,n and vold
j,k 6∈ Hk,n, while enew

j,k = eold
j,k if uold

j,k ∈ Hk,n and

vold
j,k ∈ Hk,n. Further, if uold

j,k ∈ Hk,n and vold
j,k 6∈ Hk,n, then enew

j,k = [uold
j,k , vnew

j,k ] where

vnew
j,k is the point given by eold

j,k ∩ ∂Hk,n. Similarly, if uold
j,k 6∈ Hk,n and vold

j,k ∈ Hk,n, then

enew
j,k = [unew

j,k , vold
j,k ] where unew

j,k is the point given by eold
j,k ∩ ∂Hk,n.

Note that for each j ≤ i, Bnew
j is empty if and only if it has no interior edge.
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(iv) Finding the boundary edges of Bnew
n : Suppose that Bnew

n has m > 0 boundary

vertices wnew
1 , . . . , wnew

m . Notice that m is an even number, and we can organize the

boundary vertices such that wnew
1 = zn + rn(cos ϕnew

1 , sinϕnew
1 ), . . ., wnew

m = zn +

rn(cos ϕnew
m , sinϕnew

m ), where 0 ≤ ϕnew
1 < · · · < ϕnew

m < 2π. Then Bnew
n has m/2

boundary edges, namely

bwnew
2 , wnew

3 e, bwnew
4 , wnew

5 e, . . . , bwnew
m , wnew

1 e if zn + (rn, 0) ∈ Hn,j for all j = 1, . . . , i

and

bwnew
1 , wnew

2 e, bwnew
3 , wnew

4 e, . . . , bwnew
m−1, w

new
m e otherwise.

(v) Modifying the old boundary edges: Finally, we modify the boundary edges

buold
j , vold

j e of Bold considering Bnew and j ≤ i (noticing that buold
j , vold

j e is a boundary

edge of Bnew too if j > i). This is done in a similar way as in step (iv). Suppose

that Bnew
j has mj > 0 boundary vertices wnew

1 , . . . , wnew
mj

, which we organize as in (iv).

Then Bnew
j has boundary edges

bwnew
2 , wnew

3 e, bwnew
4 , wnew

5 e, . . . , bwnew
mj

, wnew
1 e

if zj + (rj , 0) ∈ Hj,k for all k ≤ n with k 6= j and bj ∩ bk 6= ∅

and

bwnew
1 , wnew

2 e, bwnew
3 , wnew

4 e, . . . , bwnew
mj−1

, wnew
mj
e otherwise.

Appendix B: the case where a disc is deleted

Suppose we are deleting the disc bn from a configuration {b1, . . . , bn} of n ≥ 1 discs,

which are assumed to be in general position. We also assume that we know the power

tessellation Bold of Uold = ∪n
1 bi. Below we explain how to construct the new power

tessellation Bnew of Unew = ∪n−1
1 bi. More precisely, with respect to Bold, we assume

to know all the interior edges [uold
i,j , vold

i,j ] and all the boundary edges buold
i , vold

i e. We

want to construct the tessellation Bnew of Unew = Uold \ bn by finding the interior

edges [unew
i,j , vnew

i,j ] and the boundary edges bunew
i , vnew

i e associated to each new cell

Bnew
i , noticing that Bnew

i either agrees with Bold
i or is an enlargement of Bold

i or

is a completely new cell. One possibility could be to ”reverse” the construction in

Appendix A, where a new disc is added, however, we realized that it is easier to

create the new edges without reversing the construction in Appendix A but using a
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construction as described below. This is partly explained by the fact that an old empty

set Bold
i may possibly be replaced by a non-empty set Bnew

i .

(i) Considering the discs intersecting the disc which is deleted: Clearly, if Bold
n is

empty, then Bnew = Bold is unchanged. Assume that Bold
n is a non-empty cell, and

without loss of generality that bn intersects b1, . . . , bi but not bi+1, . . . , bn−1, where

0 ≤ i ≤ n − 1 (setting i = 0 if bn has no intersection). Then it suffices to find the

edges of Bnew
1 , . . . , Bnew

i , since Bnew
j = Bold

j is unchanged for j = i + 1, . . . , n − 1. If

i = 0 then Bold
n = bn is an isolated cell, and so Bnew

1 = Bold
1 , . . . , Bnew

n−1 = Bold
n−1 are

unchanged. In the following steps (ii)-(iv), suppose that i > 0.

(ii) Finding the new interior edges: If i = 1, no new interior edge appears. Suppose

that i ≥ 2. We want to determine each set enew
j,k with j < k ≤ i. We start by assign-

ing all cells Bnew
1 , . . . , Bnew

i to be non-empty, and by assigning enew
j,k ← [unew

j,k , vnew
j,k ],

considering unew
j,k and vnew

j,k as (potential) boundary vertices given by the endpoints of

the chord Ej,k. Consider a loop with l = 1, . . . , i and l 6= j, k. If enew
j,k ∩Hk,l = ∅ (or

equivalently unew
j,k 6∈ Hk,l and vnew

j,k 6∈ Hk,l, since Hk,l is convex), we have that enew
j,k is

empty and we can stop the l-loop. Otherwise assign enew
j,k ← enew

j,k ∩Hk,l, where we notice

that only the following two cases can occur. First, if both vertices of enew
j,k are contained

in Hk,l, the edge remains unchanged. Second, if exactly one vertex is not contained

in Hk,l, e.g. unew
j,k 6∈ Hk,l but vnew

j,k ∈ Hk,l, then unew
j,k becomes an interior vertex given

by the point enew
j,k ∩ ∂Hk,l while vnew

j,k is unchanged. When the loop is finished, we

have determined all the new interior edges, including the information whether their

endpoints are interior or boundary vertices.

(iii) Determining the new cells: For each j ≤ i, we determine if Bnew
j is a new cell

by checking if it has an edge. Suppose that Bnew
j has no interior edge, i.e. it is either

an empty set or a new isolated cell. If an arbitrary fixed point of bj is included in Hj,l

for all l = 1, . . . , n− 1 with l 6= j, then Bj has exactly one boundary edge and it is an

isolated cell. Otherwise Bnew
j is empty. In this way we determine whether each Bnew

j

is empty or a new cell, including whether it is an isolated cell.

(iv) Finding the new boundary edges: We have already determined the new isolated

boundary edges in step (iii). Consider a non-isolated cell Bnew
j with j ≤ i with

boundary vertices wnew
k = zj+rj(cos ϕnew

k , sinϕnew
k ), k = 1, . . . ,mj . Recall that mj > 0

is an even number and we organize the vertices so that 0 ≤ ϕnew
1 < · · · < ϕnew

mj
< 2π,
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cf. (iv) in Appendix A. Then Bnew
j has mj/2 boundary edges, namely

bwnew
2 , wnew

3 e, bwnew
4 , wnew

5 e, . . . , bwnew
mj

, wnew
1 e if zj + (rj , 0) ∈ Hj,l for all l = 1, . . . , i

and

bwnew
1 , wnew

2 e, bwnew
3 , wnew

4 e, . . . , bwnew
mj−1, w

new
mj
e otherwise.
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