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Abstract

In this paper we use standard computer-search techniques to investigate

the existence of two types of structured digraphs.

One type is the directed strongly regular graphs introduced by A. Du-

val. They have the property that the number of directed paths of length

2 from vertex x to vertex y depends only on whether there is an edge

from x to y. We prove existence in the last open case in Duval's list of

parametersets for directed strongly regular graphs with at most 20 vertices.

The second type of \strongly regular digraphs" are the normally regular

digraphs introduced by the author. Such digraphs have the property that

the number of common out-neighbours of two vertices only depends on

whether they are adjacent. In this case we construct some digraphs and

�nd that for 10 parametersets there exist no graph.

1 Normally Regular Digraphs.

A normally regular digraph (or NRD) is a digraph for which there exist numbers

k, � and �, so that every vertex has out-degree k, a pair of vertices x and y

have exactly � common out-neighbours if x and y are adjacent and � common

out-neighbours if they are non-adjacent. It is assumed that the digraph is in fact

oriented, i.e. there is at most one edge between a pair of vertices.

This de�nition can be restated in terms of the f0; 1g-adjacency matrix, A, by

the following equation:

AA

T

= kI + �(A+ A

T

) + �(J � I � A� A

T

) (1)

with the additional condition that A + A

T

is also a f0; 1g-matrix.

It is shown in [7] that the adjacency matrix of a normally regular digraph is

normal, i.e., the properties of out-degree and out-neighbours holds for in-degree

and in-neighbours as well.
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The number of vertices of a normally regular digraph is denoted by v. An

easy counting argument shows that

�v = (k + �� �)

2

� k + �� (�� �)

2

: (2)

Since we do not allow 2-cycles, we also have

v � 2k + 1 and k � 2�+ 1: (3)

1.1 The search algorithm.

Since it is di�ucult to determine existence of normally regular digraphs without

computer, we want to apply computer-search to normally regular digraphs with

small parameters in order to �nd such graphs or to prove non-existence.

In the computer a digraph is represented by its adjacency matrix. Since we

want to use an orderly search algorithm (see Read [12]) we choose one canonical

representation of the digraph among all possible adjacency matrices of a digraph.

If the rows of an adjacency matrix are written in one line; row 1 followed

by row 2, etc., then we may interpret this as a binary number. Among all the

adjacency matrices of a graph, there is one matrix for which this number is

largest. This matrix is said to be in maximal form.

We will always use the maximal form adjacency matrix of a normally regular

digraph. This means we want to have the 1's as far left as possible in the matrix,

with highest priority to the �rst row.

The �rst row of an adjacency matrix in maximal form of a normally regular

digraphs has 0 on the �rst (diagonal) entry. The following k entries are 1, and the

remaining entries are 0. The second row has 0 on the �rst entry (since A+A

T

is

a f0; 1g matrix) it has 0 the diagonal entry, and then it has 1 on the following �

entries (since vertex 1 and vertex 2 are adjacent), 0 on the next k� �� 1 entries

and then k � � entries with 1 and the remaining entries are 0.

Suppose we have �lled in rows number 1; : : : ; r�1. Then row number r must

satisfy

� It has exactly k entries 1 and v � k entries 0.

� Entry number r is 0.

� For i < r, entry i is 0 if entry r in row i is 1.

� If the matrix has 0 in entry (r; i) and in entry (i; r) then the dotproduct of

row i and row r is �, otherwise it is �, for i = 0; : : : ; r � 1.

� The �rst r rows of the matrix is in maximal form.

For each possible way to �ll in row r we repeat this procedure with r replaced

by r+1, etc., until either we �nd some r for which no row satis�es the conditions

or else all v rows are completed and the matrix satis�es the condition for a

normally regular digraph.
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Even if the �nal result is that no normally regular digraph exist with a given

parameterset, there may be a very large number of matrices with r rows that

satis�es the conditions, for some r < v. It is therefore usefull to have some

further conditions that must be satis�ed in order to get a smaller number of

matrices with r rows that satis�es all conditions. The only such condition that I

know is the following:

� The dotproduct of any two columns is at most the maximum of � and �.

If it is already known that the two columns correspond to vertices that are

adjacent (non-adjacent) then the dotproduct is at most � (�).

1.2 The design case: � = � or � = �+ 1.

It follows from the above matrix-equation (equation 1) that in the case � = �

the adjacency matrix A is also the incidence matrix of a symmetric 2� (v; k; �)

design, and in the case � = � + 1 the matrix A + I is incidence matrix of a

symmetric 2� (v; k + 1; �) design.

Design v k � � no. of NRD's

PG(2,2) 7 2 0 1 1

7 3 1 1 1

Hadamard-design 11 4 1 2 0

11 5 2 2 1

PG(2,3) 13 3 0 1 5

13 4 1 1 4

Hadamard-design 15 6 2 3 0

15 7 3 3 2

2-(16,6,2) 16 5 1 2 16

16 6 2 2 4

Hadamard-design 19 8 3 4 0

19 9 4 4 2

PG(2,4) 21 4 0 1 187

21 5 1 1 > 1000

Hadamard-design 23 10 4 5 0

23 11 5 5 37

2-(25,9,3) 25 8 2 3 � 1

25 9 3 3 � 1

Hadamard-design 27 12 5 6

27 13 6 6 722

Table 1.

Table 1 contains the result of the computer-search for normally regular di-

graphs with � = � or � = � + 1 in all the cases with v � 30 where designs with
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v > 2k exist (see Beth, Jungnickel and Lenz [1]). In this and the following tables

empty entries in \the number of graphs column" means that a search has not

been possible because of a very large number of cases. In other cases a partial

search has found some graphs, and so we have a lower bound on the number of

graphs.

In the case v = 2k + 1 = 4� + 3 the digraph is a tournament, i.e., every

pair of vertices is joined by an edge. Such tournaments are called doubly-regular

tournaments or Hadamard-tournaments, since their existence is equivalent the

existence of skew Hadamard matrices of order v + 1, see Reid and Brown [13].

These tournaments are also strongly regular in the sense of Duval. Such tourna-

ments with at most 27 vertices were also enumerated by Spence [14] (with the

same result as here).

We note that the normally regular digraphs with � = � + 1 related to

Hadamard-design do not exist for � � 5 except in the case � = 1, where the

Hadamard-design is PG(2,2).

1.3 The case � 62 f�; �+ 1; 0; kg.

It is proved in [7] and [9] that normally regular digraphs with � = k or � = 0

are in one to one correspondence with Hadamard tournaments or certain sets of

Hadamard tournaments, respectively.

We therefore consider normally regular digraphs with

� =2 f0; k; �; �+ 1g: (4)

There are 56 parametersets with v � 36 satifying equation 2 and inequalities 3.

26 of these parametersets can be excluded by the following Bruck-Ryser type

theorem, see [7].

Theorem 1 Suppose there exist a normally regular digraph with parameters (v; k; �; �).

� If v is even then � = k � �+ (�� �)

2

is a square.

� If v is odd then equation x

2

+ (�1)

v+1

2

�y

2

= �z

2

has an integer solution

(x; y; z) 6= (0; 0; 0).

Further 11 parameterset can be excluded by the following combinatorial the-

orem, see [7].

Theorem 2 Suppose there exist a normally regular digraph with parameters (v; k; �; �).

� If 2� > k + � then v � 2k divides v.

� If � = 0 then k > 2�+

1

2

+

q

2�+

1

4

, unless � = k or � = 1.

The remaining 19 parametersets are listed in Tabel 2, with the result of the

computer-search.
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v k � � no. of NRD's

19 6 1 3 1

21 8 3 2 1

23 8 2 4 0

25 8 3 1 0

27 8 1 4 0

27 10 3 5 � 1

28 9 2 4

28 12 5 4

29 7 2 1 4

29 12 5 3

31 10 2 5 0

31 10 4 1 0

31 12 4 6 � 1

31 12 5 2

35 10 1 5 0

35 12 3 6

35 14 5 7

36 7 0 2 2

36 10 3 2

Table 2.

The case (36; 7; 0; 2) is one the easiest in table 2. A complete search was done

on a SUN Ultra 2 workstation in about 2 minutes. The case (31; 10; 2; 5) took

about 30 hours. The cases that have not been searched all seems to be must more

di�cult.

1.3.1 The graphs found in the search.

In the cases (27; 10; 3; 5) and (31; 12; 4; 6) Tabel 2 says that there is at least one

graph in each case. These graphs were not found by this computer search. They

were found in [7] as Cayley graphs of the groups Z
3

�Z
3

�Z
3

and Z
31

, respectively.

The graph with parameters (19; 6; 1; 3) is the Cayley graph of Z
19

generated

by f1; 4; 6; 7; 9; 11g. It automorphism group has order 57 and is generated by the

maps i 7! i+ 1 and i 7! 7i.

The graph with parameters (21; 8; 3; 2) has automorphism group of order 7.

It can described as follows.

The vertexset is fa

i

; b

i

; c

i

j i 2 Z
7

g. It has edges

from a

i

to a

i+1

; a

i+2

; b

i

; b

i+1

; b

i+3

; b

i+5

; c

i

; c

i+1

, for i 2 Z
7

,

from b

i

to b

i+1

; b

i+2

; c

i

; c

i+3

; c

i+4

; c

i+5

; a

i+1

; a

i+3

, for i 2 Z
7

,

from c

i

to c

i+3

; c

i+6

; a

i+1

; a

i+3

; a

i+4

; a

i+6

; b

i+5

; b

i+6

, for i 2 Z
7

.

All the eigenvalues of this graph have multiplicity 1.
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In the case (29; 7; 2; 1) one of the four graphs (is a 4-class association scheme

and thus) has four eigenvalues of multiplicity 7. It is the Cayley graph of Z
29

generated by fx

4

j x 2 GF(29); x 6= 0g. The other three graphs each have

automorphism group of order 7.

One of the graphs with parameters (36; 7; 0; 2) was known previously, since

it is a 3-class association scheme (i.e., it has the additional property that the

number of directed paths of length 2 from vertex x to vertex y is 0 if x! y, 4 if

x y and 1 if x and y are non-adjacent). It was found (in 1982{84) by Farad�zev,

Klin and Muzichuk, who also found its automorphism group, PSU(3; 3) of order

6048, see Farad�zev, Klin and Muzichuk [3], page 115.

Goldbach and Claasen [5] showed that it is unique as an association scheme.

The other normally regular digraph with parameters (36; 7; 0; 2) has vertexset

fx

i;j

; y

i;j

j i = 1; : : : ; 6; j 2 Z
3

g, and edges

x

i;j

! x

i;j+1

and y

i;j

! y

i;j+1

for i = 1; : : : ; 6; j 2 Z
3

(5)

and

x

i;j

! y

k;j+1+i�k

and y

i;j

! x

k;j+1+i�k

for i; k = 1; : : : ; 6; j 2 Z
3

(6)

where i � j 2 Z
3

is de�ned by the multiplication table

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 1 1 2 2

3 0 1 0 2 1 2

4 0 1 2 0 2 1

5 0 2 1 2 0 1

6 0 2 2 1 1 0

It is easy to see that this graph has k = 7. The common out-neighbours of x

i;j

and y

i

0

;j

0

is contained in fx

i;k

; y

i

0

;k

j k 2 Z
3

g, since the graph is nearly bipartite.

x

i;j

and x

i;j

0

, j 6= j

0

cannot have a common out-neighbour y

a;b

, since it is not

possible that b = j + 1 + i � a and b = j

0

+ 1 + i � a. x

i;j

and x

i

0

;j

0

, i 6= i

0

have a

common out-neighbour y

a;b

if b = j +1+ i � a = j

0

+ 1+ i

0

� a. But this equation

has two solutions, since row i and row i

0

di�er by j � j

0

in exactly two columns

in the multiplication table. Since the map x

i;j

7! y

i;j

and y

i;j

7! x

i;j

is clearly an

automorphism, y

i;j

and y

i

0

;j

0

also have two (no) common out-neighbours if i 6= i

0

(i = i

0

). It follows that � = 0 and � = 2.

The automorphism group has order 2160. It is transtive on vertices. The

edges in equation 5 and 6 forms two edgeorbits.
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2 Directed Strongly Regular Graphs.

A directed strongly regular graph is a digraph for which there exist numbers

n; k; �; �; t such that the digraph has n vertices, every vertex has out-degree and

in-degree k, the number 2-cycles incident with a vertex is t, the number of directed

paths of length 2 from vertex x to vertex y is � if there is an edge directed from

x to y, and it is � otherwise.

The adjacency matrix A satis�es

A

2

= tI + �A+ �(J � I � A);

and

AJ = JA = kJ:

Directed strongly regular graphs were de�ned by Duval [2]. Earlier Hammer-

sley [6] had considered the special case � = � = 1.

2.1 The search algoritm.

We want to use an orderly search algoritm similar to the one used for normally

regular digraphs. But the problem is that comparing two rows of the adjacency

matrix does not give any information about the number of directed paths of

length two between the corresponding vertices. We have to compare a row and a

column!

This problem can be solved if we dont use the adjacency matrix A to represent

the graph but the matrix B = 2A + A

T

. Then row r of B contains information

about all edges directed into and out from vertex r.

We always represent a directed strongly regular graph by its B-matrix in

maximal form.

The �rst row of such a matrix has 0 in the �rst entry, 3 in the following t

entries, then 2 in k� t entries, 1 in k� t entries and the remaining entries are 0.

To �ll in row r, 1 < r � v, assume that rows 1; : : : ; r � 1 are �lled. The new

row must satisfy

� It has t 3's, k � t 2's, k � t 1's and 0 in the remaining entries.

� It has 0 in the diagonal entry.

� If entry (i; r) is 3, 2, 1 or 0, respectively then entry i in row r should be 3,

1, 2, 0, respectively, for i = 1; : : : ; r � 1.

� If entry (i; r) is 3 or 2 (1 or 0) then there are exactly � (�) columns with 3

or 2 in row i and 3 or 1 in row r, for i = 1; : : : ; r � 1.

� If entry (r; i) is 3 or 2 (1 or 0) then there are exactly � (�) columns with 3

or 2 in row r and 3 or 1 in row i, for i = 1; : : : ; r � 1.

� The �rst r rows is a matrix in maximal form.
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2.2 Result of search.

Duval [2] made a table of all possible parametersets with n � 20 and k <

n

2

satisfying the eigenvalue conditions and some other conditions.

In table 3 we list the same parametersets. The last column contains what

was known about existence of graphs with the given parameterset, before our

computer-search. This column also refers to the �rst paper that proved the

(non) existence: D is Duval [2], H is Hammersley [6], KMMZ is Klin, Munemasa,

Muzychuk and Zieschang [10], FKM is Fiedler, Klin and Muzychuk [4].

Column 6 of table 3 contains the number of non-isomorphic digraphs found

in the search described above.

Note that the two previously known non-existence result were con�rmed by

this search. The case (n; k; �; �; t) = (14; 5; 2; 1; 4) was done in about 1 second

on a SUN ultra 2 workstation. The case (n; k; �; �; t) = (16; 6; 3; 1; 3) took about

70 minutes.

n k � � t no. of graphs existence

6 2 1 0 1 1 yes, D

8 3 1 1 2 1 yes, H

10 4 2 1 2 16 yes, D

12 3 1 0 1 1 yes, D

12 4 2 0 2 1 yes, D

12 5 2 2 3 20 yes, D

14 5 2 1 4 0 no, KMMZ

14 6 3 2 3 16495 yes, D

15 4 1 1 2 5 yes, H

15 5 2 1 2 1292

16 6 3 1 3 0 no, FKM

16 7 2 4 5 1 yes, D

16 7 3 3 4 yes, FKM

18 4 1 0 3 1 yes, D

18 5 1 2 3 2 yes, FKM

18 6 3 0 3 1 yes, D

18 7 3 2 5 yes, FKM

18 8 3 4 5 yes, D

18 8 4 3 4 yes, D

20 4 1 0 1 1 yes, D

20 7 2 3 4 yes, KMMZ

20 8 4 2 4 yes, D

20 9 4 4 5 yes, D

Table 3.
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2.2.1 The case (n; k; �; �; t) = (15; 4; 1; 1; 2).

Hammersley [6] found one such graph, which we denote by G

1

. This graph is a

special case of a general constructions in [2] and [8]. The 2-regular subgraph of

G

1

consisting of undirected edges is the union of a 10-cycle and a 5-cycle. Its

automorphism group is the dihedral group of order 10.

Another graph G

2

has vertex set fv

0

; : : : ; v

14

g. The undirected edges form a

15-cycle v

0

 ! v

1

 ! : : : ! v

14

 ! v

0

. The directed edges are

v

0+5h

! v

7+5h

; v

8+5h

v

1+5h

! v

3+5h

; v

11+5h

v

2+5h

! v

0+5h

; v

11+5h

v

3+5h

! v

5+5h

; v

9+5h

v

4+5h

! v

2+5h

; v

9+5h

for h = 0; 1; 2. The automorphism group S

3

is generated by the maps v

i

7! v

i+5

and v

i

7! v

15�i

.

A third directed strongly regular graph with these parameters is G

3

with ver-

tex set fw

�7

; : : : ; w

7

g. The undirected edges form the 15-cycle w

�7

 ! w

�6

 !

: : : ! w

7

 ! w

�7

. The directed edges are w

x

! w

y

; w

x

! w

z

and (if x 6= 0)

w

�x

! w

�y

; w

�x

! w

�z

where (x; y; z) is one of the triples (0; 2;�2); (1; 7;�2),

(2;�5;�4), (3; 5;�1), (4;�1; 2); (5; 7;�3); (6; 4;�3); (7;�6; 0). The only non-

trivial automorphism of G

3

is the map w

i

7! w

�i

.

The remaining two graphs with parameters (15; 4; 1; 1; 2) areG

�

2

andG

�

3

, where

G

�

i

is the graph obtained from G

i

by reversing the direction of all edges. G

�

1

is

isomorphic to G

1

.

2.2.2 The case (n; k; �; �; t) = (15; 5; 2; 1; 2).

When we started this search project the case (15,5,2,1,2) was the only case from

Duval's table that was still open. We have settled the existence problem in this

case by showing that there are exactly 1292 non-isomorphic graphs with these

parameters. The matrix B = 2A + A

T

in maximal form of one of these graphs

is shown below. This graph has no non-trial automorphism. All these graphs

have small automorphism groups of order at most 5. The number of graphs with

automorphism group of order 1, 2, 3, 4, 5 is 1174, 100, 10, 5, 3, respectively.
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2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 3 3 2 2 2 1 1 1 0 0 0 0 0 0

3 0 3 2 2 2 0 0 0 1 1 1 0 0 0

3 3 0 0 0 0 1 1 0 1 0 0 2 2 2

1 1 0 0 0 0 3 3 0 1 2 2 2 0 0

1 1 0 0 0 0 3 1 2 3 2 0 0 2 0

1 1 0 0 0 0 1 3 2 3 0 2 0 0 2

2 0 2 3 3 2 0 0 1 0 0 0 1 0 1

2 0 2 3 2 3 0 0 0 0 1 0 0 1 1

2 0 0 0 1 1 2 0 0 0 2 1 3 3 0

0 2 2 2 3 3 0 0 0 0 0 1 1 1 0

0 2 0 1 1 0 0 2 1 0 0 2 3 0 3

0 2 0 1 0 1 0 0 2 2 1 0 0 3 3

0 0 1 1 0 0 2 0 3 2 3 0 0 2 1

0 0 1 0 1 0 0 2 3 2 0 3 1 0 2

0 0 1 0 0 1 2 2 0 0 3 3 2 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2.2.3 The case (n; k; �; �; t) = (2m

2

; 2m� 1; 1; m� 1; m).

For every integer m � 2 we construct a directed strongly regular graph G

m

with 2m

2

vertices fx

i;j

; y

i;j

j i; j = 1; : : : ; mg. For each i = 1; : : : ; m the sets

fx

i;1

; : : : ; x

i;m

g and fy

i;1

; : : : ; y

i;m

g span complete graphs K

m

. Furthermore the

graph has edges x

i;j

! y

j;l

and y

i;j

! x

j;l

for every i; j; l = 1; : : : ; m. In particular

the undirected edges between the complete subgraphs are x

i;j

 ! y

j;i

. (An

algebraic construction of these graphs from generalized quadrangles is given by

Klin, Pech and Zieschang [11]).

The map � : x

i;j

7! y

i;j

; y

i;j

7! x

i;j

is an automorphism and for any two

permutations p and q of f1; : : : ; mg the map �

p;q

: x

i;j

7! x

p(i);q(j)

; y

i;j

7! y

q(i);p(j)

is an automorphism. It follows that G

m

is vertex transitive. For m � 3 is it easy

to see that the automorphism group of G

m

is imprimitive with three systems of

blocks

� X = fx

i;j

j i; j = 1; : : : ; mg; Y = fy

i;j

j i; j = 1; : : : ; mg.

� X

i

= fx

i;1

; : : : ; x

i;m

g; Y

i

= fy

i;1

; : : : ; y

i;m

g, i = 1; : : : ; m.

� fx

i;j

; y

j;i

g, i; j = 1; : : : ; m.

(this is true even for m = 2).

Let � be an arbitrary automorphism of G

m

. If � interchanges X and Y then

we replace � by ��. So we may assume that X and Y are �xed by � as sets.

There exist permutations p and q in S

m

so that � maps X

i

to X

p(i)

and Y

i

to Y

q(i)

for i = 1; : : : ; m. A vertex in X

i

that dominates Y

j

is mapped to a vertex in X

p(i)

that dominates Y

q(j)

. Thus �(x

i;j

) = x

p(i);q(j)

. Similarly, �(y

i;j

) = y

q(i);p(j)

. Thus

� = �

p;q

and so f�

p;q

�

i

j p; q 2 S

m

; i = 0; 1g is the full group of automorphisms.
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Every vertex in the graph has degree k = 2m� 1 and is incident with t = m

undirected edges.

Since G

m

is vertex transitive we need only consider directed paths of length

2 starting at x

1;1

. Let x

i;j

be a vertex so that we do not have x

1;1

! x

i;j

, i.e.,

i 6= 1. A directed path x

i;j

! z ! x

i;j

must satisfy z = y

u;v

for some u; v. Since

x

1;1

! y

u;v

, u = 1. Since y

u;v

! x

i;j

, v = i. Thus there is a unique path of length

2 from x

1;1

to x

i;j

.

Let y

i;j

be a vertex so that x

1;1

6! y

i;j

, i.e., i 6= 1. Since x

1;1

does not have

any out neighbour in fy

i;1

; : : : ; y

i;m

g, a vertex z so that x

1;1

! z ! y

i;j

, must

satisfy y = x

1;l

for some l. Since x

1;l

! y

i;j

, l = i. Thus there is aunique path of

length 2 from x

1;1

to y

i;j

and so � = 1.

The vertices z that satis�es x

1;1

! z ! x

1;j

are the vertices z = x

1;i

, where

i 6= 1; j, and z = y

1;1

.

The vertices z that satis�es x

1;1

! z ! y

1;j

are the vertices z = y

1;i

, where

i 6= j. Thus � = m� 1.

For m = 2, G

2

is the unique directed strongly regular graph with parameters

(8; 3; 1; 1; 2).

For any vertex z 2 G

m

the set fv 2 G

m

j z ! v 6! zg spans a complete

graphs with m� 1 vertices, and the set fv 2 G

m

j v ! z 6! vg is an independent

set. It follows that for m > 2 the graph G

�

m

obtained from G

m

by reversing the

direction of all edges is not isomorphic to G

m

.

For m = 3, G

3

and G

�

3

are the only directed strongly regular graphs with

parameters (18; 5; 1; 2; 3).
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