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Summary. There are 24 feasible parameter sets for a primitive non-symmetric
association schemes with 3 classes and at most 100 vertices. Using computer search,
we prove non-existence for three feasible parameter sets. Eleven cases are still open.

In the imprimitive case, we survey the known results including some construc-
tions of infinite families of schemes. In the smallest case that has been open up to
now, we use computer search to find new schemes. These schemes are equivalent to
“skew” Bush-type Hadamard matrices of order 36. We also consider directed graphs
that satisfy only some of the conditions required for a non-symmetric association
scheme with 3 classes.

1 Introduction

The theory of association schemes was for a long time concentrated on the
investigation of the symmetric association schemes generated by distance regu-
lar graphs. In this context the symmetric association schemes with two classes
are exactly the schemes generated by strongly regular graphs.

More opportunities appear as soon as we are dealing with at least three
classes. A good survey of symmetric association schemes with three classes
was provided by van Dam [6].

In this paper we consider non-symmetric association schemes with three
classes. From each such association scheme, a symmetric association scheme
with two classes can be obtained by merging the non-symmetric relations.
Feasibility conditions for the existence of these association schemes have pre-
viously been considered by Bannai and Song [2], Song [35] and by Goldbach
and Claasen [13].

In this paper we make an attempt of a more systematic investigation of
non-symmetric 3-class association schemes with a relatively small number of
vertices. In the primitive case we generate all feasible parameter sets with at
most 100 vertices. There are 24 such parameter sets. We review known results
and prove non-existence results for three parameter sets, while 11 cases still
remain open.
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We also briefly consider normally regular digraphs (in the sense of [24]) as
a generalization of non-symmetric 3-class association schemes.

For the imprimitive case we start from a consideration of doubly regu-
lar (m, r)-team tournament in the sense of [26]. In [26] we distinguish three
possible types of such directed graphs. A graph of type 3 can not be a rela-
tion of an association scheme, however we do not know if any graph of this
type exists. Types 1 and 2 indeed correspond to imprimitive non-symmetric
3-class association schemes. Graphs of type 1 are easily reduced to doubly
regular tournaments in the sense of [33]. Thus we concentrate on graphs of
type 2 and the corresponding association schemes. In particular we consider
a subtype of type 2 which has links to Bush-type Hadamard matrices.

Here we investigate the smallest open case of order 36. We find four such
association schemes by computer search, but we leave open the problem of
complete enumeration of all association schemes with this set of parameters.
We expect that there may be a large number of such schemes - probably all
with small automorphism groups. N. Ito [19] has proved that they can not
have an automorphism group of rank 4.

It should be stressed that our approach is strictly algorithmic, essentially
depending on the use of computers. The computer is used already on the
initial stage of the generation of all feasible sets of parameters of primitive
schemes.

For computer-aided constructive enumeration of all association schemes
with a given set of parameters we use two different approaches. The first ap-
proach makes use of a complete catalogue of strongly regular graphs with the
parameters that would be obtained by merging the non-symmetric relations.
Such complete catalogues have been constructed by Coolsaet, Degraer and
Spence [5] and by Hoffman and Singleton [16]. The second approach is an
orderly generation algorithm in the spirit of Faradžev [8] and Read [32].

These techniques are used to exclude existence of three feasible parameter
sets for primitive association schemes. The second technique was also used
to find the above mentioned imprimitive association schemes of order 36. In
that case the search space is huge and it was not possible to complete the
full search. But we successfully used some ad hoc tricks in order to catch in
the whole search space a few lucky directions leading to a construction of the
desired combinatorial objects.

We hope that the results presented in this paper may help to promote
further approaches towards constructive enumeration of association schemes.

2 Preliminaries

Let X be a finite set (|X| = v) and let {R0, R1, . . . , Rd} be a partition of
X×X. Then we say that X = (X, {R0, R1, . . . , Rd}) is an association scheme
with d classes if the following conditions are satisfied

• R0 = {(x, x) | x ∈ X},
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• for each i, Rt
i := {(x, y) | (y, x) ∈ Ri} = Ri′ , for some i′,

• and for each triple (i, j, h), i, j, h ∈ {0, . . . , d} there exists a so-called in-
tersection number ph

ij such that for all x, y ∈ X with (x, y) ∈ Rh there are
exactly ph

ij elements z ∈ X so that (x, z) ∈ Ri and (z, y) ∈ Rj .

For i > 0 the relation Ri can be viewed as the edge set of the (undirected
or directed) graph (X, Ri). We will frequently identify this graph with the
relation Ri.

If i = i′ for all i then X is said to be symmetric, otherwise it is non-
symmetric. If the graphs R1, . . . , Rd all are connected then we say that X is
primitive, otherwise it is imprimitive.

In this paper we consider non-symmetric association schemes with d = 3
classes. We will assume that the relations are enumerated so that R1 and R2

are non-symmetric, R2 = Rt
1, and R3 is a symmetric relation. In this case the

association scheme is determined uniquely by relation R1.
If A denotes the adjacency matrix of the relation R1 then the adjacency

matrices of R0, R2 and R3 are I, At and J−I−A−At, respectively. The Bose-
Mesner algebra of X is the matrix algebra A spanned by these four matrices,
see Bannai and Ito [1].

Higman [15] proved that an association scheme with d ≤ 4 has a commu-
tative Bose-Mesner algebra, which means that ph

ij = ph
ji, for all i, j, h.

Thus multiplication in the Bose-Mesner algebra is determined by the fol-
lowing equations.

AJ = JA = κJ (1)
AAt = κI + λ(A + At) + µ(J − I −A−At) (2)
AtA = κI + λ(A + At) + µ(J − I −A−At) (3)

A2 = αA + βAt + γ(J − I −A−At) , (4)

where κ = p0
12, λ = p1

12 = p1
21 = p2

12 = p2
21, µ = p3

12 = p3
21, α = p1

11, β = p2
11

and γ = p3
11.

We note that α = λ. This is seen by counting in two ways the pairs (y, z)
so that (x, y), (x, z), (y, z) ∈ R1, for a fixed vertex x.

Since A is commutative and consists of normal matrices, the matrices
of A have a common diagonalization, i.e., A has a basis {E0, E1, E2, E3} of
orthogonal projections.

A relation (say R1) of a symmetric association scheme with two classes
is a strongly regular graph with parameters (v, k, a, c), where v = |X|, k =
p0
11, a = p1

11, c = p2
11. And conversely, if R1 is a strongly regular graph and

R2 is the complementary graph of R1, then R1 and R2 form a symmetric
association scheme with two classes.

A relation of a non-symmetric association scheme with two classes is called
a doubly regular tournament. Reid and Brown [33] proved that there exists a
doubly regular tournament with n vertices if and only if there exists a skew
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Hadamard matrix of order n + 1. Thus a necessary condition is that n ≡ 3
mod 4.

Since a non-symmetric association scheme X with 3 classes is commutative,
the symmetrization (X, {R0, R1∪R2, R3}) is also an association scheme, thus
R3 is a strongly regular graph and R1 and R2 are orientations of a strongly
regular graph. In fact R1 ∪R2 is a strongly regular graph with parameters

(v, k, a, c) = (v, 2p0
12, p

1
11 + p1

12 + p1
21 + p1

22, p
3
11 + p3

12 + p3
21 + p3

22) (5)
= (v, 2p0

12, 3p1
12 + p1

22, 2(p3
11 + p3

12)) . (6)

In [24], we prove the following.

Lemma 1. If A is the adjacency matrix of a regular directed graph (i.e., (1)
is satisfied), then (2) and (3) are equivalent.

(This is also an alternative proof of the commutativity of the Bose-Mesner
algebra A in this particular case.) A directed graph whose adjacency matrix
satisfies these equations is called a normally regular digraph. The eigenvalues
of a normally regular digraph have the following property.

Theorem 1 ([24]). If the adjacency matrix A of a regular directed graph
satisfies (2) then an eigenvalue θ 6= k lies on the circle in the complex plane
with centre λ−µ and radius

√
k − µ + (λ− µ)2 and θ + θ is an eigenvalue of

A + At.

If A satisfies all the equations (1), (2), (3) and (4) then it has four eigenval-
ues κ, and say ρ, σ and σ with multiplicities 1, m1, m2 and m2, respectively,
and the eigenvalues of A + At are 2κ, 2ρ, and σ + σ with multiplicities 1, m1,
and 2m2.

For parameters v and ph
ij , i, j, h ∈ {0, 1, 2, 3} the parameters of R1 ∪ R2

can be computed from (6). Using standard formulas, the spectrum of R1∪R2

can then be computed. From this it is possible to compute eigenvalues and
multiplicities of R1 (e.g. using Theorem 1). For arbitrary intersection numbers
the result may be expressions for the multiplicities which are not integers.

Definition 1. We say that v and ph
ij, i, j, h ∈ {0, 1, 2, 3} form a feasible pa-

rameter set for a non-symmetric association scheme with three classes if they
are non-negative integers and the multiplicities of the (four) eigenvalues com-
puted from these intersection numbers are positive integers.

However, Bannai and Song proved that the spectrum of A can be computed
from the spectrum of A + At. (We note that if the eigenvalues of A + At are
2κ, r, s then either r or s can be split in two complex eigenvalues, if their
multiplicities are even.)

Lemma 2 (Bannai and Song [2]). Suppose A is an adjacency matrix of a
non-symmetric relation R1 of a 3-class association scheme. If s is the eigen-
value (of multiplicity 2m) of A + At that is split in two complex eigenvalues
σ and σ (i.e., s = σ + σ) then σ = 1

2 (s + i
√

vκ/m).



Algorithmic Approach to Non-symmetric 3-class Association Schemes 5

From the spectrum of A it is possible to compute the intersection numbers.
The Hadamard product of matrices B = (bij) and C = (cij) is the matrix

B ◦C = (bijcij). Since {I,A, At, J −A−At − I} is a basis of A, it follows by
considering the Hadamard product of these matrices that A is closed under
the Hadamard product. In particular there exist numbers qh

ij , for i, j, h ∈
{0, 1, 2, 3}, so that Ei ◦ Ej = 1

v

∑
h qh

ijEh. These numbers are called Krein
parameters. It is known that each Krein parameter is a non-negative real
number, see Bannai and Ito [1]. Since the Krein parameters can be computed
from the spectrum of A, this can be used to prove non-existence for some
feasible parameter sets.

Neumaier [31] found another way to exclude feasible parameter sets. Let mi

be the rank of Ei, for i ∈ {0, 1, 2, 3}. (Thus m0, . . . ,m3 are the multiplicities
of eigenvalues.)

Theorem 2 ([31]). The following inequalities are satisfied for a commutative
association scheme.∑

h : qh
ii>0

mh ≤
1
2
mi(mi + 1), for i = 0, . . . , d ,

∑
h : qh

ij>0

mh ≤ mimj , for i, j = 0, . . . , d, i 6= j .

3 Primitive association schemes with three classes.

We now use a computer to generate a list of all feasible parameter sets for
primitive association schemes with three classes and |X| ≤ 100. For each
feasible parameter set (v, k, a, c) of a strongly regular graph we investigate the
feasible parameters of non-symmetric association schemes with three classes
such that R1 ∪R2 has parameters (v, k, a, c). It follows from (6) that we need
only consider parameters where k and c are even. It is also useful to know that
the eigenvalues of R1 ∪R2 are integers. This follows from the next lemma.

Lemma 3 (Goldbach and Claasen [13]). There is no non-symmetric as-
sociation scheme with three classes so that R1 ∪ R2 has parameters (4c +
1, 2c, c− 1, c).

In Goldbach and Claasens’s terminology they proved non-existence if the
strongly regular graph is pseudo-cyclic, i.e., the two non-trivial eigenvalues
have the same multiplicities. It is well-known that this is equivalent to having
parameters (4c + 1, 2c, c− 1, c), see [3].

The resulting list of feasible parameter sets is presented in Table 1 below.
The association scheme with parameter set no. 3 was constructed by

Ivanov, Klin and Faradžev [22], see also [9]. Later Goldbach and Claasen [11]
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Table 1. A list of all feasible parameter sets for primitive non-symmetric 3-class
association schemes with at most 100 vertices. The second column is the param-
eters of the strongly regular graph R1 ∪ R2. The third column gives information
on the number of strongly regular graphs with these parameters. (In fact in some
cases where we write ≥ 1, there are several known strongly regular graph, e.g. with
parameters (100, 44, 18, 20), see [25].) These numbers are from [3], [30] and [5]. In
column six “NO” means that we prove non-existence of the association scheme in
this paper and “no” means that non-existence follows from general results or it was
proved in other papers.

Parameters no. of
No. for R1 ∪R2 SRGs p1

12 p3
12 exists reference

1 (16, 10, 6, 6) 1 1 2 no Goldbach and Claasen [12]
2 (21, 10, 3, 6) 1 1 1 no Enomoto and Mena [7]
3 (36, 14, 4, 6) 180 0 2 yes Goldbach and Claasen [11]
4 (36, 20, 10, 12) 32548 3 2 NO Theorem 5
5 (45, 32, 22, 24) 78 6 4 NO Theorem 4
6 (50, 42, 35, 36) 1 8 12 NO Theorem 3
7 (57, 42, 31, 30) 0 7 9 no Wilbrink and Brouwer [36]
8 (64, 28, 12, 12) ≥ 1 4 2 yes Enomoto and Mena [7]
9 (64, 36, 20, 20) ≥ 1 4 6 ?
10 (64, 42, 26, 30) ≥ 1 7 6 ?
11 (64, 42, 30, 22) 0 7 6 no absolute bound
12 (81, 50, 31, 30) ≥ 1 9 5 ?
13 (85, 64, 48, 48) ≥ 1 13 8 ?
14 (85, 70, 57, 60) ? 13 20 ?
15 (96, 38, 10, 18) ? 3 4 ?
16 (96, 50, 22, 30) ? 3 10 no Neumaier
17 (96, 60, 38, 36) ? 11 6 no Krein
18 (96, 76, 60, 60) ≥ 1 16 10 ?
19 (100, 44, 18, 20) ≥ 1 3 6 ?
20 (100, 54, 28, 30) ≥ 1 8 6 ?
21 (100, 66, 39, 52) 0 10 12 no absolute bound
22 (100, 66, 41, 48) ≥ 1 8 16 no Neumaier
23 (100, 66, 44, 42) ? 10 12 ?
24 (100, 72, 50, 56) ≥ 1 13 12 ?

proved that it is the unique association scheme with these parameters. The
association scheme with parameter set no. 8 was constructed by Enomoto
and Mena [7]. Liebler and Mena [28] showed this scheme belongs to an infi-
nite family of association schemes. These schemes have order 4s4 where s is
a power of 2.

These are the only known primitive non-symmetric association schemes
with three classes.
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In parameter sets no. 7, 11 and 21 it is known that the strongly regular
graph does not exist, see Brouwer [3]. Thus the 3-class association scheme
does not exist in these cases.

In parameter set no. 17 some of the Krein parameters are negative. Thus
this case is excluded. The multiplicities of eigenvalues for parameter sets no.
16 and 22 do not satisfy Neumaier’s condition.

We will now use computers to prove non-existence of association schemes
with parameter sets no. 4, 5 and 6. We use two different techniques.

For parameter sets no. 5 and 6, the computation is based on the clas-
sification of all strongly regular graphs which have the same parameters as
the strongly regular graph R3 (assuming that (X, {R0, R1, R2, R3}) is the re-
quired association scheme). For a given graph R3 we try to construct R1 by
orienting the complement of R3. We first consider orientation of edges of the
complement of R3 incident with a fixed vertex x. We let N+(x) denote the out-
neighbours of x in R1 and we let N2(x) denote the vertices at distance 2 from
x in R3. Then a candidate for N+(x) consists of exactly half of the vertices in
N2(x). But it also has some other properties. Let x1, . . . , xk be the neighbours
of x in R3 and Si denote the set of neighbours of xi in N2(x), for i = 1, . . . , k.
Then a candidate for N+(x) must satisfy |Si ∩N+(x)| = p3

13 = 1
2 |Si|. It also

satisfies that the subgraph of R3 induced by N+(x) is regular of degree p1
13

and the subgraph induced by N2(x) \ N+(x) is regular of degree p2
23 = p1

13.
When we have computed the list of all candidates for N+(x) for every vertex
x, we try if it is possible to combine these orientations in such a way that for
any two vertices x and y the orientation of the edges incident with x and the
orientation of the edges incident with y should agree on the orientation of the
edge {x, y} if x and y are non-adjacent in R3, and they should satisfy that for
all i, j the number of vertices z so that (x, z) ∈ Ri and (z, y) ∈ Rj is exactly
ph

ij where (x, y) ∈ Rh.
For parameters no. 6, R3 is a strongly regular graph with parameters

(50, 7, 0, 1), i.e., it is the Hoffman-Singleton graph, see [16]. This case can
be excluded by investigating possible orientations of the complement of the
Hoffman-Singleton graph.

Theorem 3. There is no non-symmetric association scheme with three classes
where R3 is the Hoffman-Singleton graph.

Proof. Suppose that there exists a non-symmetric association scheme with
three classes where R3 is the Hoffman-Singleton graph. When applying the
method described above we may use that the Hoffman-Singleton graph has
a large group of automorphisms. Computations using this group are done in
GAP [10] with GRAPE [34] and nauty [29]. Other computation are done in
a C-program.

Let x be a vertex and let x1, . . . , x7 be the neighbours of x in R3. Let Si

be the set of neighbours of xi other than x, for i = 1, . . . , 7. Let N+(x) be
the set out-neighbours of x in R1. Then N+(x) is a set of 21 vertices in the
set N2(x) = S1 ∪ . . .∪S7 of vertices at distance 2 from x, and |Si ∩N+(x)| =



8 Leif K. Jørgensen

p3
13 = 3, for i = 1, . . . , 7. The subgraph of R3 spanned by N+(x) is regular

of degree p1
13 = 4. The complement of N+(x) in S1 ∪ . . . ∪ S7 is the set of

in-neighbours of x in R1 and this set also spans a 4-regular subgraph of R3.
A computer enumeration shows that there are exactly 1140 subsets of

N2(x) with the properties required for N+(x). These 1140 subsets form three
orbits under the action of the subgroup of the automorphism group of the
Hoffman-Singleton graph stabilizing the vertex x.

Thus we need only consider three possibilities for N+(x), but then we must
consider all 1140 candidates N+(y) for any other vertex y. It turns out that
we only need to consider orientations of edges incident with x, x1, . . . , x5.
These edges must by oriented such that |N+(x) ∩ N+(xi)| = p3

12 = 12, as
(x, xi) ∈ R3, |N+(xi) ∩N+(xj)| = p1

12 = p2
12 = 8, as (xi, xj) /∈ R3, and such

that xj ∈ N+(xi) if and only if xi /∈ N+(xj).
A computer search shows that there are no orientations of all edges incident

with x, x1, x2, x3, x4 and x5 that satisfy these conditions. Thus the required
association scheme does not exist. ut

For parameters no. 5, R3 is a strongly regular graph with parameters
(v, k, a, c) = (45, 12, 3, 3).

Coolsaet, Degraer and Spence [5], have shown that there are exactly 78
strongly regular graphs with these parameters. Thus the method from the
previous theorem can be applied to each of these 78 graphs.

Theorem 4. There is no primitive non-symmetric association scheme with
three classes with parameter set no. 5.

Proof. Suppose that there exists such an association scheme. Let x be a
vertex and let x1, . . . , x12 be the neighbours of x in R3. Let Si be the set of
neighbours of xi at distance 2 from x, |Si| = k − a− 1 = 8, for i = 1, . . . , 12.
Let N+(x) be the set out-neighbours of x in R1. Then N+(x) is a set of 16
vertices in the set N2(x) := S1 ∪ . . . ∪ S12, and |Si ∩ N+(x)| = p3

13 = 4, for
i = 1, . . . , 12. The subgraph of R3 spanned by N+(x) is regular of degree
p1
13 = 3.

The computer search shows that if N is a set with |Si ∩ N | = 4, for
i = 1, . . . , 12, and in which every vertex has degree at most 3 then N is
3-regular and the subgraph of R3 spanned by N2(x) \N is also 3-regular.

The number of such sets N depend on the graph and the vertex x. The
largest number of sets is 396, which appear in the graph with a rank 3 auto-
morphism group.

44 of the 78 candidates for R3 can be excluded because, for at least one
vertex x, there is no such set N .

For each of the other 34 graphs we find by computer search a set W of at
most 8 vertices so that there is no combination of orientations of edges in the
complement of R3 incident with w, for each w ∈ W that satisfies the required
properties. (This search took 45 minutes on a 2.4 GHz PC.)

Thus an association scheme with parameter set no. 5 does not exist. ut



Algorithmic Approach to Non-symmetric 3-class Association Schemes 9

For parameter set no. 4 (and for one case of imprimitive association
schemes, see section 4) we use a different computer search technique. This
does not depend on characterization of strongly regular graphs.

We use an orderly generation algorithm (see Faradžev [8] or Read [32]) to
search for the matrix B = 3A3 + 2A2 + A1, where A1, A2, A3 are adjacency
matrices of the relations R1, R2, R3 of the required association scheme. Recall
that for i ∈ {1, 2, 3} we define i′ ∈ {1, 2, 3} so that Rt

i = Ri′ . In our usual
enumeration of relations this means that 1′ = 2, 2′ = 1 and 3′ = 3, but in the
first application of the algorithm (Theorem 5) we use a different enumeration
(where 1′ = 1, 2′ = 3 and 3′ = 2).

We want the vertices to be enumerated so that the matrix B is in max-
imal form, i.e., the sequence obtained by reading the entries of the first row
followed by the entries of the second row, etc., is as large as possible (in the
lexicographic order) among all enumerations of the vertices.

Suppose that the first r−1 rows of the matrix B = (bij) has been filled in.
We then investigate all possible ways to fill in row r with 0 on the diagonal
entry, p0

11′ entries with 1’s, p0
22′ entries with 2’s, and p0

33′ entries with 3’s in
such a way that

• the first r− 1 entries are in accordance with the entries of column r of the
previous rows.

• for each x < r the number of columns s, so that bxs = i and brs = j′ is
exactly ph

ij , where bxr = h.
• the matrix is still in maximal form.

For each possible way to fill row r we repeat the procedure for row r + 1.

Theorem 5. There is no primitive non-symmetric association scheme with
three classes with parameter set no. 4.

Proof. As described above, we search for the matrix B = 3A3 + 2A2 + A1.
In turns out that with the maximality condition on the matrix and for this

particular parameter set it is convenient to enumerate the relations so that
R1 is symmetric and Rt

2 = R3. Thus the first row of B should consist one 0
followed by p0

33′ = 10 entries with 3’s followed by p0
22′ = 10 entries with 2’s

and finally p0
11′ = 15 entries with 1’s.

When using the algorithm described above we find that the number of
ways to fill in the first r rows is 1, 1, 100, 24161, 205671, 1116571, 52650,
39, 0, . . . , 0, for r = 1, . . . , 36. Thus the required association scheme does not
exist. (This search took 81 minutes on a 2.4 GHz PC.) ut
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4 Imprimitive association schemes with three classes.

4.1 General results

If R3 is connected but R1 and R2 are disconnected then each connected com-
ponent of R1 is a doubly regular tournament on 2p0

12 + 1 vertices. Thus the
study of these schemes reduces to the study of doubly regular tournaments.

We will thus assume that R1 and R2 are connected and R3 is disconnected.
Then R3 consists of m copies of a complete graph on r vertices, for some
constants m and r. We denote this graph by m◦Kr. Then R1 is an orientation
of the complement m ◦Kr. The vertex set of m ◦Kr is partitioned in m
independent sets of size r, denoted by V1, . . . , Vm.

In [26] we introduce the following family of graphs that do not necessarily
satisfy all the conditions on a relation of a non-symmetric association scheme
with three classes. We say that a directed graph is a doubly regular (m, r)-
team tournament if it is an orientation of m ◦Kr with adjacency matrix A
satisfying (1) and (4) in Section 2.

In [26] we give a combinatorial proof of the following, i.e., we do not use
eigenvalues.

Theorem 6 (Jørgensen, Jones, Klin and Song [26]). Every doubly reg-
ular (m, r)-team tournament is of one of the following types.

1. For every pair i, j either all the edges between Vi and Vj are directed from
Vi to Vj, or they are all directed from Vj to Vi. The graph with vertices
v1, . . . , vm and an edge directed from vi to vj if edges are directed from Vi

to Vj is a doubly regular tournament.
2. For every vertex x ∈ Vi, exactly half of the vertices in Vj (j 6= i) are

out-neighbours of x, and α = β = (m−2)r
4 , and γ = (m−1)r2

4(r−1) .
3. For every pair {i, j} either Vi is partitioned in two sets V ′

i and V ′′
i of

size r
2 so that all edges between Vi and Vj are directed from V ′

i to Vj and
from Vj to V ′′

i , or similarly with i and j interchanged. The parameters are
α = (m−1)r

4 − 3r
8 , β = (m−1)r

4 + r
8 , γ = (m−1)r2

8(r−1) .

A graph of type 3 can not be a relation of an association scheme. In this
case 8 divides r and 4(r − 1) divides m− 1. We do not know if any graph of
this type exists.

Every graph of type 1 or type 2 is a relation of a non-symmetric associa-
tion scheme with 3 classes. The results for these types where first proved by
Goldbach and Claasen [14].

Clearly, the graph of type 1 exists if and only if a doubly regular tourna-
ment of order m exists. Thus in the remaining part this section we will only
consider graphs of type 2.
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4.2 Association schemes of type 2

We first show that a graph of type 2 is a relation of a non-symmetric asso-
ciation scheme with 3 classes. This is done by proving that (2) and (3) are
satisfied.

Lemma 4. Let A be the adjacency matrix of a doubly regular (m, r)-team
tournament of type 2. Then A satisfies (2) and (3) with

• λ = α = (m−2)r
4 and

• µ = (m−1)r(r−2)
4(r−1) .

In particular if m = r then λ = µ = m(m−2)
4 .

Proof. Let x ∈ Vi and y ∈ Vj , i 6= j, and suppose that there is an edge
directed from x to y. Then x has κ − r

2 out-neighbours outside Vi ∪ Vj , α of
these are in-neighbours of y and the remaining κ− r

2 − α are out-neighbours
of y. Thus λ = κ− r

2 − α = (m−2)r
4 , since κ = (m−1)r

2 .
Similarly, for x, y ∈ Vi, we get µ = κ − γ = (m−1)r(r−2)

4(r−1) . Thus (2) is
satisfied. Equation (3) can be proved in a similar way, or by applying Lemma 1.
ut

Since the parameters of a graph of type 2 are integers, it follows that r is
even and r − 1 divides m − 1. Using eigenvalues, it can be shown that m is
even, see [26] or Goldbach and Claasen [14].

Existence in the case r = 2 is equivalent to existence of a doubly regular
tournament of order m− 1.

Theorem 7 ([26]). If there exists a doubly regular (m, 2)-team tournament
Γ then 4 divides m and the out-neighbours of a vertex in Γ span a doubly
regular tournament of order m− 1.

Conversely, for every doubly regular tournament T of order m − 1, there
exists a doubly regular (m, 2)-team tournament Γ , such that for some vertex
x in Γ the out-neighbours of x span a subgraph isomorphic to T .

No schemes with 4 ≤ r < m, where r − 1 divides m− 1 are known.

We will now consider the case m = r. By Lemma 4, the directed graph is
then a normally regular digraph with µ = λ. Such digraphs are also known
as doubly regular asymmetric digraphs. These graphs were introduced and
studied in a series of papers by N. Ito [18], [19], [20] and [21] and also studied
by Ionin and Kharaghani [17].

The first non-trivial case of an association scheme of type 2 with m = r is
for m = 4. In this case there exist two non-isomorphic schemes. One of these
schemes has an automorphism group of rank 4, i.e., the group acts transitively
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on the vertices and the stabilizer of a vertex x has four orbits: {x}, the set of
out-neighbours of x, the set of in-neighbours of x and the set of vertices not
adjacent to x. Any doubly regular asymmetric digraph with automorphism
group of rank 4 is a relation of a non-symmetric association scheme with 3
classes. Ito [19] has proved that a non-symmetric 3-class association scheme
with µ = λ does not satisfy the feasibility condition. Thus a doubly regular
asymmetric digraph with automorphism group of rank 4 is a relation of an
imprimitive non-symmetric 3-class association scheme of type 2 with m = r
(as µ = λ). In this case Ito [19] has proved that m = r is a power of 2. He
also claims to have proved that the only possibility is m = 4. But the proof of
this does not seem to be correct and in fact Ito in his paper gives an example
of a vertex transitive scheme with m = r = 8. According to computations in
GAP [10] using share package GRAPE [34] with nauty [29] the automorphism
group of this scheme has rank 4.

We will now consider the links between such association schemes and a
special case of some well-known structures.

Definition 2. An Hadamard matrix H of order n is an n×n matrix in which
every entry is either 1 or −1 and HHt = nI.

An Hadamard matrix H of order m2 is said to be Bush-type if H is block
matrix with m×m blocks Hij of size m×m such that Hii = Jm and HijJm =
JmHij = 0, for i 6= j.

Theorem 8. An imprimitive 3-class association scheme of type 2 and with
r = m is equivalent to a Bush-type Hadamard matrix of order m2 with the
property that Hij = −Ht

ji, for all pairs i, j with i 6= j.

Proof. Let A be an adjacency matrix of relation R1, for some imprimitive
3-class association scheme of type 2 and with r = m. We may assume that ver-
tices are enumerated such that the vertices in Vi corresponds to columns/rows
mi−m + 1, . . . ,mi. Let H = Jm2 − 2A. Then H is partitioned in blocks Hij

of size m × m corresponding to the partition of vertices in sets V1, . . . , Vm.
Clearly Hii = Jm and since a vertex in Vi has exactly m

2 out-neighbours and
m
2 in-neighbours in Vj , HijJm = JmHij = 0.

From (1) and (2) we get (since κ = m(m−1)
2 and µ = λ = m(m−2)

4 )

HHt = (Jm2 − 2A)(Jm2 − 2At) = (m2− 4κ)Jm2 +4(κI +µ(Jm2 − I)) = m2I.

Thus H is an Hadamard matrix.
Conversely, suppose that H is a Bush-type Hadamard matrix which is

skew in the sense that Hij = −Ht
ji, for i 6= j.

Let A = 1
2 (J − H), where J = Jm2 . Then A is a {0, 1} matrix. Since H

is Bush-type it has exactly m + (m − 1)m
2 entries equal to 1 and (m − 1)m

2
entries equal to −1 in each row. Thus HJ = mJ and the transposed equation
is JHt = mJ . Similarly JH = mJ . Thus AJ = JA = m(m−1)

2 J and
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AAt =
1
4
(J −H)(J −Ht) =

m(m− 2)
4

J +
m2

4
I.

We see that (1) and (2) are satisfied. Equation (3) can be proved in a similar
way, or by applying Lemma 1.

Let K denote the block diagonal matrix with diagonal blocks equal to
Jm. Then the Bush-type property of H implies that HK = mK and the
skew property of H implies that H + Ht = 2K. Thus H2 = H(2K −Ht) =
2mK −m2I, and so

A2 =
1
4
(J −H)2 =

1
4
(m(m− 2)J + 2mK −m2I).

Since J−I−A−At = K−I, it follows that (4) is satisfied with α = β = m(m−2)
4

and γ = m2

4 . ut

Kharaghani [27] proved that if there exists an Hadamard matrix of order
m then there exists a Bush-type Hadamard matrix of order m2.

Ionin and Kharaghani [17] modified this construction and proved that
if there exists an Hadamard matrix of order m then there exists a Bush-
type Hadamard matrix of order m2, which has the skew property required in
Theorem 8.

Thus in many cases with m = r a multiple of 4, an association scheme can
be constructed.

The case with m = r congruent to 2 modulo 4 seems to be more difficult
and no general constructions are known. But in the special case m = r = 6
we may apply the orderly generation algorithm described before Theorem 5.

The number of ways to fill the first s rows is 1, 1, 4, 12, 8, 6, 29077,
76216458, for s = 1, 2, . . . , 8. (Note that the first six rows correspond to a
connected component of the undirected graph R3.) We estimate that a com-
plete search through all 76 million ways to fill the first 8 rows would take
several years. But we guessed (especially because there are no such schemes
with a rank 4 group) that if a scheme exists then there are many schemes and
so a partial search may lead to a least one scheme.

Probably starting a complete search and let the computer run until a
scheme is discovered is not an optimal strategy. Instead, we chose 2405 cases
randomly among all ways to fill 8 rows. This search gave 47 ways to fill 13
rows but no ways to fill 14 rows. The idea is now to do a complete search in
the “neighbourhood” of the most successful 8-row matrices, where the neigh-
bourhood of an 8-row matrix is the set of all 8-row matrices with which it
has the first 7 rows in common. This search lead to two association schemes.
A repetition (with another set of randomly chosen 8-row matrices) gave two
other schemes.

Thus we have:

Theorem 9. There exist at least four imprimitive non-symmetric 3-class as-
sociation schemes of type 2 with m = r = 6.
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Each of these four schemes have a trivial automorphism group.

The computation of automorphism groups can be done in GAP [10] using
share package GRAPE [34] with nauty [29].

The adjacency matrix of R1 is listed in Table 2 for one of these four
schemes. Note that we have reordered rows and columns so that the imprim-
itive structure is clear. The matrix is not in maximal form in this ordering
(even with the 3’s and 2’s that have been replaced by 0’s).

A Bush-type Hadamard matrix of order 36 was first constructed by
Janko [23]. But a “skew” Bush-type Hadamard matrix was not previously
known. Bussemaker, Haemers and Spence [4] proved that a symmetric Bush-
type Hadamard matrix of order 36 does not exist.

5 Concluding remarks

We have seen in Section 3 that very few primitive non-symmetric 3-class as-
sociation schemes are known. In fact (except for the first 8 cases) the problem
of existence is still open for the majority of feasible parameter sets. We do
not expect that the orderly generation algorithm described in Section 3 can
be applied to the remaining open cases in the primitive case. However, the
other technique using information about the strongly regular graph obtained
by merging the non-symmetric relations may still be used in some particu-
lar cases. It would also be very useful to develop new computer aided search
methods or even some computer free methods. It could also be interesting to
get information about existence of association schemes with a given group of
automorphisms.

In the imprimitive case the situation is quite different. Here we have many
constructions, especially because of the connection to Hadamard matrices.
The most interesting open problem in the imprimitive case is whether there
exist association schemes of type 2 with 4 ≤ r < m. The smallest feasible case
is r = 4, m = 10 with order 40. We tried to attack this problem with the
orderly generation algorithm, but it seems that the search space is too large.
However, it may be that the algorithm can be improved so that this problem
can be solved. But it seems that it is easier to solve the still open problem of
complete enumeration of association schemes in the case m = r = 6.
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Table 2. Matrix of a 3-scheme with m = r = 6

0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1

0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1
0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0
1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1

0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1
0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0
0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1
1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1
1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0

0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1
0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0
0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0
1 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1
1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0
0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1
1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0
1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1

0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0
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objects, edited by I. A. Faradžev, A. A. Ivanov, M. H. Klin and A. J. Woldar,
Kluwer 1994.

10. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.9 ;
2006, (http://www.gap-system.org).

11. R. W. Goldbach and H. L. Claasen, A primitive non-symmetric 3-class associa-
tion scheme on 36 elements with p1

11 = 0 exists and is unique, Europ. J. Combin.
15 (1994), 519–524.

12. R. W. Goldbach and H. L. Claasen, On splitting the Clebsch graph, Indag.
Math. (N.S.) 5 (1994), 285–290.

13. R. W. Goldbach and H. L. Claasen, Feasibility conditions for non-symmetric
3-class association schemes, Discrete Math. 159 (1996), 111-118.

14. R. W. Goldbach and H. L. Claasen, The structure of imprimitive non-symmetric
3-class association schemes, Europ. J. Combin. 17 (1996), 23–37.

15. D. G. Higman, Coherent configurations, Geom. Dedicata 4 (1975) 1–32.
16. A. J. Hoffman and R. R. Singleton, On Moore graphs with diameters 2 and 3.

IBM J. Res. Develop. 4 (1960), 497–504.
17. Y. J. Ionin and H. Kharaghani, Doubly regular digraphs and symmetric designs,

J. Combin. Th., Ser. A 101 (2003) 35–48.
18. N. Ito, Doubly regular asymmetric digraphs, Discr. Math. 72 (1988) 181–185.
19. N. Ito, Automorphism groups of DRADs, Group Theory (Singapore, 1987), de

Gruyter, Berlin (1989), 151–170.
20. N. Ito, Doubly regular asymmetric digraphs with rank 5 automorphism groups,

Groups–Korea 1988), Lecture Notes in Math., 1398, Springer (1989), 94–99.
21. N. Ito, On spectra of doubly regular asymmetric digraphs of RH-type, Graphs

Combin. 5 (1989) 229–234.
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