Exam in Discrete Mathematics

First Year at The TEK-NAT Faculty

June 11th, 2014, 9.00-13.00

ANSWERS

Part I ("regular exercises")

Exercise 1 (6\%).

Find the expansion of $(2 x-y)^{4}$ using The Binomial Theorem.
Answer: $16 x^{4}-32 x^{3} y+24 x^{2} y^{2}-8 x y^{3}+y^{4}$

Exercise 2 (8\%).

Find witnesses proving that $f(x)=2 x^{3}+x^{2}+5$ is $O\left(x^{3}\right)$.

Exercise 3 (12\%).

1. Use the Euclidean algorithm to find the greatest common divisor of 46 and 21.

Answer: 1
2. Find integers s and t satisfying that $\operatorname{gcd}(46,21)=s \cdot 46+t \cdot 21$.

Answer: $s=-5, t=11$
3. Determine all integers x such that

$$
x \equiv 2 \quad(\bmod 46) \quad \text { and } \quad x \equiv 1 \quad(\bmod 21) .
$$

Answer: $x \equiv 232(\bmod 966)$

Exercise 4 (9\%).

Prove by induction that

$$
\sum_{i=1}^{n}(4 i+1)=2 n^{2}+3 n
$$

for every positive integer n.

Exercise 5 (6\%).

1. Construct a truth table for the compound proposition $(p \wedge \neg q) \rightarrow(r \vee q)$.

Answer:

p	q	r	$(p \wedge \neg q) \rightarrow(r \vee q)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	T

2. Is the compound proposition in question 1 a tautology?

Answer: No.

Figure 1: A graph G considered in Exercise 6.

Exercise 6 (10\%).

A graph G with 13 edges is shown in Figure 1. The edges of G have weights given by the following table

Edge	a	b	c	d	e	f	g	h	i	j	k	m	n
Weight	1	1	3	3	6	4	5	6	2	4	2	7	2

1. Use Prim's algorithm to find a minimum spanning tree S in G. Write the edges of S in the order in which they are added to S by Prim's algorithm. (If there is more than one possible solution then write only one of them.)
One possible solution: $\mathrm{a}, \mathrm{b}, \mathrm{i}, \mathrm{n}, \mathrm{k}, \mathrm{c}, \mathrm{e}$
2. Use Kruskal's algorithm to find a minimum spanning tree T in G. Write the edges of T in the order in which they are added to T by Kruskal's algorithm. (If there is more than one possible solution then write only one of them.)
One possible solution: $\mathrm{a}, \mathrm{b}, \mathrm{i}, \mathrm{k}, \mathrm{n}, \mathrm{c}, \mathrm{e}$

Exercise 7 (9\%).

Let $A=\{a, b, c, d\}$ and let $R=\{(a, b),(b, c),(c, d),(d, b)\}$ be a relation on A.

1. Draw the directed graph representing R.

Answer:

2. Determine the transitive closure R^{*} of R.

Answer:
$R^{*}=\{(a, b),(a, c),(a, d),(b, b),(b, c),(b, d),(c, b),(c, c),(c, d),(d, b),(d, c),(d, d)\}$
3. Determine a matrix $\mathbf{M}_{R^{*}}$ representing R^{*}.
Answer:
$\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]$

Exercise 8 (10\%).

A set S is defined recursively by
Basis step: $0 \in S$
Recursive step: if $a \in S$ then $a+3 \in S$ and $a+5 \in S$.

1. Determine the set $S \cap\{a \in \mathbb{Z} \mid 0<a<12\}$.

Answer: $\{3,5,6,8,9,10,11\}$
2. Prove that every integer $a \geq 8$ is contained in S.

Part II ("multiple choice" exercises)

Exercise 9 (10\%).

Let $f(x)=\left(x^{2}+5 x+3\right)(x+2 \log x)$, for $x>0$. Answer the following 5 true/false exercises

1. $f(x)$ is $O\left(x^{4}\right)$.
\boxtimes True
2. $f(x)$ is $O\left(x^{3}\right)$.
\boxtimes True
3. $f(x)$ is $O\left(x^{2}\right)$.True
4. $f(x)$ is $O\left(x^{3} \log x\right)$.
© True
5. $f(x)$ is $O\left(x^{2} \log x\right)$.
\square True

Exercise 10 (6\%).

Let $A=\{1,3,5\}$ and $B=\{3,4,5\}$ be sets.

1. What is the cardinality of the power set $\mathcal{P}(A \cup B)$4
$\square 8$
$\boxtimes 16$32
64
2. Which of the following are elements of $A \times B$?$\{1,3\}$
$\boxtimes(1,3)$$(4,5)$
$\boxtimes(5,5)$

Exercise 11 (8\%).

Consider the following algorithm:
Procedure sum(n : positive integer)
$s:=0$

```
for }i:=1\mathrm{ to }
    for j:=1 to i
        s:=s+j
return s
```

1. Suppose that procedure sum is started with input $n=4$. Then what number is returned by the algorithm?区 2045
2. The worst-case time complexity of procedure sum is:$O(n)$$O(n \log n)$$O\left(n^{3 / 2}\right)$
$\boxtimes O\left(n^{2}\right)$

Exercise 12 (6\%).

Let

$$
\mathbf{M}_{R}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

be a matrix representing a relation R on a set A. Answer the following 3 true/false exercises

1. R is reflexive.
\boxtimes True
2. R is symmetric.
\square True
3. R is antisymmetric.True
\boxtimes False
