Exam in Discrete Mathematics

First Year at The TEK-NAT Faculty June 11th, 2014, 9.00–13.00

ANSWERS

Part I ("regular exercises")

Exercise 1 (6%).

Find the expansion of $(2x - y)^4$ using The Binomial Theorem. Answer: $16x^4 - 32x^3y + 24x^2y^2 - 8xy^3 + y^4$

Exercise 2 (8%).

Find witnesses proving that $f(x) = 2x^3 + x^2 + 5$ is $O(x^3)$.

Exercise 3 (12%).

1. Use the Euclidean algorithm to find the greatest common divisor of 46 and 21.

Answer: 1

- 2. Find integers *s* and *t* satisfying that $gcd(46, 21) = s \cdot 46 + t \cdot 21$. Answer: s = -5, t = 11
- 3. Determine all integers x such that

 $x \equiv 2 \pmod{46}$ and $x \equiv 1 \pmod{21}$.

Answer: $x \equiv 232 \pmod{966}$

Page 1 of 7

Exercise 4 (9%).

Prove by induction that

$$\sum_{i=1}^{n} (4i+1) = 2n^2 + 3n,$$

for every positive integer *n*.

Exercise 5 (6%).

1. Construct a truth table for the compound proposition $(p \land \neg q) \rightarrow (r \lor q)$.

<u>Ans</u>	wer	:	
p	q	r	$(p \land \neg q) \to (r \lor q)$
Τ	Т	Т	Т
T	Т	F	Т
T	F	Т	Т
T	F	F	F
F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

2. Is the compound proposition in question 1 a tautology? *Answer:* No.

Figure 1: A graph *G* considered in Exercise 6.

Page 2 of 7

Exercise 6 (10%).

A graph *G* with 13 edges is shown in Figure 1. The edges of *G* have weights given by the following table

Edge	а	b	C	d	e	f	g	h	i	j	k	m	n
Weight	1	1	3	3	6	4	5	6	2	4	2	7	2

1. Use Prim's algorithm to find a minimum spanning tree *S* in *G*. Write the edges of *S* in the order in which they are added to *S* by Prim's algorithm. (If there is more than one possible solution then write only one of them.)

One possible solution: a, b, i, n, k, c, e

2. Use Kruskal's algorithm to find a minimum spanning tree *T* in *G*. Write the edges of *T* in the order in which they are added to *T* by Kruskal's algorithm. (If there is more than one possible solution then write only one of them.)

One possible solution: a, b, i, k, n, c, e

Exercise 7 (9%).

Let $A = \{a, b, c, d\}$ and let $R = \{(a, b), (b, c), (c, d), (d, b)\}$ be a relation on *A*.

1. Draw the directed graph representing *R*.

2. Determine the transitive closure R^* of R.

Answer:

$$R^* = \{(a,b), (a,c), (a,d), (b,b), (b,c), (b,d), (c,b), (c,c), (c,d), (d,b), (d,c), (d,d)\}$$

Page 3 of 7

- 3. Determine a matrix \mathbf{M}_{R^*} representing R^* .
 - $Answer: \\ \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ \end{bmatrix}$

Exercise 8 (10%).

A set *S* is defined recursively by

Basis step: $0 \in S$

Recursive step: if $a \in S$ then $a + 3 \in S$ and $a + 5 \in S$.

- Determine the set S ∩ {a ∈ Z | 0 < a < 12}.
 Answer: {3,5,6,8,9,10,11}
- 2. Prove that every integer $a \ge 8$ is contained in *S*.

Part II ("multiple choice" exercises)

Exercise 9 (10%).

Let $f(x) = (x^2 + 5x + 3)(x + 2\log x)$, for x > 0. Answer the following 5 true/false exercises

1. f(x) is $O(x^4)$. \Box False2. f(x) is $O(x^3)$. \Box False2. f(x) is $O(x^3)$. \Box False3. f(x) is $O(x^2)$. \Box False4. f(x) is $O(x^3 \log x)$. \Box False5. f(x) is $O(x^2 \log x)$. \Box False5. f(x) is $O(x^2 \log x)$. \Box False

Exercise 10 (6%).

Let $A = \{1, 3, 5\}$ and $B = \{3, 4, 5\}$ be sets.

1. What is the cardinality of the power set $\mathcal{P}(A \cup B)$

 $\Box 4 \qquad \Box 8 \qquad \boxtimes 16 \qquad \Box 32 \qquad \Box 64$

2. Which of the following are elements of $A \times B$?

 $\Box \{1,3\} \qquad \qquad \Box (1,3) \qquad \qquad \Box (4,5) \qquad \qquad \boxtimes (5,5)$

Exercise 11 (8%).

Consider the following algorithm:

Procedure sum(n: positive integer)
s := 0
for i := 1 to n
 for j := 1 to i
 s := s + j
return s

- 1. Suppose that procedure sum is started with input n = 4. Then what number is returned by the algorithm?
 - $\Box 10 \qquad \Box 20 \qquad \Box 40 \qquad \Box 45$
- 2. The worst-case time complexity of procedure sum is:

$\Box O(n)$	$\Box O(n \log n)$	$\Box O(n^{3/2})$	$\boxtimes O(n^2)$
$\Box O(n)$	$\Box O(n OSn)$	$\Box O(n)$	

Let

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

be a matrix representing a relation R on a set A. Answer the following 3 true/false exercises

1. *R* is reflexive.

	⊠ True	□ False
2.	<i>R</i> is symmetric.	
	□ True	⊠ False
3.	<i>R</i> is antisymmetric.	
	□ True	⊠ False