Exam - Mathematics for Computer Graphics, Answers

Thursday, January 5, 2012, 9.00-13.00.

Exercise 1

1. (Use (4.8) on page 146.) We have

$$
\begin{array}{cl}
\theta_{x}=90^{\circ}, & C x=\cos \theta_{x}=0, \quad S x=\sin \theta_{x}=1 . \\
\theta_{y}=180^{\circ}, & C y=\cos \theta_{y}=-1, \quad S y=\sin \theta_{y}=0 . \\
\theta_{z}=90^{\circ}, & C z=\cos \theta_{z}=0, \quad S z=\sin \theta_{z}=1 .
\end{array}
$$

Using this we get

$$
R=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

2. Then $R \mathbf{v}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.

Exercise 2

The general way to find a matrix A so that $S(\mathbf{x})=A \mathbf{x}$ where S is some linear transformation is the following: Compute
$\mathbf{a}_{0}=S\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right] \times\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$,
$\mathbf{a}_{1}=S\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right] \times\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-3 \\ 0 \\ 2\end{array}\right]$, and
$\mathbf{a}_{2}=S\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right] \times\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ -2 \\ 0\end{array}\right]$.
Then $A=\left[\begin{array}{lll}\mathbf{a}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ccc}0 & -3 & -1 \\ 3 & 0 & -2 \\ 1 & 2 & 0\end{array}\right]$.
For this particular linear transformation we may also use $A=\tilde{\mathbf{v}}$ on page 98 with $v_{x}=2, v_{y}=-1, v_{z}=3$.

Exercise 3

1. Let $\mathbf{u}=P_{1}-P_{0}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{v}=P_{2}-P_{0}=\left[\begin{array}{c}5 \\ 1 \\ -2\end{array}\right]$.

We compute $\mathbf{n}=\mathbf{u} \times \mathbf{v}=\left[\begin{array}{c}-5 \\ 5 \\ -10\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.
The equation for the plane is then

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

where $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)=(-1,0,1)$.
Inserting the numbers we get

$$
-5(x+1)+5(y-0)-10(z-1)=0
$$

or

$$
-x+y-2 z+1=0
$$

2. We see that $(x, y, z)=(0,1,1)$ is a solution to the equation. Thus $P=$ $(0,1,1)$ is a point on the plane.
3. Let $\mathbf{w}=P-P_{0}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ apply the method from page $84-85$:
$\mathbf{v} \times \mathbf{w}=\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]=s(\mathbf{v} \times \mathbf{u})=s\left[\begin{array}{c}5 \\ -5 \\ 10\end{array}\right]$. Thus $s=\frac{2}{5}$.
$\mathbf{u} \times \mathbf{w}=\left[\begin{array}{c}-1 \\ 1 \\ -2\end{array}\right]=t(\mathbf{u} \times \mathbf{v})=t\left[\begin{array}{c}-5 \\ 5 \\ -10\end{array}\right]$. Thus $t=\frac{1}{5}$.
The barycentric coordinates are

$$
(1-s-t, s, t)=\left(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}\right) .
$$

Exercise 4

1. (page 440) $Q(u)=U M G=\left[\begin{array}{lll}u^{3} & u^{2} & u\end{array} 1\right]\left[\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & -2 & 1 \\ -1 & 2 & 1\end{array}\right]=$ $u^{3}(0,-2,-2)+u^{2}(-2,5,3)+u(3,-2,1)+(1,0,0)$.
2 . For $u=\frac{1}{2}$ we get $Q\left(\frac{1}{2}\right)=(2,0,1)$.

Exercise 5

1. $\cos (\theta)=p \cdot q=0 \cdot \frac{4}{5}+\frac{3}{5} \cdot 0+0 \cdot \frac{3}{5}-\frac{4}{5} \cdot 0=0$. Thus $\theta=90^{\circ}$. Since $\sin (\theta)=1$ we get

$$
\begin{gathered}
\operatorname{slerp}(p, q, t)=\sin \left((1-t) 90^{\circ}\right) p+\sin \left(t 90^{\circ}\right) q= \\
\left(\frac{4}{5} \sin \left(t 90^{\circ}\right), \frac{3}{5} \sin \left((1-t) 90^{\circ}\right), \frac{3}{5} \sin \left(t 90^{\circ}\right),-\frac{4}{5} \sin \left((1-t) 90^{\circ}\right)\right)
\end{gathered}
$$

2. If $t=\frac{2}{3}$ then $\sin \left((1-t) 90^{\circ}\right)=\sin \left(30^{\circ}\right)=\frac{1}{2}$ and $\sin \left(t 90^{\circ}\right)=\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$. Thus

$$
\operatorname{slerp}\left(p, q, \frac{2}{3}\right)=\left(\frac{2 \sqrt{3}}{5}, \frac{3}{10}, \frac{3 \sqrt{3}}{10},-\frac{2}{5}\right)
$$

Exercise 6

(We use (2.13), (2.14) and (2.15) on page 73.)
$x=\rho \sin \phi \cos \theta=3 \sin \frac{\pi}{4} \cos \frac{\pi}{2}=3 \cdot \frac{\sqrt{2}}{2} \cdot 0=0$.
$y=\rho \sin \phi \sin \theta=3 \sin \frac{\pi}{4} \sin \frac{\pi}{2}=3 \cdot \frac{\sqrt{2}}{2} \cdot 1=\frac{3 \sqrt{2}}{2}$.
$z=\rho \cos \phi=3 \cos \frac{\pi}{4}=3 \cdot \frac{\sqrt{2}}{2}=\frac{3 \sqrt{2}}{2}$.
The Cartesian coordinates are $(x, y, z)=\left(0, \frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$.

Exercise 7

(page 186) $\mathbf{r}=\left[\begin{array}{c}3 \\ -6 \\ 2\end{array}\right]$ has length $\|\mathbf{r}\|=\sqrt{3^{2}+(-6)^{2}+2^{2}}=\sqrt{49}=7$. Thus
$\hat{\mathbf{r}}=\frac{1}{7} \mathbf{r}=\left[\begin{array}{c}\frac{3}{7} \\ -\frac{6}{7} \\ \frac{2}{7}\end{array}\right]$.
$\theta=60^{\circ}$. We compute $\cos \left(\frac{\theta}{2}\right)=\frac{\sqrt{3}}{2}$ and $\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}$.
The quaternion representing this rotation is:

$$
\left(\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \hat{\mathbf{r}}\right)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\left[\begin{array}{c}
\frac{3}{7} \\
-\frac{6}{7} \\
\frac{2}{7}
\end{array}\right]\right)=\left(\frac{\sqrt{3}}{2}, \frac{3}{14},-\frac{3}{7}, \frac{1}{7}\right) .
$$

Exercise 8

1. $S S^{T}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
$R R^{T}=\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Since $S S^{T}=I$ and $R R^{T}=I, S$ and R are both orthogonal.
2. $\operatorname{det} S=-1$ and $\operatorname{det} R=1$. Thus R is a rotation matrix but S is not.
3. (page 182-183) $\operatorname{trace}(R)=0+0+0=0$. Then the rotation angle is $\theta=\arccos \left(\frac{\operatorname{trace}(R)-1}{2}\right)=\arccos \left(-\frac{1}{2}\right)=120^{\circ}$.

We compute the rotation axis as follows:
$\mathbf{r}=\left(R_{21}-R_{12}, R_{02}-R_{20}, R_{10}-R_{01}\right)^{T}=(1-0,-1-0,-1-0)^{T}=(1,-1,-1)^{T}$.
This vector has length $\|\mathbf{r}\|=\sqrt{1^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{3}$, and so

$$
\hat{\mathbf{r}}=\frac{1}{\sqrt{3}} \mathbf{r}=\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)^{T} .
$$

