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Operations on vectors:

Vectoraddition: if v and w are vectors then v + w is a vector.

(v0, v1, . . . , vn−1)+(w0, w1, . . . , wn−1) = (v0+w0, v1+w1, . . . , vn−1+wn−1).

Scalarmultiplication: if v is a vector and a is a number (scalar)

then av is a vector.

a(v0, v1, . . . , vn−1) = (av0, av1, . . . , avn−1).

Usual algebraic laws are valid for these operations.

E.g. 1v = v og 0v = 0.



If v0,v1, . . . ,vn−1 are vectors and a0, a1, . . . , an−1 are numbers

then the expression

a0v0 + a1v1 + . . .+ an−1vn−1

is called a linear combination of v0,v1, . . . ,vn−1.

The set of vectors that are can be written as linear combina-

tions of v0,v1, . . . ,vn−1 is called the set (or subspace) spanned

by v0,v1, . . . ,vn−1.

If one of the n vectors v0,v1, . . . ,vn−1 can be written as a linear

combination of the other n−1 vectors then the vectors are said to

be linearly dependent. Otherwise they are linearly independent.



The dotproduct of two vectors v = (v0, v1, . . . , vn−1) and

w = (w0, w1, . . . , wn−1) is defined by

v ·w = v0w0 + v1w1 + . . .+ vn−1wn−1.

The dotproduct also satisfies

v ·w = ||v|| ||w|| cos θ

where θ is the angle between the vectors.

v and w are orthogonal if v ·w = 0.

The length of v is ||v|| =
√
v · v =

√
v2

0 + v2
1 + . . .+ v2

n−1.



The dotprodduct satisfies the following laws:

• v ·w = w · v

• (u + v)·w = u ·w + v ·w

• a(v ·w) = (av)·w = v·(aw)

• v · v ≥ 0 and

• v · v = 0 if and only if v = 0.



The length of vectors satisfies:

• ||v|| ≥ 0 and ||v|| = 0 if and only if v = 0.

• ||av|| = |a| ||v||

• ||v + w|| ≤ ||v||+ ||w||.

These laws are also satisfied by the Manhattan norm

||v||`1 = |v0|+ |v1|+ . . .+ |vn−1|

where v = (v0, v1, . . . , vn−1).



Normalizing a vector v 6= 0:

v̂ =
1

||v||
v.

v̂ has the same direction as v and it has length 1.

The projection of a vector v on a vector w 6= 0 er

projwv =
v ·w
||w||2

w = (v · ŵ)ŵ.

The vector

perpwv = v − projwv

is orthogonal to w.



A set of vectors {w0,w1, . . . ,wn−1} is said to be orthonormal if

the vectors are orthogonal and have length 1.

Gram-Schmidt orthogonalization of linearly independent vec-

tors v0,v1, . . . ,vn−1:

• w0 = v0

• w1 = v1 − projw0
v1

• w2 = v2 − projw0
v2 − projw1

v2

• . . .



In general:

wi = vi − projw0
vi − . . .− projwi−1vi.

Finally compute

ŵ0, ŵ1, . . . , ŵn−1.

These vectors are orthonormal.
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u,v,w : three linearly independent vectors in R3.

Use right hand:

index finger points in direction u

middle finger points in direction v.

Then we say that u,v,w is right-handed if w is on the same side

of the plane spanned by u,v as the thumb.

Otherwise u,v,w is left-handed.

Example: i, j,k is right-handed.



Let v = (vx, vy, vz) and w = (wx, wy, wz).

Then the cross product is defined by

v ×w = (vywz − wyvz, vzwx − wzvx, vxwy − wxvy).

v ×w is the vector orthogonal to v and w, satisfying that:

. v,w,v ×w is right-handed and

. ||v ×w|| = ||v|| ||w|| sin θ,

. . where θ is the angle between v and w.

||v × w|| is the area of a parallelogram where v and w are two

edges.



Vector triple product:

If v and w are two vectors in R3 (non-parallel) then

w, v ×w, w × (v ×w)

is a right-handed orthogonal basis.

(Alternative to Gram-Schmidt.)



Scalar triple product:

u·(v ×w) = w·(u× v) = v·(w × u)

is a number which is

• positive if u,v,w is right-handed,

• negative if u,v,w is left-handed,

• 0 if u,v,w are linearly dependent.

|u·(v × w)| is the volume (rumfang) of a parallelopiped where
u,v,w are three edges.



If V is a set of vectors in Rn satisfying

• v ∈ V and w ∈ V ⇒ v + w ∈ V .

• v ∈ V and c ∈ R⇒ cv ∈ V .

the we say that V is a subspace of Rn.

If b1, . . . ,bd are linearly independent vectors spanning V then we
say that {b1, . . . ,bd} is a basis for V .
d is then the dimensionen of V .

Subspace of dimension 0: {0}
Subspace of dimension 1: line through 0.
Subspace of dimension 2: plane through 0.



Affine space of dimension 1: line (not through {0}).

Affine space of dimension 2: plan (not through {0}).

An affine space consists of points on the form

O + v, v ∈ V,

where V is a subspace and O is a fixed point.



P0 and P1: two different points.

There is a unique line passing through both points. It consists

of points on the form

tP0 + (1− t)P1, t ∈ R.

The line segment between P0 and P1 consists of points

tP0 + (1− t)P1, hvor 0 ≤ t ≤ 1.

A set of points is said to be convex if for every pair of points

P0, P1 in the set, the line segment between them is also contained

in the set.



Let P0, . . . , Pk be points.

The expression

a0P0 + a1P1 + . . .+ akPk, where a0 + a1 + . . .+ ak = 1

is called an affine combination of P0, . . . , Pk.

The set of points that can be written as an affine combination

of P0, . . . Pk is an affine space.

P0, . . . , Pk are said to be affinely dependent if one of the points

can be written as an affine combination of the other points.

Otherwise P0, . . . , Pk are affinely independent.



W : an affine space, P0, . . . , Pk ∈W .

If every point in W is an affine combination of P0, . . . , Pk and if

these points are affinely independent then we say that P0, . . . , Pk
is a simplex.

Every point P in W can then be written (in one and only one

way) as

a0P0 + a1P1 + . . .+ akPk, where a0 + a1 + . . .+ ak = 1.

a0, a1, . . . , ak are called the barycentric coordinates for P .
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The polar coordinates for a point (x, y) in the plane is (r, θ) where

r =
√
x2 + y2 is the distance from (0,0) to (x, y), and θ is the

angel (in positive direction) from the x-axis to the vector (x, y).

Converting from (r, θ) to (x, y):

x = r cos θ, y = r sin θ.

Converting from (x, y) to (r, θ):

r =
√
x2 + y2, θ =


arctan y

x hvis x > 0,

arctan y
x + π hvis x < 0,

π
2 hvis x = 0, y > 0,

−π2 hvis x = 0, y < 0.

If you prefer to work with degrees then replace π by 180◦.



The spherical coordinates for a point P = (x, y, z) in space are

(ρ, φ, θ) where ρ =
√
x2 + y2 + z2 is the distance from (0,0,0) to

(x, y, z), and φ is the angel between the z-axis and the vector

(x, y, z).

0 ≤ φ ≤ π (or 0 ≤ φ ≤ 180◦). θ is the same as in polar coordinates

for (x, y).

Converting from (ρ, φ, θ) to (x, y, z):

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

Converting from (x, y, z) to (ρ, φ, θ):

ρ =
√
x2 + y2 + z2, φ = arccos

z

ρ
.

θ is computed as on the previous page.



A line passing through points P0 and P1 consisits of points that

can be written in parametric form as

P0 + td, t ∈ R,

where d = P1 − P0 is the vector from P0 to P1.

For a line in the plane there a vector n = (a, b)

(e.g. if d = (b,−a)) perpendicular to the line.

A point Q = (x, y) lies on the line if and only if

n·(Q− P0) = 0.

If P0 = (x0, y0) then this equation can be written as

ax+ by + c = 0,



where c = −ax0− by0. This is called a generalized line equation.

If ||n|| =
√
a2 + b2 = 1 and ax + by + c = d then the point (x, y)

is in distance |d| from the line – if d > 0 on the same side of the

line as indicated by n.



A plane passing through the points P0, P1, P2 consists of points

that can be written in parametric form as

P0 + su + tv, s, t ∈ R,

where u = P1 − P0 and v = P2 − P0.

For a plane in R3 there is a vector n = (a, b, c)

(e.g. n = u× v) perpendicular to the plane.

A point Q = (x, y, z) lies on the plane if and only if

n·(Q− P0) = 0.



If P0 = (x0, y0, z0) then this equation can be written as

ax+ by + cz + d = 0,

where d = −ax0 − by0 − cz0. This is called a generalized plane

equation.

If ||n|| =
√
a2 + b2 + c2 = 1 and (x, y, z) is an arbitrary point in

space then |ax + by + cz + d| is the distance between the point

and the plane – if ax + by + cz + d > 0 on the same side of the

plane as indicated by n.



Let P be a point on the plane passing through P0, P1, P2.
Then there exists unique numbers s, t so that
. P = P0 + su + tv, where u = P1 − P0 and v = P2 − P0.

If w = P −P0 = su+ tv then s and t can be determined from the
equations

v ×w = s(v × u), u×w = t(u× v).

Then

P = P0 + s(P1 − P0) + t(P2 − P0) = (1− s− t)P0 + sP1 + tP2.

Thus the barycentric coordinates for P are (1− s− t, s, t).

If P is inside the triangle with vertices P0, P1, P2 then 1− s− t ≥
0, s ≥ 0, t ≥ 0.
If one of the numbers is negative then P is outside the triangle.
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A 3× 5 matrix:

A =

1 0 2 1 −1
3 2 7 −5 0
1 1 2 1 4

 .
An m× n matrix has m rows, and n columns.

Rows are enumerated 0,1, . . . ,m− 1.

Columns are enumerated 0,1, . . . , n− 1.

The element (number) in row i, column j is written (A)ij or aij.

In the example: (A)12 = 7.



If A and B are m × n matrices then A + B is the m × n matrix

where (A+B)ij = (A)ij + (B)ij.

If A is an m × n matrix and a ∈ R is a number then aA is the

m× n matrix where (aA)ij = a(A)ij.



A an m× n matrix.

B an r × s matrix.

The product AB exists if n = r

and then the result is an m× s matrix.


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
5 6 7 8
∗ ∗ ∗ ∗



∗ 1 ∗ ∗ ∗ ∗
∗ 2 ∗ ∗ ∗ ∗
∗ 3 ∗ ∗ ∗ ∗
∗ 4 ∗ ∗ ∗ ∗

 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ 70 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗



70 = 5 · 1 + 6 · 2 + 7 · 3 + 8 · 4.



Algebraic rules, a few examples:

A(B + C) = AB +AC

and

A(aB) = a(AB),

where a is a number and A,B,C are matrices with sizes so that

the addition and multiplication is defined.

Almost all usual algebraic rules are satisfied.

Except that multiplication is not commutative:

AB 6= BA.



The transposed of an m×n matrix A is an n×m matrix AT where

(AT )ij = Aji.

If

A =

1 2 3 4
5 6 7 8
9 10 11 12


then

AT =


1 5 9
2 6 10
3 7 11
4 8 12

 .

(A+B)T = AT +BT , (AB)T = BTAT .



Identity matrix:

I = In = I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



If A is an m× n matrix then AIn = A and ImA = A.



An n× 1 matrix is a (column) vector.

A 1× n matrix is a (row) vektor. It is written as the transposed

of a column vector.



Product of block matrices (if all sums and products are defined):[
A B
C D

] [
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]
.

[
a0 . . . an−1

]  b0
...

bn−1

 = b0a0 + . . .+ bn−1an−1.

A
[
b0 . . . bn−1

]
=
[
Ab0 . . . Abn−1

]
.



Let V and W be vector space, e.g. V = Rn and W = Rm.

A function T : V 7→W is said to be a linear transformation if

• T (v + w) = T (v) + T (w) for all vectors v,w ∈ V , and

• T (av) = aT (v) for all vectors v ∈ V and all numbers a.



Example. Let v = [vx, vy, vz]T ∈ R3.
Then T : R3 7→ R3 defined by T (x) = v × x is a linear transfor-
mation and T (x) = ṽx where ṽ is the 3× 3 matrix

ṽ =

 0 −vz vy
vz 0 −vx
−vy vx 0

 .

Example. Let v̂ =∈ Rn, with ||v̂|| = 1.
Then T : Rn 7→ Rn defined by T (x) = projv̂x = (x·v̂)v̂ is a linear
transformation and T (x) = Ax where A is the n× n matrix

A = v̂v̂T = (v̂ ⊗ v̂).

In general

(v ⊗w) = vwT

is called a tensor product.
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If A is an m× n matrix then the function

S : Rn 7→ Rm

defined by

S(v) = Av

is a linear transformation.



If T : Rn 7→ Rm is a linear transformation, satisfying

T (e0) = a0, T (e1) = a1, . . . , T (en−1) = an−1,

where

e0 =


1
0
0
...
0

 , e1 =


0
1
0
...
0

 , . . . , en−1 =


0
0
...
0
1

 ,

then

T (v) = Av,

where A is the matrix [
a0 a1 . . . an−1

]
.



If the linear transformation S : Rp 7→ Rm satifies S(w) = Aw

and the linear transformation T : Rn 7→ Rp satisfies T (v) = Bv

then

S ◦ T : Rn 7→ Rm

is also a linear transformation and

(S ◦ T )(v) = (AB)v.



If T : Rn 7→ Rm is a linear transformation then we define the null
space of T as

N(T ) = {v ∈ Rn | T (v) = 0}.
This is a subspace of Rn.
The dimensionen of N(T ) is called nullity(T ).

The range of T is

R(T ) = {w ∈ Rm | there exists v ∈ Rn so that T (v) = w}.
This is a subspace of Rm.
The dimension of R(T ) is called the rank of T and is written as
rank(T ).

The dimensions satisfy the following equation:

nullity(T ) + rank(T ) = n.



A system of linear equations

a00x0+ a01x1 + . . .+ a0,n−1xn−1 = b0

a10x0+ a11x1 + . . .+ a1,n−1xn−1 = b1
...

am−1,0x0+ am−1,1x1 + . . .+ am−1,n−1xn−1 = bm−1

can be denoted by its augmented coefficient matrix
a00 a01 . . . a0,n−1 b0
a10 a11 . . . a1,n−1 b1

... ... ... ...
am−1,0 am−1,1 . . . am−1,n−1 bm−1





Elementary row operations on matrices:

1. multiply a row by a number k 6= 0

2. replace row i by (row i) + k · (row j), i 6= j

3. swap two rows.

Two m×n matrices are said to be row equivalent if one of them

can be obtained from the other by using a number of elementary

row operations.

Two systems of linear equations have the same set solutions if

their augmented coefficient matrices are row equivalent.



A matrix is in echelon form if

1. rows with only 0’s are below non-zero rows

2. the first non-zero element in a row is 1 (it is called the leading

element or pivot)

3. a leading element in a row is in a column to the right of a

leading element in row above it.

A matrix in echelon form is in reduced echelon form if

4. a column with a leading element (pivot) has 0 i all other rows.



Solution to a system of linear equations (when the aug-

mented coefficient matrix is in reduced echelon form)

If the last column has a pivot then there is an equation of the

form:

0x0 + . . .+ 0xn−1 = 1,

and the system of equations has no solutions (it is inconsistent).

If there is a pivot in all columns except the last column then

there is a unique solution to the system of equations.

If thre is no pivot in the last column and there is one more column

with no pivot then there are infinitely many solutions.
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A: an n× n matrix.

Entry (i, j) is aij.

Ãij: an (n−1)× (n−1) matrix, obtained from A by deleting row

i and column j.

Determinant.

n = 1: det([a00]) = a00

n ≥ 2:

det(A) = a00 det(Ã00)− a01 det(Ã01)+

. . . a02 det(Ã02)− . . .+ (−1)n−1a0,n−1 det(Ã0,n−1)



Expansion along row i:

det(A) =
n−1∑
j=0

aij(−1)i+j det(Ãij).

Expansion along column j:

det(A) =
n−1∑
i=0

aij(−1)i+j det(Ãij).

Properties of determinants:

det(AT ) = det(A), det(AB) = det(A) det(B).



Elementary row operations on determinants.

Matrix B obtained from A by an elementary row operation:

1. multiply one of the rows by a scalar k 6= 0

. det(B) = k det(A) i.e., det(A) = 1
k det(B).

2. replace row i by (row i) + k · (row j), i 6= j

. the determinant is not changed: det(B) = det(A).

3. swap two rows.

. the determinant changes sign: det(B) = −det(A).



Inverse matrix.

An n× n matrix A has inverse matrix A−1 if

AA−1 = I, A−1A = I.

(If one of these equations is satisfied then they both are.)

A has an inverse if and only if det(A) 6= 0.

If application of row operations on
[
A I

]
can lead to

[
I B

]
then

A−1 = B.

If
[
I B

]
can not obtained from

[
A I

]
by using row operations

then A does not have an inverse.



If A and B are n× n matrices and both of them have an inverse
then AB has an inverse:

(AB)−1 = B−1A−1.

Inverse of matrices of special type.

1 0 x
0 1 y
0 0 1


−1

=

1 0 −x
0 1 −y
0 0 1

 .

If a, b and c are non-zero thena 0 0
0 b 0
0 0 c


−1

=

a
−1 0 0
0 b−1 0
0 0 c−1

 .



Inverse of 2× 2 matrix:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
,

if

∣∣∣∣∣a b
c d

∣∣∣∣∣ = ad− bc 6= 0.

An n× n matrix is said to be an orthogonal matrix if its column

vectors are orthogonal and have length 1.

If A is an orthogonal matrix then A−1 = AT .

Conversely, if A−1 = AT then A is an orthogonal matrix.



MCG - 8

An affine transformation T : Rn 7→ Rm is a function satisfying

T (a0P0 + a1P1) = a0T (P0) + a1T (P1),

for all points P0, P1 and all numbers a0, a1 where a0 + a1 = 1.

Let T be an affine transformation.

Let S(v) = T (O + v)− T (O), where O = (0, . . . ,0).

Then S is a linear transformation and therefore there exists a

matrix A so that S(v) = Av.

The columns of A are S(e0), . . . ,S(en−1).

(page 138)



T (v) = Av + y,

where y = T (O).

The affine transformation is represented by the following matrix[
A y
0T 1

]
.

The inverse affine transformation T −1 is represented by the in-

verse matrix [
A−1 −A−1y
0T 1

]
.



The point P in Rn is represented by the following vector in Rn+1[
P
1

]
.

A translation by the vector t maps the point P to the point

P + t.

The matrix of this affine transformation is[
In t
0T 1

]
.



Pure rotation. (pure = around axis through O). The rotation

is then a linear transformation.

A linear transformation T (v) = Av is a rotation

if and only if

A is an orthogonal matrix with det(A) = 1.

A composition of two rotations is a rotation.



Rotation in R3 around the z-axis by the angle θ has matrix

Rz =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

The affine matrix is [
Rz 0
0T 1

]
.
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Rotation in R3 by angle θ around axis with direction given by
the vector r.
If right hand thumb points in direction r then the fingers points
in positive direction for θ.

Rotation by angle −θ around axis with vector −r is the same as
rotation by angle θ around axis with vector r.

Compute r̂ = 1
||r||r.

An arbitrary vector v is rotated in the vector R(v), that can be
computed using Rodrigues formula:

R(v) = cos(θ)v + (1− cos(θ))(v·̂r)r̂ + sin(θ)(r̂× v).



If r̂ =

xy
z

 then the matrix of the rotation is:

Rr̂θ = (1−cos(θ)

x
2 xy xz

xy y2 yz

xz yz z2

+cos(θ)

1 0 0
0 1 0
0 0 1

+sin(θ)

 0 −z y
z 0 −x
−y x 0

 .

The matrix can also be written as

Rr̂θ =

 tx
2 + c txy − sz txz + sy

txy + sz ty2 + c tyz − sx
txz − sy tyz + sx tz2 + c

 ,
where

c = cos(θ), s = sin(θ), t = 1− cos(θ).



Rotation around the x-axis by angle θx [take (x, y, z) = (1,0,0)]:

Rx = Riθx =

1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

 .

Rotation around the y-axis by angle θy [take (x, y, z) = (0,1,0)]:

Ry = Rjθy =

 cos(θy) 0 sin(θy)
0 1 0

− sin(θy) 0 cos(θ)

 .

Rotation around the z-axis by angle θz [take (x, y, z) = (0,0,1)]:

Rz = Rkθz =

cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 .



The matrix for rotation around the z-axis followed by rotation

around the y-axis followed by rotation around the x-axis:

RxRyRz =

 CyCz −CySz Sy
SxSyCz + CxSz −SxSySz + CxCz −SxCy
−CxSyCz + SxSz CxSySz + SxCz CxCy

 ,
where

Cx = cos(θx), Sx = sin(θx),

Cy = cos(θy), Sy = sin(θy),

Cz = cos(θz), Sz = sin(θz).
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Reflection across a plane through O = (0,0,0) with normal
vector n̂, that has length 1.

The 3× 3 matrix of the reflection:

I− 2(n̂⊗ n̂) =

1− 2n2
x −2nxny −2nxnz

−2nxny 1− 2n2
y −2nynz

−2nxnz −2nynz 1− 2n2
z

 ,
where n̂ = [nx ny nz]T .
The 4× 4 affine matrix is[

I− 2(n̂⊗ n̂) 0
0T 1

]
.

Reflection across O has 3× 3 matrix −I.



Orthogonal matrices.

An orthogonal matrix has determinant 1 or −1.

En matrix A is an orthogonal matrix with determinant 1

if and only if

A is the matrix of a rotation.

The matrix of a reflection is an orthogonal matrix with determi-

nant −1.

But only a small fraction of all orthogonal matrices with deter-

minant −1 are matrices of a reflection.



Shear.
n̂: a vector with length 1.
s: a vector orthogonal to n̂.

Shear plane: the plane through O with normal vector n̂.
Points on this plane are fixed.
An arbitrary vector v is mapped to v + (n̂·v)s.
The 4× 4 affine matrix for a shear is

Hn̂,s =

[
I + s⊗ n̂ 0

0T 1

]
.

s⊗ n̂ =

sxnx sxny sxnz
synx syny synz
sznx szny sznz

 ,
where s = [sx sy sz]T and n̂ = [nx ny nz]T .



Affine transformation around an arbitrary point.

R is the 3× 3 matrix for a rotation around an axis through O or

a shear or reflection around a plane through O.

The corresponding transformation around C = O + x has affine

matrix [
I x
0T 1

] [
R 0
0T 1

] [
I −x
0T 1

]
=

[
R (I−R)x
0T 1

]
.



R: 3× 3 matrix for a rotation.

Compute Euler angles θx, θy, θz so that

R = RxRyRz

where

Rx is rotation around the x-axis by angle θx

Ry is rotation around the y-axis by angle θy

Rz is rotation around the z-axis by angle θz.

The angle θy is determined by:

sin θy = R02, cos θy =
√

1− sin2 θy.



If cos θy 6= 0 then θx and θz are determined by

sin θx = −
R12

cos θy
, cos θx =

R22

cos θy
,

sin θz = −
R01

cos θy
, cos θz =

R00

cos θy
.

If cos θy = 0 then choose θz = 0 and θx is determined by

sin θx = R21, cos θx = R11.
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R is a 3× 3 rotation matrix.

Determine axis-angle representation of this rotation,

i.e., a vector r̂ =

xy
z

 and an angle θ so that R = Rr̂θ.

Compute trace(R) = R00 +R11 +R22.

Then θ = cos−1(trace(R)−1
2 ). This gives 0◦ ≤ θ ≤ 180◦.

cos−1 is also written as arccos.



If θ = 0◦: no rotation, r̂ is arbitrary (and R = I).

If θ 6= 0◦ and θ 6= 180◦:

r = (R21 −R12, R02 −R20, R10 −R01), r̂ =
1

||r||
r.

If θ = 180◦: Determine the largest of the numbers R00, R11, R22.

R00 largest: x = 1
2

√
R00 −R11 −R22 + 1, y = R01

2x , z = R02
2x .

R11 largest: y = 1
2

√
R11 −R00 −R22 + 1, x = R01

2y , z = R12
2y .

R22 largest: z = 1
2

√
R22 −R00 −R11 + 1, x = R02

2z , y = R12
2z .



A quaternion q is written as

q = (w, x, y, z),

or

q = w + xi + yj + zk.

If we let v = xi + yj + zk =

xy
z

 then we also write

q = (w,v),

or

q = w + v.



Addition of quaternions:

(w1, x1, y1, z1)+(w2, x2, y2, z2) = (w1+w2, x1+x2, y1+y2, z1+z2).

Scalar multiplication:

a(w, x, y, z) = (aw, ax, ay, az).

Magnitude of a quaternion q = (w, x, y, z):

||q|| =
√
w2 + x2 + y2 + z2.

If q 6= (0,0,0,0) then the quaternion

1

||q||
q

has magnitude 1 and is said to be normalized.



Rotation around the axis r̂ with angle θ is represented by the

quaternion

q = (cos
(
θ

2

)
, sin

(
θ

2

)
r̂).

Or by

(cos

(
360◦ − θ

2

)
, sin

(
360◦ − θ

2

)
(−r̂)) = (− cos

(
θ

2

)
,− sin

(
θ

2

)
r̂) = −q.

The matrix for the rotation, represented by the normalized quater-

nion q = (w, x, y, z):1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2
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Multiplication of quaternions:

When computing

(w2 + x2i + y2j + z2k)(w1 + x1i + y1j + z1k)

we may use the following:

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j.

i2 = j2 = k2 = −1.



We can also compute the product as

(w2,v2)(w1,v1) = (w2w1 − v2·v1, w1v2 + w2v1 + v2 × v1),

and in particular

(0,v2)(0,v1) = (−v2·v1,v2 × v1).

All algebraic rules except the commutative law are valid.

Usually:

q1q2 6= q2q1.

Furthermore

||q1q2|| = ||q1|| · ||q2||.



Identity:

(w,v)(1, 0) = (1, 0)(w,v) = (w,v).

Inverse: if q = (w,v) 6= (0, 0) then q has inverse

q−1 =
1

||q||2
(w,−v).

If q is normalized (||q|| = 1) then

q−1 = (w,−v).

The inverse quaternion satifies:

qq−1 = q−1q = (1, 0).



Rotation by angle θ around the axis r̂ is represented by the
quaternion

q = (cos
(
θ

2

)
, sin

(
θ

2

)
r̂).

This quaternion satisfies ||q|| = 1.

If p is a vector in 3D-space then let Rq(p) be the vector that p
is rotated into.

We think of p as a quaternion, (0,p), and then we can compute
Rq(p) as follows

Rq(p) = qpq−1.

If q = (w,v) then this can also be computed as

Rq(p) = (2w2 − 1)p + 2(v·p)v + 2w(v × p).



Converting from matrix representation of rotation to quaternion
representation. (page 191)

R: a rotation matrix.

Compute:
trace(R) = R00 +R11 +R22.
r = (R21 −R12, R02 −R20, R10 −R01).

q = (trace(R) + 1, r) =
. (R00 +R11 +R22 + 1, R21 −R12, R02 −R20, R10 −R01).

Then the rotationen is represented by the normalized quaternion

1

||q||
q.
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Converting from rotation matrix to normalized quaternion:

R: a 3× 3 rotation matrix.

Compute:

. q = (R00 +R11 +R22 + 1, R21 −R12, R02 −R20, R10 −R01).

The rotation is then represented by the normalized quaternion

1

||q||
q.



Alternative method (if trace(R) < 0):

Find the largest of the numbers R00, R11, R22.

R00 largest: normalize the quaternionen

(R21 −R12, R00 −R11 −R22 + 1, R01 +R10, R02 +R20).

R11 largest: normalize the quaternionen

(R02 −R20, R01 +R10, R11 −R00 −R22 + 1, R12 +R21).

R22 largest: normalize the quaternionen

(R10 −R01, R02 +R20, R21 +R12, R22 −R00 −R11 + 1).



If rotation around the axis r1 with angle θ1 is represented by the

quaternion q1

and rotation around the axis r2 with angle θ2 is represented by

the quaternion q2

then the composed rotation consisting of

. rotation around the axis r1 with angle θ1

followed by

. rotation around the axis r2 with angle θ2

is represented by the quaternion q2q1.



Linear interpolation:

Find a parameterized line Q(t), satisfying that Q(ti) = Pi and

Q(ti+1) = Pi+1, where Pi and Pi+1 are points.

Solution

Q(t) = Pi +
t− ti

ti+1 − ti
(Pi+1 − Pi),

when ti ≤ t ≤ ti+1.



Hermite curves:
Determine a curve Q(t) satisfying that Q(0) = P0, Q(1) = P1,
Q′(0) = P′0 and Q′(1) = P′1, where P0 and P1 are points and P′0
and P′1 are vectors.

Let Q(t) = at3 + bt2 + ct+D, where a,b, c are vectors and D is
a point.
Then Q′(t) = 3at2 + 2bt+ c.

Requirement:
. Q(0) = D = P0, Q(1) = a + b + c +D = P1.
. Q′(0) = c = P′0, Q′(1) = 3a + 2b + c = P′1.

Solution:
a = 2(P0 − P1) + P′0 + P′1, b = 3(P1 − P0)− 2P′0 −P′1,
c = P′0 and D = P0.



The Hermite curve satisfying the above condition can also be

written as

Q(u) =
[
u3 u2 u 1

] 
2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0



P0
P1
P′0
P′1

 = UMG,

where the ’vector’ G is in fact a 4× 3 matrix.
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Piecewise Hermite curves.

P0, P1, . . . , Pn: points.

We want to find Hermite curves
Q0(u), Q1(u), . . . , Qn−1(u),
so that each Qi(u) is a curve moving from Pi to Pi+1 when u

increases from 0 to 1:
Qi(0) = Pi and Qi(1) = Pi+1 for all i = 0,1, . . . , n− 1

In order to compute a unique Hermite Q0(u) we need to choose
vectors P′0 and P′1 and require that Q′(0) = P′0 and Q′(1) = P′1
and similar for the other curves.

We may also use an automatic way to generate these conditions.



Automatic generation of Hermite curves.
A way to generate a piecewise Hermite curve through the points
P0, P1, . . . , Pn. The following conditions must be satisfied:

• Qi(1) = Qi+1(0) = Pi for all i = 0,1, . . . , n−2 (previous slide)

• Q′i(1) = Q′i+1(0) for all i = 0,1, . . . , n− 2
Qi+1 starts with the same velocity as Qi has in the end.

• Q′′i (1) = Q′′i+1(0) for alle i = 0,1, . . . , n− 2
Qi+1 starts with the same acceleration as Qi has in the end.

• Q′′0(0) = 0 og Q′′n−1(1) = 0 (natural end conditions).
No acceleration in the beginning and at the end.



In order to determine P′0 = Q′0(0),P′1 = Q′1(0) = Q′0(1), . . . ,P′n−1 =

Q′n−1(0) = Q′n−2(1),P′n = Q′n−1(1) we derive the following sys-

tem of equations from the equations on the previous slide

(the matrix has size (n+ 1)× (n+ 1)):

2 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0

.. .
0 0 · · · 1 4 1 0
0 0 · · · 0 1 4 1
0 0 · · · 0 0 1 2





P′0
P′1
P′2...

P′n−2
P′n−1
P′n


=



3(P1 − P0)
3(P2 − P0)
3(P3 − P1)

...
3(Pn−1 − Pn−3)

3(Pn − Pn−2)
3(Pn − Pn−1)


.



When P′0,P
′
1, . . . ,P

′
n have been determined from the above equtions

we can compute each Qi as follows:

Qi(u) = UMG,

where

U =
[
u3 u2 u 1

]
, M =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

 , G =


Pi
Pi+1
P′i

P′i+1

 .



We have the following general formula:

(x+ y)n =
n∑
i=0

(n
i

)
xn−iyi, hvor

(n
i

)
=

n!

i!(n− i)!
,

and n! = 1 · 2 · 3 · . . . · n.

In particular (x+ y)2 = x2 + 2xy + y2 and

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

If we let x = 1− u and y = u we get

1 = (1− u)3 + 3(1− u)2u+ 3(1− u)u2 + u3.



Bézier kurver:

P0, P1, . . . , Pn are points, called control points.

The Bézier curve is then

Q(u) =
n∑
i=0

(n
i

)
(1− u)n−iuiPi.

It satisfies Q(0) = P0 and Q(1) = Pn.

The most interesting case is n = 3:

Q(u) = (1− u)3P0 + 3u(1− u)2P1 + 3u2(1− u)P2 + u3P3.



In the case n = 3 the Bézier curve can also be written as

Q(u) = J3,0(u)P0 + J3,1(u)P1 + J3,2(u)P2 + J3,3(u)P3,

where

J3,0(u) = (1− u)3 = 1− 3u+ 3u2 − u3

J3,1(u) = 3u(1− u)2 = 3u− 6u2 + 3u3

J3,2(u) = 3u2(1− u) = 3u2 − 3u3

J3,3(u) = u3

As J3,0(u) + J3,1(u) + J3,2(u) + J3,3(u) = 1 Q(u) is an affine

combination of P0, P1, P2, P3.

Furthermore J3,0(u) ≥ 0, J3,1(u) ≥ 0, J3,2(u) ≥ 0 and J3,3(u) ≥
0. Thus Q(u) is a convex combination of P0, P1, P2, P3 and the

curve is contained in the convex hull of P0, P1, P2, P3.



The Bézier curve with n = 3 satifies Q′(0) = 3(P1 − P0) and

Q′(1) = 3(P3−P2) and the curve is the same as a Hermite curve

Q(u) = UMG,

where

U =
[
u3 u2 u 1

]
, M =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

 , G =


P0
P3

3(P1 − P0)
3(P3 − P2)

 .
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Interpolation of rotation.

p and q: rotation quaternions.

Spherical linear interpolation:

Determine the angle θ between p and q from cos θ = p·q (dot

product of p and q).

Then the interpolation can be computed as follows:

slerp(p, q, t) =
sin((1− t)θ)p+ sin(tθ)q

sin(θ)
.



Linear interpolation:

Let

r = (1− t)p+ tq.

Then we get the linear interpolation by normalizing r:

lerp(p, q, t) =
1

||r||
r.


