MCG - 2

Operations on vectors:

Vectoraddition: if \mathbf{v} and \mathbf{w} are vectors then $\mathbf{v}+\mathbf{w}$ is a vector.
$\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)+\left(w_{0}, w_{1}, \ldots, w_{n-1}\right)=\left(v_{0}+w_{0}, v_{1}+w_{1}, \ldots, v_{n-1}+w_{n-1}\right)$.

Scalarmultiplication: if \mathbf{v} is a vector and a is a number (scalar) then $a \mathbf{v}$ is a vector.

$$
a\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)=\left(a v_{0}, a v_{1}, \ldots, a v_{n-1}\right)
$$

Usual algebraic laws are valid for these operations.
E.g. $1 \mathrm{v}=\mathrm{v}$ og $0 \mathrm{v}=0$.

If $\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}-\mathbf{1}}$ are vectors and $a_{0}, a_{1}, \ldots, a_{n-1}$ are numbers then the expression

$$
a_{0} \mathbf{v}_{\mathbf{0}}+a_{1} \mathbf{v}_{\mathbf{1}}+\ldots+a_{n-1} \mathbf{v}_{\mathbf{n}-\mathbf{1}}
$$

is called a linear combination of $\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}-\mathbf{1}}$.

The set of vectors that are can be written as linear combinations of $\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}-\mathbf{1}}$ is called the set (or subspace) spanned by $\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}-\mathbf{1}}$.

If one of the n vectors $\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}-\mathbf{1}}$ can be written as a linear combination of the other $n-1$ vectors then the vectors are said to be linearly dependent. Otherwise they are linearly independent.

The dotproduct of two vectors $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ and $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{n-1}\right)$ is defined by

$$
\mathbf{v} \cdot \mathbf{w}=v_{0} w_{0}+v_{1} w_{1}+\ldots+v_{n-1} w_{n-1} .
$$

The dotproduct also satisfies

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

where θ is the angle between the vectors.
\mathbf{v} and \mathbf{w} are orthogonal if $\mathbf{v} \cdot \mathbf{w}=0$.
The length of \mathbf{v} is $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{0}^{2}+v_{1}^{2}+\ldots+v_{n-1}^{2}}$.

The dotprodduct satisfies the following laws:

- $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
- $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
- $a(\mathbf{v} \cdot \mathbf{w})=(a \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(a \mathbf{w})$
- $\mathbf{v} \cdot \mathbf{v} \geq 0$ and
$\cdot \mathbf{v} \cdot \mathbf{v}=0$ if and only if $\mathbf{v}=\mathbf{0}$

The length of vectors satisfies:

- $\|\mathbf{v}\| \geq 0$ and $\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=\mathbf{0}$.
- $\|a \mathbf{v}\|=|a|\|\mathbf{v}\|$
- $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.

These laws are also satisfied by the Manhattan norm

$$
\|\mathbf{v}\|_{\ell_{1}}=\left|v_{0}\right|+\left|v_{1}\right|+\ldots+\left|v_{n-1}\right|
$$

where $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$.

Normalizing a vector $\mathbf{v} \neq 0$:

$$
\hat{\mathbf{v}}=\frac{1}{\|\mathbf{v}\|} \mathbf{v} .
$$

$\hat{\mathbf{v}}$ has the same direction as \mathbf{v} and it has length 1 .

The projection of a vector \mathbf{v} on a vector $\mathbf{w} \neq \mathbf{0}$ er

$$
\operatorname{proj}_{w} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}=(\mathbf{v} \cdot \hat{\mathbf{w}}) \hat{\mathbf{w}} .
$$

The vector

$$
\operatorname{perp}_{\mathrm{w}} \mathbf{v}=\mathbf{v}-\operatorname{proj}_{\mathbf{w}} \mathbf{v}
$$

is orthogonal to w.

A set of vectors $\left\{\mathbf{w}_{\mathbf{0}}, \mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}-\mathbf{1}}\right\}$ is said to be orthonormal if the vectors are orthogonal and have length 1.

Gram-Schmidt orthogonalization of linearly independent vectors $\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}-1}$:

- $\mathrm{w}_{0}=\mathrm{v}_{0}$
- $\mathrm{w}_{1}=\mathrm{v}_{1}-\operatorname{proj}_{\mathrm{w}_{0}} \mathrm{v}_{1}$
- $\mathbf{w}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathrm{w}_{0}} \mathbf{v}_{2}-\operatorname{proj}_{\mathrm{w}_{1}} \mathbf{v}_{2}$

In general:

$$
\mathbf{w}_{\mathbf{i}}=\mathbf{v}_{\mathbf{i}}-\operatorname{proj}_{\mathbf{w}_{0}} \mathbf{v}_{\mathbf{i}}-\ldots-\operatorname{proj}_{\mathbf{w}_{\mathbf{i}-1}} \mathbf{v}_{\mathbf{i}}
$$

Finally compute

$$
\hat{\mathrm{w}}_{0}, \hat{\mathrm{w}}_{1}, \ldots, \hat{\mathrm{w}}_{\mathbf{n}-1}
$$

These vectors are orthonormal.

