MCG - 3

 $\mathbf{u}, \mathbf{v}, \mathbf{w}$: three linearly independent vectors in \mathbb{R}^3 .

Use right hand: index finger points in direction \mathbf{u} middle finger points in direction \mathbf{v} .

Then we say that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is right-handed if \mathbf{w} is on the same side of the plane spanned by \mathbf{u}, \mathbf{v} as the thumb.

Otherwise $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is left-handed.

Example: i, j, k is right-handed.

Let
$$\mathbf{v} = (v_x, v_y, v_z)$$
 and $\mathbf{w} = (w_x, w_y, w_z)$.

Then the cross product is defined by

$$\mathbf{v} \times \mathbf{w} = (v_y w_z - w_y v_z, v_z w_x - w_z v_x, v_x w_y - w_x v_y).$$

 $\mathbf{v} \times \mathbf{w}$ is the vector orthogonal to \mathbf{v} and \mathbf{w} , satisfying that: $\mathbf{v}, \mathbf{w}, \mathbf{v} \times \mathbf{w}$ is right-handed and $||\mathbf{v} \times \mathbf{w}|| = ||\mathbf{v}|| ||\mathbf{w}|| \sin \theta$, where θ is the angle between \mathbf{v} and \mathbf{w} .

 $||\mathbf{v}\times\mathbf{w}||$ is the area of a parallelogram where \mathbf{v} and \mathbf{w} are two edges.

Vector triple product:

If ${\bf v}$ and ${\bf w}$ are two vectors in \mathbb{R}^3 (non-parallel) then ${\bf w},\ {\bf v}\times {\bf w},\ {\bf w}\times ({\bf v}\times {\bf w})$

is a right-handed orthogonal basis. (Alternative to Gram-Schmidt.) Scalar triple product:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})$$

is a number which is

- positive if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is right-handed,
- negative if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is left-handed,
- 0 if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent.

 $|\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})|$ is the volume (rumfang) of a parallelopiped where $\mathbf{u},\mathbf{v},\mathbf{w}$ are three edges.

If V is a set of vectors in \mathbb{R}^n satisfying

- $\mathbf{v} \in V$ and $\mathbf{w} \in V \Rightarrow \mathbf{v} + \mathbf{w} \in V$.
- $\mathbf{v} \in V$ and $c \in \mathbb{R} \Rightarrow c\mathbf{v} \in V$.

the we say that V is a subspace of \mathbb{R}^n .

If $\mathbf{b}_1, \ldots, \mathbf{b}_d$ are linearly independent vectors spanning V then we say that $\{\mathbf{b}_1, \ldots, \mathbf{b}_d\}$ is a basis for V. d is then the dimensionen of V.

Subspace of dimension 0: $\{0\}$ Subspace of dimension 1: line through 0. Subspace of dimension 2: plane through 0. Affine space of dimension 1: line (not through $\{0\}$). Affine space of dimension 2: plan (not through $\{0\}$).

An affine space consists of points on the form

 $O + \mathbf{v}, \quad \mathbf{v} \in V,$

where V is a subspace and O is a fixed point.

 P_0 and P_1 : two different points.

There is a unique line passing through both points. It consists of points on the form

$$tP_0 + (1-t)P_1, \quad t \in \mathbb{R}.$$

The line segment between P_0 and P_1 consists of points

$$tP_0 + (1-t)P_1$$
, hvor $0 \le t \le 1$.

A set of points is said to be convex if for every pair of points P_0, P_1 in the set, the line segment between them is also contained in the set.

Let P_0, \ldots, P_k be points. The expression

 $a_0P_0 + a_1P_1 + \ldots + a_kP_k$, where $a_0 + a_1 + \ldots + a_k = 1$ is called an affine combination of P_0, \ldots, P_k .

The set of points that can be written as an affine combination of $P_0, \ldots P_k$ is an affine space.

 P_0, \ldots, P_k are said to be affinely dependent if one of the points can be written as an affine combination of the other points. Otherwise P_0, \ldots, P_k are affinely independent. W: an affine space, $P_0, \ldots, P_k \in W$.

If every point in W is an affine combination of P_0, \ldots, P_k and if these points are affinely independent then we say that P_0, \ldots, P_k is a simplex.

Every point P in W can then be written (in one and only one way) as

 $a_0P_0 + a_1P_1 + \ldots + a_kP_k$, where $a_0 + a_1 + \ldots + a_k = 1$.

 a_0, a_1, \ldots, a_k are called the barycentric coordinates for P.