MCG - 3

$\mathbf{u}, \mathbf{v}, \mathbf{w}$: three linearly independent vectors in \mathbb{R}^{3}.

Use right hand:
index finger points in direction \mathbf{u}
middle finger points in direction \mathbf{v}.

Then we say that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is right-handed if \mathbf{w} is on the same side of the plane spanned by \mathbf{u}, \mathbf{v} as the thumb.

Otherwise $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is left-handed.

Example: $\mathbf{i}, \mathbf{j}, \mathbf{k}$ is right-handed.

Let $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$ and $\mathbf{w}=\left(w_{x}, w_{y}, w_{z}\right)$.

Then the cross product is defined by

$$
\mathbf{v} \times \mathbf{w}=\left(v_{y} w_{z}-w_{y} v_{z}, v_{z} w_{x}-w_{z} v_{x}, v_{x} w_{y}-w_{x} v_{y}\right)
$$

$\mathbf{v} \times \mathbf{w}$ is the vector orthogonal to \mathbf{v} and \mathbf{w}, satisfying that:
$\mathbf{v}, \mathbf{w}, \mathbf{v} \times \mathbf{w}$ is right-handed and $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$, where θ is the angle between \mathbf{v} and \mathbf{w}.
$\|\mathbf{v} \times \mathbf{w}\|$ is the area of a parallelogram where \mathbf{v} and \mathbf{w} are two edges.

Vector triple product:
If \mathbf{v} and \mathbf{w} are two vectors in \mathbb{R}^{3} (non-parallel) then

$$
\mathbf{w}, \quad \mathbf{v} \times \mathbf{w}, \quad \mathbf{w} \times(\mathbf{v} \times \mathbf{w})
$$

is a right-handed orthogonal basis.
(Alternative to Gram-Schmidt.)

Scalar triple product:

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})
$$

is a number which is

- positive if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is right-handed,
- negative if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is left-handed,
- 0 if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent.
$|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$ is the volume (rumfang) of a parallelopiped where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three edges.

If V is a set of vectors in \mathbb{R}^{n} satisfying

- $\mathbf{v} \in V$ and $\mathbf{w} \in V \Rightarrow \mathbf{v}+\mathbf{w} \in V$.
- $\mathbf{v} \in V$ and $c \in \mathbb{R} \Rightarrow c \mathbf{v} \in V$.
the we say that V is a subspace of \mathbb{R}^{n}.
If $\mathrm{b}_{1}, \ldots, \mathbf{b}_{d}$ are linearly independent vectors spanning V then we say that $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\}$ is a basis for V.
d is then the dimensionen of V.

Subspace of dimension 0: $\{0\}$
Subspace of dimension 1: line through 0. Subspace of dimension 2: plane through 0.

Affine space of dimension 1: line (not through $\{0\}$).
Affine space of dimension 2: plan (not through $\{0\}$).

An affine space consists of points on the form

$$
O+\mathbf{v}, \quad \mathbf{v} \in V,
$$

where V is a subspace and O is a fixed point.
P_{0} and P_{1} : two different points.
There is a unique line passing through both points. It consists of points on the form

$$
t P_{0}+(1-t) P_{1}, \quad t \in \mathbb{R} .
$$

The line segment between P_{0} and P_{1} consists of points

$$
t P_{0}+(1-t) P_{1}, \quad \text { hvor } 0 \leq t \leq 1 .
$$

A set of points is said to be convex if for every pair of points P_{0}, P_{1} in the set, the line segment between them is also contained in the set.

Let P_{0}, \ldots, P_{k} be points.
The expression

$$
a_{0} P_{0}+a_{1} P_{1}+\ldots+a_{k} P_{k}, \quad \text { where } a_{0}+a_{1}+\ldots+a_{k}=1
$$

is called an affine combination of P_{0}, \ldots, P_{k}.
The set of points that can be written as an affine combination of $P_{0}, \ldots P_{k}$ is an affine space.
P_{0}, \ldots, P_{k} are said to be affinely dependent if one of the points can be written as an affine combination of the other points.
Otherwise P_{0}, \ldots, P_{k} are affinely independent.
W : an affine space, $P_{0}, \ldots, P_{k} \in W$.
If every point in W is an affine combination of P_{0}, \ldots, P_{k} and if these points are affinely independent then we say that P_{0}, \ldots, P_{k} is a simplex.

Every point P in W can then be written (in one and only one way) as

$$
a_{0} P_{0}+a_{1} P_{1}+\ldots+a_{k} P_{k}, \quad \text { where } a_{0}+a_{1}+\ldots+a_{k}=1
$$

$a_{0}, a_{1}, \ldots, a_{k}$ are called the barycentric coordinates for P.

