MCG-4

The polar coordinates for a point (x, y) in the plane is (r, θ) where $r=\sqrt{x^{2}+y^{2}}$ is the distance from $(0,0)$ to (x, y), and θ is the angel (in positive direction) from the x-axis to the vector (x, y).

Converting from (r, θ) to (x, y) :

$$
x=r \cos \theta, \quad y=r \sin \theta .
$$

Converting from (x, y) to (r, θ) :

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta= \begin{cases}\arctan \frac{y}{x} & \text { hvis } x>0, \\ \arctan \frac{y}{x}+\pi & \text { hvis } x<0, \\ \frac{\pi}{2} & \text { hvis } x=0, y>0, \\ -\frac{\pi}{2} & \text { hvis } x=0, y<0\end{cases}
$$

If you prefer to work with degrees then replace π by 180°.

The spherical coordinates for a point $P=(x, y, z)$ in space are (ρ, ϕ, θ) where $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ is the distance from $(0,0,0)$ to (x, y, z), and ϕ is the angel between the z-axis and the vector (x, y, z).
$0 \leq \phi \leq \pi\left(\right.$ or $\left.0 \leq \phi \leq 180^{\circ}\right) . \theta$ is the same as in polar coordinates for (x, y).

Converting from (ρ, ϕ, θ) to (x, y, z) :

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

Converting from (x, y, z) to (ρ, ϕ, θ) :

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \phi=\arccos \frac{z}{\rho}
$$

θ is computed as on the previous page.

A line passing through points P_{0} and P_{1} consisits of points that can be written in parametric form as

$$
P_{0}+t \mathbf{d}, \quad t \in \mathbb{R},
$$

where $\mathrm{d}=P_{1}-P_{0}$ is the vector from P_{0} to P_{1}.

For a line in the plane there a vector $\mathbf{n}=(a, b)$
(e.g. if $\mathbf{d}=(b,-a)$) perpendicular to the line.

A point $Q=(x, y)$ lies on the line if and only if

$$
\mathbf{n} \cdot\left(Q-P_{0}\right)=0 .
$$

If $P_{0}=\left(x_{0}, y_{0}\right)$ then this equation can be written as

$$
a x+b y+c=0
$$

where $c=-a x_{0}-b y_{0}$. This is called a generalized line equation.
If $\|\mathbf{n}\|=\sqrt{a^{2}+b^{2}}=1$ and $a x+b y+c=d$ then the point (x, y) is in distance $|d|$ from the line - if $d>0$ on the same side of the line as indicated by \mathbf{n}.

A plane passing through the points P_{0}, P_{1}, P_{2} consists of points that can be written in parametric form as

$$
P_{0}+s \mathbf{u}+t \mathbf{v}, \quad s, t \in \mathbb{R},
$$

where $\mathbf{u}=P_{1}-P_{0}$ and $\mathbf{v}=P_{2}-P_{0}$.
For a plane in \mathbb{R}^{3} there is a vector $\mathbf{n}=(a, b, c)$
(e.g. $\mathbf{n}=\mathbf{u} \times \mathbf{v}$) perpendicular to the plane.

A point $Q=(x, y, z)$ lies on the plane if and only if

$$
\mathbf{n} \cdot\left(Q-P_{0}\right)=0 .
$$

If $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ then this equation can be written as

$$
a x+b y+c z+d=0,
$$

where $d=-a x_{0}-b y_{0}-c z_{0}$. This is called a generalized plane equation.

If $\|\mathbf{n}\|=\sqrt{a^{2}+b^{2}+c^{2}}=1$ and (x, y, z) is an arbitrary point in space then $|a x+b y+c z+d|$ is the distance between the point and the plane - if $a x+b y+c z+d>0$ on the same side of the plane as indicated by n .

Let P be a point on the plane passing through P_{0}, P_{1}, P_{2}.
Then there exists unique numbers s, t so that

$$
P=P_{0}+s \mathbf{u}+t \mathbf{v}, \quad \text { where } \mathbf{u}=P_{1}-P_{0} \text { and } \mathbf{v}=P_{2}-P_{0} .
$$

If $\mathbf{w}=P-P_{0}=s \mathbf{u}+t \mathbf{v}$ then s and t can be determined from the equations

$$
\mathbf{v} \times \mathbf{w}=s(\mathbf{v} \times \mathbf{u}), \quad \mathbf{u} \times \mathbf{w}=t(\mathbf{u} \times \mathbf{v})
$$

Then

$$
P=P_{0}+s\left(P_{1}-P_{0}\right)+t\left(P_{2}-P_{0}\right)=(1-s-t) P_{0}+s P_{1}+t P_{2}
$$

Thus the barycentric coordinates for P are $(1-s-t, s, t)$.
If P is inside the triangle with vertices P_{0}, P_{1}, P_{2} then $1-s-t \geq$ $0, s \geq 0, t \geq 0$.
If one of the numbers is negative then P is outside the triangle.

