MCG-5

A 3×5 matrix:

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & 1 & -1 \\
3 & 2 & 7 & -5 & 0 \\
1 & 1 & 2 & 1 & 4
\end{array}\right]
$$

An $m \times n$ matrix has m rows, and n columns.
Rows are enumerated $0,1, \ldots, m-1$.
Columns are enumerated $0,1, \ldots, n-1$.
The element (number) in row i, column j is written $(A)_{i j}$ or $a_{i j}$. In the example: $(A)_{12}=7$.

If A and B are $m \times n$ matrices then $A+B$ is the $m \times n$ matrix where $(A+B)_{i j}=(A)_{i j}+(B)_{i j}$.

If A is an $m \times n$ matrix and $a \in \mathbb{R}$ is a number then $a A$ is the $m \times n$ matrix where $(a A)_{i j}=a(A)_{i j}$.
A an $m \times n$ matrix.
B an $r \times s$ matrix.

The product $A B$ exists if $n=r$ and then the result is an $m \times s$ matrix.

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
5 & 6 & 7 & 8 \\
* & * & * & *
\end{array}\right]\left[\begin{array}{cccccc}
* & 1 & * & * & * & * \\
* & 2 & * & * & * & * \\
* & 3 & * & * & * & * \\
* & 4 & * & * & * & *
\end{array}\right]=\left[\begin{array}{cccccc}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & 70 & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right]
$$

$70=5 \cdot 1+6 \cdot 2+7 \cdot 3+8 \cdot 4$.

Algebraic rules, a few examples:

$$
A(B+C)=A B+A C
$$

and

$$
A(a B)=a(A B),
$$

where a is a number and A, B, C are matrices with sizes so that the addition and multiplication is defined.

Almost all usual algebraic rules are satisfied. Except that multiplication is not commutative:

$$
A B \neq B A .
$$

The transposed of an $m \times n$ matrix A is an $n \times m$ matrix A^{T} where $\left(A^{T}\right)_{i j}=A_{j i}$.

If

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]
$$

then

$$
A^{T}=\left[\begin{array}{ccc}
1 & 5 & 9 \\
2 & 6 & 10 \\
3 & 7 & 11 \\
4 & 8 & 12
\end{array}\right]
$$

$$
(A+B)^{T}=A^{T}+B^{T}, \quad(A B)^{T}=B^{T} A^{T}
$$

Identity matrix:

$$
I=I_{n}=I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

If A is an $m \times n$ matrix then $A I_{n}=A$ and $I_{m} A=A$.

An $n \times 1$ matrix is a (column) vector.

A $1 \times n$ matrix is a (row) vektor. It is written as the transposed of a column vector.

Product of block matrices (if all sums and products are defined):

$$
\begin{gathered}
{\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]} \\
{\left[\begin{array}{lll}
\mathbf{a}_{0} & \ldots & \mathbf{a}_{n-1}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
\vdots \\
b_{n-1}
\end{array}\right]=b_{0} \mathbf{a}_{0}+\ldots+b_{n-1} \mathbf{a}_{n-1}} \\
A\left[\begin{array}{lll}
\mathbf{b}_{0} & \ldots & \mathbf{b}_{n-1}
\end{array}\right]=\left[\begin{array}{lll}
A \mathbf{b}_{0} & \ldots & A \mathbf{b}_{n-1}
\end{array}\right]
\end{gathered}
$$

Let V and W be vector space, e.g. $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$.

A function $T: V \mapsto W$ is said to be a linear transformation if

- $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})$ for all vectors $\mathbf{v}, \mathbf{w} \in V$, and
- $T(a \mathbf{v})=a T(\mathbf{v})$ for all vectors $\mathbf{v} \in V$ and all numbers a.

Example. Let $\mathbf{v}=\left[v_{x}, v_{y}, v_{z}\right]^{T} \in \mathbb{R}^{3}$.
Then $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ defined by $T(\mathrm{x})=\mathrm{v} \times \mathrm{x}$ is a linear transformation and $T(\mathrm{x})=\tilde{\mathbf{v}} \mathrm{x}$ where $\tilde{\mathbf{v}}$ is the 3×3 matrix

$$
\tilde{\mathbf{v}}=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right]
$$

Example. Let $\hat{\mathbf{v}}=\in \mathbb{R}^{n}$, with $\|\hat{\mathbf{v}}\|=1$.
Then $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ defined by $T(\mathrm{x})=\operatorname{proj}_{\hat{\mathrm{v}}} \mathrm{x}=(\mathrm{x} \cdot \hat{\mathrm{v}}) \hat{\mathrm{v}}$ is a linear transformation and $T(\mathbf{x})=A \mathbf{x}$ where A is the $n \times n$ matrix

$$
A=\hat{\mathbf{v}} \hat{\mathbf{v}}^{T}=(\hat{\mathbf{v}} \otimes \hat{\mathbf{v}})
$$

In general

$$
(\mathrm{v} \otimes \mathrm{w})=\mathrm{vw}^{T}
$$

is called a tensor product.

