MCG-7

A: an $n \times n$ matrix.
Entry (i, j) is $a_{i j}$.
$\tilde{A}_{i j}$: an $(n-1) \times(n-1)$ matrix, obtained from A by deleting row i and column j.

Determinant.

$$
\begin{aligned}
& n=1: \quad \operatorname{det}\left(\left[a_{00}\right]\right)=a_{00} \\
& n \geq 2: \\
& \operatorname{det}(A)= a_{00} \operatorname{det}\left(\tilde{A}_{00}\right)-a_{01} \operatorname{det}\left(\tilde{A}_{01}\right)+ \\
& a_{02} \operatorname{det}\left(\tilde{A}_{02}\right)-\ldots+(-1)^{n-1} a_{0, n-1} \operatorname{det}\left(\tilde{A}_{0, n-1}\right)
\end{aligned}
$$

Expansion along row i :

$$
\operatorname{det}(A)=\sum_{j=0}^{n-1} a_{i j}(-1)^{i+j} \operatorname{det}\left(\widetilde{A}_{i j}\right)
$$

Expansion along column j :

$$
\operatorname{det}(A)=\sum_{i=0}^{n-1} a_{i j}(-1)^{i+j} \operatorname{det}\left(\widetilde{A}_{i j}\right)
$$

Properties of determinants:

$$
\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A), \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Elementary row operations on determinants.

Matrix B obtained from A by an elementary row operation:

1. multiply one of the rows by a scalar $k \neq 0$ $\operatorname{det}(B)=k \operatorname{det}(A)$ i.e., $\operatorname{det}(A)=\frac{1}{k} \operatorname{det}(B)$.
2. replace row i by (row i) $+k$. (row j), $i \neq j$ the determinant is not changed: $\operatorname{det}(B)=\operatorname{det}(A)$.
3. swap two rows.
the determinant changes sign: $\operatorname{det}(B)=-\operatorname{det}(A)$.

Inverse matrix.

An $n \times n$ matrix A has inverse matrix A^{-1} if

$$
A A^{-1}=I, \quad A^{-1} A=I
$$

(If one of these equations is satisfied then they both are.)
A has an inverse if and only if $\operatorname{det}(A) \neq 0$.

If application of row operations on $\left[\begin{array}{ll}A & I\end{array}\right]$ can lead to $\left[\begin{array}{ll}I & B\end{array}\right]$ then $A^{-1}=B$.

If $\left[\begin{array}{ll}I & B\end{array}\right]$ can not obtained from $\left[\begin{array}{ll}A & I\end{array}\right]$ by using row operations then A does not have an inverse.

If A and B are $n \times n$ matrices and both of them have an inverse then $A B$ has an inverse:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Inverse of matrices of special type.

$$
\left[\begin{array}{lll}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & 0 & -x \\
0 & 1 & -y \\
0 & 0 & 1
\end{array}\right]
$$

If a, b and c are non-zero then

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
a^{-1} & 0 & 0 \\
0 & b^{-1} & 0 \\
0 & 0 & c^{-1}
\end{array}\right] .
$$

Inverse of 2×2 matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

if $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c \neq 0$.

An $n \times n$ matrix is said to be an orthogonal matrix if its column vectors are orthogonal and have length 1.

If A is an orthogonal matrix then $A^{-1}=A^{T}$.
Conversely, if $A^{-1}=A^{T}$ then A is an orthogonal matrix.

