MCG-8

An affine transformation $\mathcal{T}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ is a function satisfying

$$
\mathcal{T}\left(a_{0} P_{0}+a_{1} P_{1}\right)=a_{0} \mathcal{T}\left(P_{0}\right)+a_{1} \mathcal{T}\left(P_{1}\right),
$$

for all points P_{0}, P_{1} and all numbers a_{0}, a_{1} where $a_{0}+a_{1}=1$.
Let \mathcal{T} be an affine transformation.
Let $\mathcal{S}(\mathrm{v})=\mathcal{T}(O+\mathrm{v})-\mathcal{T}(O)$, where $O=(0, \ldots, 0)$.
Then \mathcal{S} is a linear transformation and therefore there exists a matrix A so that $\mathcal{S}(\mathrm{v})=A \mathrm{v}$.

The columns of A are $\mathcal{S}\left(\mathbf{e}_{0}\right), \ldots, \mathcal{S}\left(\mathbf{e}_{n-1}\right)$.
(page 138)

$$
\mathcal{T}(\mathbf{v})=A \mathbf{v}+\mathbf{y}
$$

where $\mathbf{y}=\mathcal{T}(O)$.

The affine transformation is represented by the following matrix

$$
\left[\begin{array}{cc}
A & \mathrm{y} \\
\mathbf{0}^{T} & 1
\end{array}\right] .
$$

The inverse affine transformation \mathcal{T}^{-1} is represented by the inverse matrix

$$
\left[\begin{array}{cc}
A^{-1} & -A^{-1} \mathbf{y} \\
\mathbf{0}^{T} & 1
\end{array}\right] .
$$

The point P in \mathbb{R}^{n} is represented by the following vector in \mathbb{R}^{n+1}

$$
\left[\begin{array}{l}
P \\
1
\end{array}\right] .
$$

A translation by the vector \mathbf{t} maps the point P to the point $P+\mathbf{t}$.

The matrix of this affine transformation is

$$
\left[\begin{array}{ll}
I_{n} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] .
$$

Pure rotation. (pure $=$ around axis through O). The rotation is then a linear transformation.

A linear transformation $T(\mathbf{v})=A \mathbf{v}$ is a rotation
if and only if
A is an orthogonal matrix with $\operatorname{det}(A)=1$.

A composition of two rotations is a rotation.

Rotation in \mathbb{R}^{3} around the z-axis by the angle θ has matrix

$$
R_{z}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

The affine matrix is

$$
\left[\begin{array}{ll}
R_{z} & 0 \\
\mathbf{0}^{T} & 1
\end{array}\right] .
$$

