MCG-9

Rotation in \mathbb{R}^{3} by angle θ around axis with direction given by the vector \mathbf{r}.
If right hand thumb points in direction r then the fingers points in positive direction for θ.

Rotation by angle $-\theta$ around axis with vector $-\mathbf{r}$ is the same as rotation by angle θ around axis with vector \mathbf{r}.

Compute $\hat{\mathbf{r}}=\frac{1}{\|\mathbf{r}\|} \mathbf{r}$.
An arbitrary vector \mathbf{v} is rotated in the vector $R(\mathbf{v})$, that can be computed using Rodrigues formula:

$$
R(\mathbf{v})=\cos (\theta) \mathbf{v}+(1-\cos (\theta))(\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}+\sin (\theta)(\hat{\mathbf{r}} \times \mathbf{v})
$$

If $\hat{\mathbf{r}}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ then the matrix of the rotation is:
$\mathbf{R}_{\hat{\mathbf{r}} \theta}=\left(1-\cos (\theta)\left[\begin{array}{lll}x^{2} & x y & x z \\ x y & y^{2} & y z \\ x z & y z & z^{2}\end{array}\right]+\cos (\theta)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+\sin (\theta)\left[\begin{array}{ccc}0 & -z & y \\ z & 0 & -x \\ -y & x & 0\end{array}\right]\right.$.

The matrix can also be written as

$$
\mathbf{R}_{\hat{\mathbf{r}} \theta}=\left[\begin{array}{ccc}
t x^{2}+c & t x y-s z & t x z+s y \\
t x y+s z & t y^{2}+c & t y z-s x \\
t x z-s y & t y z+s x & t z^{2}+c
\end{array}\right]
$$

where

$$
c=\cos (\theta), \quad s=\sin (\theta), \quad t=1-\cos (\theta)
$$

Rotation around the x-axis by angle θ_{x} [take $\left.(x, y, z)=(1,0,0)\right]$:

$$
\mathbf{R}_{x}=\mathbf{R}_{\mathbf{i} \theta_{x}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{x}\right) & -\sin \left(\theta_{x}\right) \\
0 & \sin \left(\theta_{x}\right) & \cos \left(\theta_{x}\right)
\end{array}\right]
$$

Rotation around the y-axis by angle θ_{y} [take $\left.(x, y, z)=(0,1,0)\right]$:

$$
\mathbf{R}_{y}=\mathbf{R}_{\mathbf{j} \theta_{y}}=\left[\begin{array}{ccc}
\cos \left(\theta_{y}\right) & 0 & \sin \left(\theta_{y}\right) \\
0 & 1 & 0 \\
-\sin \left(\theta_{y}\right) & 0 & \cos (\theta)
\end{array}\right] .
$$

Rotation around the z-axis by angle $\theta_{z}[$ take $(x, y, z)=(0,0,1)]$:

$$
\mathbf{R}_{z}=\mathbf{R}_{\mathbf{k} \theta_{z}}=\left[\begin{array}{ccc}
\cos \left(\theta_{z}\right) & -\sin \left(\theta_{z}\right) & 0 \\
\sin \left(\theta_{z}\right) & \cos \left(\theta_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

The matrix for rotation around the z-axis followed by rotation around the y-axis followed by rotation around the x-axis:

$$
\mathbf{R}_{x} \mathbf{R}_{y} \mathbf{R}_{z}=\left[\begin{array}{ccc}
C y C z & -C y S z & S y \\
S x S y C z+C x S z & -S x S y S z+C x C z & -S x C y \\
-C x S y C z+S x S z & C x S y S z+S x C z & C x C y
\end{array}\right]
$$

where

$$
\begin{array}{ll}
C x=\cos \left(\theta_{x}\right), & S x=\sin \left(\theta_{x}\right) \\
C y=\cos \left(\theta_{y}\right), & S y=\sin \left(\theta_{y}\right) \\
C z=\cos \left(\theta_{z}\right), & S z=\sin \left(\theta_{z}\right)
\end{array}
$$

