MCG - 10

Reflection across a plane through $O=(0,0,0)$ with normal vector $\hat{\mathbf{n}}$, that has length 1.

The 3×3 matrix of the reflection:

$$
\mathbf{I}-2(\hat{\mathbf{n}} \otimes \hat{\mathbf{n}})=\left[\begin{array}{lll}
1-2 n_{x}^{2} & -2 n_{x} n_{y} & -2 n_{x} n_{z} \\
-2 n_{x} n_{y} & 1-2 n_{y}^{2} & -2 n_{y} n_{z} \\
-2 n_{x} n_{z} & -2 n_{y} n_{z} & 1-2 n_{z}^{2}
\end{array}\right],
$$

where $\hat{\mathbf{n}}=\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]^{T}$.
The 4×4 affine matrix is

$$
\left[\begin{array}{cc}
\mathbf{I}-2(\hat{\mathbf{n}} \otimes \hat{\mathbf{n}}) & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right] .
$$

Reflection across O has 3×3 matrix $-\mathbf{I}$.

Orthogonal matrices.

An orthogonal matrix has determinant 1 or -1 .

En matrix A is an orthogonal matrix with determinant 1
if and only if
A is the matrix of a rotation.

The matrix of a reflection is an orthogonal matrix with determinant -1 .
But only a small fraction of all orthogonal matrices with determinant -1 are matrices of a reflection.

Shear.

$\hat{\mathrm{n}}$: a vector with length 1.
s: a vector orthogonal to $\hat{\mathrm{n}}$.
Shear plane: the plane through O with normal vector $\hat{\text { n }}$. Points on this plane are fixed.
An arbitrary vector \mathbf{v} is mapped to $\mathbf{v}+(\hat{\mathbf{n}} \cdot \mathbf{v}) \mathrm{s}$.
The 4×4 affine matrix for a shear is

$$
\begin{gathered}
H_{\hat{\mathbf{n}}, \mathbf{S}}=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{s} \otimes \hat{\mathbf{n}} & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right], \\
\mathbf{s} \otimes \hat{\mathbf{n}}=\left[\begin{array}{lll}
s_{x} n_{x} & s_{x} n_{y} & s_{x} n_{z} \\
s_{y} n_{x} & s_{y} n_{y} & s_{y} n_{z} \\
s_{z} n_{x} & s_{z} n_{y} & s_{z} n_{z}
\end{array}\right],
\end{gathered}
$$

where $\mathrm{s}=\left[\begin{array}{lll}s_{x} & s_{y} & s_{z}\end{array}\right]^{T}$ and $\hat{\mathbf{n}}=\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]^{T}$.

Affine transformation around an arbitrary point.

\mathbf{R} is the 3×3 matrix for a rotation around an axis through O or a shear or reflection around a plane through O.

The corresponding transformation around $C=O+\mathrm{x}$ has affine matrix

$$
\left[\begin{array}{cc}
\mathbf{I} & \mathbf{x} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{x} \\
\mathbf{0}^{T} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & (\mathbf{I}-\mathbf{R}) \mathbf{x} \\
\mathbf{0}^{T} & 1
\end{array}\right] .
$$

R: 3×3 matrix for a rotation.

Compute Euler angles $\theta_{x}, \theta_{y}, \theta_{z}$ so that

$$
\mathbf{R}=\mathbf{R}_{x} \mathbf{R}_{y} \mathbf{R}_{z}
$$

where
\mathbf{R}_{x} is rotation around the x-axis by angle θ_{x}
\mathbf{R}_{y} is rotation around the y-axis by angle θ_{y}
\mathbf{R}_{z} is rotation around the z-axis by angle θ_{z}.

The angle θ_{y} is determined by:

$$
\sin \theta_{y}=\mathbf{R}_{02}, \quad \cos \theta_{y}=\sqrt{1-\sin ^{2} \theta_{y}} .
$$

If $\cos \theta_{y} \neq 0$ then θ_{x} and θ_{z} are determined by

$$
\begin{array}{ll}
\sin \theta_{x}=-\frac{\mathbf{R}_{12}}{\cos \theta_{y}}, & \cos \theta_{x}=\frac{\mathbf{R}_{22}}{\cos \theta_{y}}, \\
\sin \theta_{z}=-\frac{\mathbf{R}_{01}}{\cos \theta_{y}}, & \cos \theta_{z}=\frac{\mathbf{R}_{00}}{\cos \theta_{y}} .
\end{array}
$$

If $\cos \theta_{y}=0$ then choose $\theta_{z}=0$ and θ_{x} is determined by

$$
\sin \theta_{x}=\mathbf{R}_{21}, \quad \cos \theta_{x}=\mathbf{R}_{11}
$$

