MCG - 11

 ${f R}$ is a 3 imes 3 rotation matrix.

Determine axis-angle representation of this rotation, i.e., a vector $\hat{\mathbf{r}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and an angle θ so that $\mathbf{R} = \mathbf{R}_{\hat{\mathbf{r}}\theta}$.

Compute trace(**R**) = $R_{00} + R_{11} + R_{22}$.

Then $\theta = \cos^{-1}(\frac{\operatorname{trace}(\mathbf{R})-1}{2})$. This gives $0^{\circ} \le \theta \le 180^{\circ}$. \cos^{-1} is also written as arccos. If $\theta = 0^{\circ}$: no rotation, $\hat{\mathbf{r}}$ is arbitrary (and R = I).

If $\theta \neq 0^{\circ}$ and $\theta \neq 180^{\circ}$:

$$\mathbf{r} = (R_{21} - R_{12}, R_{02} - R_{20}, R_{10} - R_{01}), \quad \hat{\mathbf{r}} = \frac{1}{||\mathbf{r}||}\mathbf{r}.$$

If $\theta = 180^{\circ}$: Determine the largest of the numbers R_{00}, R_{11}, R_{22} .

$$R_{00}$$
 largest: $x = \frac{1}{2}\sqrt{R_{00} - R_{11} - R_{22} + 1}, \quad y = \frac{R_{01}}{2x}, \quad z = \frac{R_{02}}{2x}.$

$$R_{11}$$
 largest: $y = \frac{1}{2}\sqrt{R_{11} - R_{00} - R_{22} + 1}, \quad x = \frac{R_{01}}{2y}, \quad z = \frac{R_{12}}{2y}.$

 R_{22} largest: $z = \frac{1}{2}\sqrt{R_{22} - R_{00} - R_{11} + 1}, \quad x = \frac{R_{02}}{2z}, \quad y = \frac{R_{12}}{2z}.$

A quaternion q is written as

$$q = (w, x, y, z),$$

or

$$q = w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

If we let $\mathbf{v} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ then we also write $q = (w, \mathbf{v}),$

or

$$q = w + \mathbf{v}.$$

Addition of quaternions:

 $(w_1, x_1, y_1, z_1) + (w_2, x_2, y_2, z_2) = (w_1 + w_2, x_1 + x_2, y_1 + y_2, z_1 + z_2).$ Scalar multiplication:

$$a(w, x, y, z) = (aw, ax, ay, az).$$

Magnitude of a quaternion q = (w, x, y, z):

$$||q|| = \sqrt{w^2 + x^2 + y^2 + z^2}.$$

If $q \neq (0, 0, 0, 0)$ then the quaternion

$$\frac{1}{||q||}q$$

has magnitude 1 and is said to be normalized.

Rotation around the axis $\hat{\mathbf{r}}$ with angle θ is represented by the quaternion

$$q = (\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right)\hat{\mathbf{r}}).$$

Or by

$$\left(\cos\left(\frac{360^{\circ}-\theta}{2}\right),\sin\left(\frac{360^{\circ}-\theta}{2}\right)(-\hat{\mathbf{r}})\right) = \left(-\cos\left(\frac{\theta}{2}\right),-\sin\left(\frac{\theta}{2}\right)\hat{\mathbf{r}}\right) = -q.$$

The matrix for the rotation, represented by the normalized quaternion q = (w, x, y, z):

$$\begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2wz & 2xz + 2wy \\ 2xy + 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx \\ 2xz - 2wy & 2yz + 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix}$$