## MCG-11

$\mathbf{R}$ is a $3 \times 3$ rotation matrix.
Determine axis-angle representation of this rotation, i.e., a vector $\hat{\mathbf{r}}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and an angle $\theta$ so that $\mathbf{R}=\mathbf{R}_{\hat{\mathbf{r}} \theta}$.

Compute trace $(\mathbf{R})=R_{00}+R_{11}+R_{22}$.
Then $\theta=\cos ^{-1}\left(\frac{\operatorname{trace}(\mathbf{R})-1}{2}\right)$. This gives $0^{\circ} \leq \theta \leq 180^{\circ}$. $\cos ^{-1}$ is also written as arccos.

If $\theta=0^{\circ}$ : no rotation, $\hat{\mathbf{r}}$ is arbitrary (and $R=I$ ).

If $\theta \neq 0^{\circ}$ and $\theta \neq 180^{\circ}$ :

$$
\mathrm{r}=\left(R_{21}-R_{12}, R_{02}-R_{20}, R_{10}-R_{01}\right), \quad \hat{\mathrm{r}}=\frac{1}{\|\mathrm{r}\|} \mathrm{r}
$$

If $\theta=180^{\circ}$ : Determine the largest of the numbers $R_{00}, R_{11}, R_{22}$.
$R_{00}$ largest: $\quad x=\frac{1}{2} \sqrt{R_{00}-R_{11}-R_{22}+1}, \quad y=\frac{R_{01}}{2 x}, \quad z=\frac{R_{02}}{2 x}$.
$R_{11}$ largest: $\quad y=\frac{1}{2} \sqrt{R_{11}-R_{00}-R_{22}+1}, \quad x=\frac{R_{01}}{2 y}, \quad z=\frac{R_{12}}{2 y}$.
$R_{22}$ largest: $\quad z=\frac{1}{2} \sqrt{R_{22}-R_{00}-R_{11}+1}, \quad x=\frac{R_{02}}{2 z}, \quad y=\frac{R_{12}}{2 z}$.

A quaternion $q$ is written as

$$
q=(w, x, y, z)
$$

or

$$
q=w+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

If we let $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ then we also write

$$
q=(w, \mathbf{v})
$$

or

$$
q=w+\mathbf{v}
$$

Addition of quaternions:
$\left(w_{1}, x_{1}, y_{1}, z_{1}\right)+\left(w_{2}, x_{2}, y_{2}, z_{2}\right)=\left(w_{1}+w_{2}, x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)$.
Scalar multiplication:

$$
a(w, x, y, z)=(a w, a x, a y, a z)
$$

Magnitude of a quaternion $q=(w, x, y, z)$ :

$$
\|q\|=\sqrt{w^{2}+x^{2}+y^{2}+z^{2}}
$$

If $q \neq(0,0,0,0)$ then the quaternion

$$
\frac{1}{\|q\|} q
$$

has magnitude 1 and is said to be normalized.

Rotation around the axis $\hat{\mathbf{r}}$ with angle $\theta$ is represented by the quaternion

$$
q=\left(\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \hat{\mathbf{r}}\right)
$$

Or by
$\left(\cos \left(\frac{360^{\circ}-\theta}{2}\right), \sin \left(\frac{360^{\circ}-\theta}{2}\right)(-\hat{\mathbf{r}})\right)=\left(-\cos \left(\frac{\theta}{2}\right),-\sin \left(\frac{\theta}{2}\right) \hat{\mathbf{r}}\right)=-q$.
The matrix for the rotation, represented by the normalized quaternion $q=(w, x, y, z)$ :

$$
\left[\begin{array}{ccc}
1-2 y^{2}-2 z^{2} & 2 x y-2 w z & 2 x z+2 w y \\
2 x y+2 w z & 1-2 x^{2}-2 z^{2} & 2 y z-2 w x \\
2 x z-2 w y & 2 y z+2 w x & 1-2 x^{2}-2 y^{2}
\end{array}\right]
$$

