MCG - 12

Multiplication of quaternions:
When computing

$$
\left(w_{2}+x_{2} \mathbf{i}+y_{2} \mathbf{j}+z_{2} \mathbf{k}\right)\left(w_{1}+x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}\right)
$$

we may use the following:

$$
\begin{gathered}
\mathbf{i} \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \mathbf{i}=-\mathbf{k}, \quad \mathbf{j k}=\mathbf{i}, \quad \mathbf{k j}=-\mathbf{i}, \quad \mathbf{k i}=\mathbf{j}, \quad \mathbf{i} \mathbf{k}=-\mathbf{j} \\
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathrm{k}^{2}=-1
\end{gathered}
$$

We can also compute the product as

$$
\left(w_{2}, \mathbf{v}_{2}\right)\left(w_{1}, \mathbf{v}_{1}\right)=\left(w_{2} w_{1}-\mathbf{v}_{2} \cdot \mathbf{v}_{1}, w_{1} \mathbf{v}_{2}+w_{2} \mathbf{v}_{1}+\mathbf{v}_{2} \times \mathbf{v}_{1}\right),
$$

and in particular

$$
\left(0, \mathbf{v}_{2}\right)\left(0, \mathbf{v}_{1}\right)=\left(-\mathbf{v}_{2} \cdot \mathbf{v}_{1}, \mathbf{v}_{2} \times \mathbf{v}_{1}\right)
$$

All algebraic rules except the commutative law are valid. Usually:

$$
q_{1} q_{2} \neq q_{2} q_{1} .
$$

Furthermore

$$
\left\|q_{1} q_{2}\right\|=\left\|q_{1}\right\| \cdot\left\|q_{2}\right\| .
$$

Identity:

$$
(w, \mathbf{v})(1,0)=(1,0)(w, \mathbf{v})=(w, \mathbf{v})
$$

Inverse: if $q=(w, \mathbf{v}) \neq(0,0)$ then q has inverse

$$
q^{-1}=\frac{1}{\|q\|^{2}}(w,-\mathbf{v})
$$

If q is normalized $(\|q\|=1)$ then

$$
q^{-1}=(w,-\mathbf{v})
$$

The inverse quaternion satifies:

$$
q q^{-1}=q^{-1} q=(1,0)
$$

Rotation by angle θ around the axis $\hat{\mathbf{r}}$ is represented by the quaternion

$$
q=\left(\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \hat{\mathbf{r}}\right)
$$

This quaternion satisfies $\|q\|=1$.
If \mathbf{p} is a vector in 3D-space then let $R_{q}(\mathbf{p})$ be the vector that \mathbf{p} is rotated into.

We think of p as a quaternion, ($0, p$), and then we can compute $R_{q}(\mathbf{p})$ as follows

$$
R_{q}(\mathbf{p})=q \mathbf{p} q^{-1}
$$

If $q=(w, \mathbf{v})$ then this can also be computed as

$$
R_{q}(\mathbf{p})=\left(2 w^{2}-1\right) \mathbf{p}+2(\mathbf{v} \cdot \mathbf{p}) \mathbf{v}+2 w(\mathbf{v} \times \mathbf{p})
$$

Converting from matrix representation of rotation to quaternion representation. (page 191)
R : a rotation matrix.

Compute:

$\operatorname{trace}(R)=R_{00}+R_{11}+R_{22}$.
$\mathrm{r}=\left(R_{21}-R_{12}, R_{02}-R_{20}, R_{10}-R_{01}\right)$.
$\begin{aligned} q= & (\operatorname{trace}(R)+1, \mathbf{r})= \\ & \left(R_{00}+R_{11}+R_{22}+1, R_{21}-R_{12}, R_{02}-R_{20}, R_{10}-R_{01}\right) .\end{aligned}$
Then the rotationen is represented by the normalized quaternion

$$
\frac{1}{\|q\|} q .
$$

