MCG - 13

Converting from rotation matrix to normalized quaternion:

R: a 3×3 rotation matrix.

Compute:

 $q = (R_{00} + R_{11} + R_{22} + 1, R_{21} - R_{12}, R_{02} - R_{20}, R_{10} - R_{01}).$ The rotation is then represented by the normalized quaternion

$$\frac{1}{||q||}q.$$

Alternative method (if trace(R) < 0): Find the largest of the numbers R_{00}, R_{11}, R_{22} .

 R_{00} largest: normalize the quaternionen $(R_{21} - R_{12}, R_{00} - R_{11} - R_{22} + 1, R_{01} + R_{10}, R_{02} + R_{20}).$

 R_{11} largest: normalize the quaternionen

$$(R_{02} - R_{20}, R_{01} + R_{10}, R_{11} - R_{00} - R_{22} + 1, R_{12} + R_{21}).$$

 R_{22} largest: normalize the quaternionen

$$(R_{10} - R_{01}, R_{02} + R_{20}, R_{21} + R_{12}, R_{22} - R_{00} - R_{11} + 1).$$

If rotation around the axis r_1 with angle θ_1 is represented by the quaternion q_1 and rotation around the axis r_2 with angle θ_2 is represented by

the quaternion q_2

then the composed rotation consisting of rotation around the axis \mathbf{r}_1 with angle θ_1 followed by

rotation around the axis \mathbf{r}_2 with angle θ_2 is represented by the quaternion q_2q_1 .

Linear interpolation:

Find a parameterized line Q(t), satisfying that $Q(t_i) = P_i$ and $Q(t_{i+1}) = P_{i+1}$, where P_i and P_{i+1} are points.

Solution

$$Q(t) = P_i + \frac{t - t_i}{t_{i+1} - t_i} (P_{i+1} - P_i),$$

when $t_i \leq t \leq t_{i+1}$.

Hermite curves:

Determine a curve Q(t) satisfying that $Q(0) = P_0$, $Q(1) = P_1$, $Q'(0) = P'_0$ and $Q'(1) = P'_1$, where P_0 and P_1 are points and P'_0 and P'_1 are vectors.

Let $Q(t) = at^3 + bt^2 + ct + D$, where a, b, c are vectors and D is a point. Then $Q'(t) = 3at^2 + 2bt + c$.

Requirement:

$$Q(0) = D = P_0, \quad Q(1) = \mathbf{a} + \mathbf{b} + \mathbf{c} + D = P_1.$$

 $Q'(0) = \mathbf{c} = \mathbf{P}'_0, \quad Q'(1) = 3\mathbf{a} + 2\mathbf{b} + \mathbf{c} = \mathbf{P}'_1.$

Solution:

a = 2(
$$P_0 - P_1$$
) + P'_0 + P'_1, b = 3($P_1 - P_0$) - 2P'_0 - P'_1,
c = P'_0 and $D = P_0$.

The Hermite curve satisfying the above condition can also be written as

$$Q(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P'_0 \\ P'_1 \end{bmatrix} = UMG,$$

where the 'vector' G is in fact a 4×3 matrix.