MCG - 13

Converting from rotation matrix to normalized quaternion:
R : a 3×3 rotation matrix.

Compute:

$$
q=\left(R_{00}+R_{11}+R_{22}+1, R_{21}-R_{12}, R_{02}-R_{20}, R_{10}-R_{01}\right)
$$

The rotation is then represented by the normalized quaternion

$$
\frac{1}{\|q\|} q .
$$

Alternative method (if trace $(R)<0$):
Find the largest of the numbers R_{00}, R_{11}, R_{22}.
R_{00} largest: normalize the quaternionen

$$
\left(R_{21}-R_{12}, R_{00}-R_{11}-R_{22}+1, R_{01}+R_{10}, R_{02}+R_{20}\right)
$$

R_{11} largest: normalize the quaternionen

$$
\left(R_{02}-R_{20}, R_{01}+R_{10}, R_{11}-R_{00}-R_{22}+1, R_{12}+R_{21}\right)
$$

R_{22} largest: normalize the quaternionen

$$
\left(R_{10}-R_{01}, R_{02}+R_{20}, R_{21}+R_{12}, R_{22}-R_{00}-R_{11}+1\right)
$$

If rotation around the axis \mathbf{r}_{1} with angle θ_{1} is represented by the quaternion q_{1}
and rotation around the axis r_{2} with angle θ_{2} is represented by the quaternion q_{2}
then the composed rotation consisting of rotation around the axis \mathbf{r}_{1} with angle θ_{1}
followed by
rotation around the axis \mathbf{r}_{2} with angle θ_{2}
is represented by the quaternion $q_{2} q_{1}$.

Linear interpolation:

Find a parameterized line $Q(t)$, satisfying that $Q\left(t_{i}\right)=P_{i}$ and $Q\left(t_{i+1}\right)=P_{i+1}$, where P_{i} and P_{i+1} are points.

Solution

$$
Q(t)=P_{i}+\frac{t-t_{i}}{t_{i+1}-t_{i}}\left(P_{i+1}-P_{i}\right),
$$

when $t_{i} \leq t \leq t_{i+1}$.

Hermite curves:

Determine a curve $Q(t)$ satisfying that $Q(0)=P_{0}, Q(1)=P_{1}$, $\mathrm{Q}^{\prime}(0)=\mathrm{P}_{0}^{\prime}$ and $\mathrm{Q}^{\prime}(1)=\mathrm{P}_{1}^{\prime}$, where P_{0} and P_{1} are points and P_{0}^{\prime} and \mathbf{P}_{1}^{\prime} are vectors.

Let $Q(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+D$, where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors and D is a point.
Then $\mathbf{Q}^{\prime}(t)=3 \mathbf{a} t^{2}+2 \mathbf{b} t+\mathbf{c}$.
Requirement:

$$
\begin{array}{ll}
Q(0)=D=P_{0}, & Q(1)=\mathrm{a}+\mathrm{b}+\mathbf{c}+D=P_{1} \\
\mathbf{Q}^{\prime}(0)=\mathrm{c}=\mathrm{P}_{0}^{\prime}, & \mathbf{Q}^{\prime}(1)=3 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=\mathrm{P}_{1}^{\prime}
\end{array}
$$

Solution:
$\mathrm{a}=2\left(P_{0}-P_{1}\right)+\mathrm{P}_{0}^{\prime}+\mathrm{P}_{1}^{\prime}, \mathrm{b}=3\left(P_{1}-P_{0}\right)-2 \mathrm{P}_{0}^{\prime}-\mathrm{P}_{1}^{\prime}$,
$\mathbf{c}=\mathrm{P}_{0}^{\prime}$ and $D=P_{0}$.

The Hermite curve satisfying the above condition can also be written as

$$
Q(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
P_{1} \\
\mathbf{P}_{0}^{\prime} \\
\mathbf{P}_{1}^{\prime}
\end{array}\right]=U M G
$$

where the 'vector' G is in fact a 4×3 matrix.

