MCG - 14

Piecewise Hermite curves.

$P_{0}, P_{1}, \ldots, P_{n}$: points.
We want to find Hermite curves
$Q_{0}(u), Q_{1}(u), \ldots, Q_{n-1}(u)$,
so that each $Q_{i}(u)$ is a curve moving from P_{i} to P_{i+1} when u increases from 0 to 1:
$Q_{i}(0)=P_{i}$ and $Q_{i}(1)=P_{i+1}$ for all $i=0,1, \ldots, n-1$
In order to compute a unique Hermite $Q_{0}(u)$ we need to choose vectors P_{0}^{\prime} and P_{1}^{\prime} and require that $\mathrm{Q}^{\prime}(0)=\mathrm{P}_{0}^{\prime}$ and $\mathrm{Q}^{\prime}(1)=\mathrm{P}_{1}^{\prime}$ and similar for the other curves.

We may also use an automatic way to generate these conditions.

Automatic generation of Hermite curves.

A way to generate a piecewise Hermite curve through the points $P_{0}, P_{1}, \ldots, P_{n}$. The following conditions must be satisfied:

- $Q_{i}(1)=Q_{i+1}(0)=P_{i}$ for all $i=0,1, \ldots, n-2$ (previous slide)
- $\mathbf{Q}_{i}^{\prime}(1)=\mathbf{Q}_{i+1}^{\prime}(0)$ for all $i=0,1, \ldots, n-2$
Q_{i+1} starts with the same velocity as Q_{i} has in the end.
- $\mathbf{Q}_{i}^{\prime \prime}(1)=\mathbf{Q}_{i+1}^{\prime \prime}(0)$ for alle $i=0,1, \ldots, n-2$ Q_{i+1} starts with the same acceleration as Q_{i} has in the end.
- $\mathrm{Q}_{0}^{\prime \prime}(0)=0$ og $\mathrm{Q}_{n-1}^{\prime \prime}(1)=0$ (natural end conditions). No acceleration in the beginning and at the end.

In order to determine $\mathbf{P}_{0}^{\prime}=\mathrm{Q}_{0}^{\prime}(0), \mathbf{P}_{1}^{\prime}=\mathrm{Q}_{1}^{\prime}(0)=\mathrm{Q}_{0}^{\prime}(1), \ldots, \mathbf{P}_{n-1}^{\prime}=$ $\mathrm{Q}_{n-1}^{\prime}(0)=\mathrm{Q}_{n-2}^{\prime}(1), \mathbf{P}_{n}^{\prime}=\mathrm{Q}_{n-1}^{\prime}(1)$ we derive the following system of equations from the equations on the previous slide (the matrix has size $(n+1) \times(n+1)$):

$$
\left[\begin{array}{ccccccc}
2 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 4 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 4 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 4 & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 & 4 & 1 \\
0 & 0 & \cdots & 0 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
\mathbf{P}_{0}^{\prime} \\
\mathbf{P}_{1}^{\prime} \\
\mathbf{P}_{2}^{\prime} \\
\vdots \\
\mathbf{P}_{n-2}^{\prime} \\
\mathbf{P}_{n-2}^{\prime} \\
\mathbf{P}_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
3\left(P_{1}-P_{0}\right) \\
3\left(P_{2}-P_{0}\right) \\
3\left(P_{3}-P_{1}\right) \\
\vdots \\
3\left(P_{n-1}-P_{n-3}\right) \\
3\left(P_{n}-P_{n-2}\right) \\
3\left(P_{n}-P_{n-1}\right)
\end{array}\right] .
$$

When $\mathrm{P}_{0}^{\prime}, \mathrm{P}_{1}^{\prime}, \ldots, \mathrm{P}_{n}^{\prime}$ have been determined from the above equtions we can compute each Q_{i} as follows:

$$
Q_{i}(u)=U M G,
$$

where

$$
U=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right], \quad M=\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \quad G=\left[\begin{array}{c}
P_{i} \\
P_{i+1} \\
\mathbf{P}_{i}^{\prime} \\
\mathbf{P}_{i+1}^{\prime}
\end{array}\right] .
$$

We have the following general formula:

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}, \quad \text { hvor } \quad\binom{n}{i}=\frac{n!}{i!(n-i)!},
$$

and $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$.

In particular $(x+y)^{2}=x^{2}+2 x y+y^{2}$ and

$$
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} .
$$

If we let $x=1-u$ and $y=u$ we get

$$
1=(1-u)^{3}+3(1-u)^{2} u+3(1-u) u^{2}+u^{3} .
$$

Bézier kurver:

$P_{0}, P_{1}, \ldots, P_{n}$ are points, called control points.
The Bézier curve is then

$$
Q(u)=\sum_{i=0}^{n}\binom{n}{i}(1-u)^{n-i} u^{i} P_{i}
$$

It satisfies $Q(0)=P_{0}$ and $Q(1)=P_{n}$.

The most interesting case is $n=3$:

$$
Q(u)=(1-u)^{3} P_{0}+3 u(1-u)^{2} P_{1}+3 u^{2}(1-u) P_{2}+u^{3} P_{3}
$$

In the case $n=3$ the Bézier curve can also be written as

$$
Q(u)=J_{3,0}(u) P_{0}+J_{3,1}(u) P_{1}+J_{3,2}(u) P_{2}+J_{3,3}(u) P_{3}
$$

where

$$
\begin{aligned}
& J_{3,0}(u)=(1-u)^{3}=1-3 u+3 u^{2}-u^{3} \\
& J_{3,1}(u)=3 u(1-u)^{2}=3 u-6 u^{2}+3 u^{3} \\
& J_{3,2}(u)=3 u^{2}(1-u)=3 u^{2}-3 u^{3} \\
& J_{3,3}(u)=u^{3}
\end{aligned}
$$

As $J_{3,0}(u)+J_{3,1}(u)+J_{3,2}(u)+J_{3,3}(u)=1 Q(u)$ is an affine combination of $P_{0}, P_{1}, P_{2}, P_{3}$.

Furthermore $J_{3,0}(u) \geq 0, J_{3,1}(u) \geq 0, J_{3,2}(u) \geq 0$ and $J_{3,3}(u) \geq$ 0 . Thus $Q(u)$ is a convex combination of $P_{0}, P_{1}, P_{2}, P_{3}$ and the curve is contained in the convex hull of $P_{0}, P_{1}, P_{2}, P_{3}$.

The Bézier curve with $n=3$ satifies $\mathbf{Q}^{\prime}(0)=3\left(P_{1}-P_{0}\right)$ and $\mathrm{Q}^{\prime}(1)=3\left(P_{3}-P_{2}\right)$ and the curve is the same as a Hermite curve

$$
Q(u)=U M G
$$

where
$U=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right], \quad M=\left[\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right], \quad G=\left[\begin{array}{c}P_{0} \\ P_{3} \\ 3\left(P_{1}-P_{0}\right) \\ 3\left(P_{3}-P_{2}\right)\end{array}\right]$.

