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Abstract

We give a short introduction to the pseudospectra of matrices and operators. We

also review a number of results concerning matrices and bounded linear operators

on a Hilbert space, and in particular results related to spectra. A few applications of

the results are discussed.
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1 Introduction

We give an introduction to the pseudospectra of matrices and operators, and give a

few applications. Since these notes are intended for a wide audience, some elementary

concepts are reviewed. We also note that one can understand the main points concerning

pseudospectra already in the finite dimensional case. So the reader not familiar with

operators on a separable Hilbert space can assume that the space is finite dimensional.

Let us briefly outline the contents of these lecture notes. In Section 2 we recall some

results from linear algebra, mainly to fix notation, and to recall some results that may

not be included in standard courses on linear algebra. In Section 4 we state some results

from the theory of bounded operators on a Hilbert space. We have decided to limit the

exposition to the case of bounded operators. If some readers are unfamiliar with these

results, they can always assume that the Hilbert space is finite dimensional. In Section 5

we finally define the pseudospectra and give a number of results concerning equivalent

definitions and simple properties. Section 6 is devoted to some simple examples of

pseudospectra. Section 7 contains a few results on perturbation theory for eigenvalues.

We also give an application to the location of pseudospectra. In Section 8 we give some

examples of applications to continuous time linear systems, and in Section 9 we give

some applications to linear discrete time systems. Section 10 contains further matrix

examples.

The general reference to results on spectra and pseudospectra is the book [TE05].

There are also many results on pseudospectra in the book [Dav07].

A number of exercises have been included in the text. The reader should try to

solve these. The reader should also experiment on the computer using either Maple or

MATLAB, or preferably both.

2 Results from linear algebra

In this section we recall some results from linear algebra that are needed later on. We

assume that the readers can find most of the results in their own textbooks on linear

algebra. For some of the less familiar results we provide references. My own favorite

books dealing with linear algebra are [Str06] and [Kat95, Chapters I and II]. The first

book is elementary, whereas the second book is a research monograph. It contains in

the first two chapters a complete treatment of the eigenvalue problem and perturbation

of eigenvalues, in the finite dimensional case, and is the definitive reference for these

results.

We should note that Section 4 also contains a number of definitions and results that
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are important for matrices. The results in this section are mainly those that do not

generalize in an easy manner to infinite dimensions.

To unify the notation we denote a finite dimensional vector space over the complex

numbers by H . Usually we identify it with a coordinate space Cn. The linear operators

onH are denoted by B(H ) and are usually identified with the n×nmatrices over C. We

deal exclusively with vector spaces over the complex numbers, since we are interested

in spectral theory.

The spectrum of a linear operator A ∈ B(H ) is denoted by σ(A), and consists of

the eigenvalues of A. The eigenvalues are the roots of the characteristic polynomial

p(λ) = det(A − λI). Here I denotes the identity operator. Assume λ0 ∈ σ(A). The

multiplicity of λ0 as a root of p(λ) is called the algebraic multiplicity of λ0, and is

denoted by ma(λ0). The dimension of the eigenspace

mg(λ0) = dim{u ∈H |Au = λ0u} (2.1)

is called the geometric multiplicity of λ0. We havemg(λ0) ≤ma(λ0) for each eigenvalue.

We recall the following definition and theorem. We state the result in the matrix case.

Definition 2.1. Let A be a complex n × n matrix. A is said to be diagonalizable, if there

exist a diagonal matrix D and an invertible matrix V such that

A = VDV−1. (2.2)

The columns in V are eigenvectors of A. The following result states that a matrix is

diagonalizable, if and only if it has ‘enough’ linearly independent eigenvectors.

Theorem 2.2. Let A be a complex n × n matrix. Let σ(A) = {λ1, λ2, . . . , λm}, λi ≠ λj,
i ≠ j. A is diagonalizable, if and only if mg(λ1)+ . . .+mg(λm) = n.

As a consequence of this result, A is diagonalizable, if and only if we havemg(λj) =
ma(λj) for j = 1,2, . . . ,m. Conversely, if there exists a j such that mg(λj) < ma(λj),

then A is not diagonalizable.

Not all linear operators on a finite dimensional vector space are diagonalizable. For

example the matrix

N =
[

0 1

0 0

]

has zero as the only eigenvalue, withma(0) = 2 andmg(0) = 1. This matrix is nilpotent,

with N2 = 0.

A general result states that all non-diagonalizable operators on a finite dimensional

vector space have a nontrivial nilpotent component. This is the so-called Jordan canon-

ical form of A ∈ B(H ). We recall the result, using the operator language. A proof can

be found in [Kat95, Chapter I §5]. It is based on complex analysis and reduces the prob-

lem to partial fraction decomposition. An elementary linear algebra based proof can be

found in [Str06, Appendix B].
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Let A ∈ B(H ), with σ(A) = {λ1, λ2, . . . , λm}, λi ≠ λj, i ≠ j. The resolvent is given by

RA(z) = (A− zI)−1, z ∈ C \ σ(A). (2.3)

Let λk be one of the eigenvalues, and let Γk denote a small circle enclosing λk, and the

other eigenvalues lying outside this circle. The Riesz projection for this eigenvalue is

given by

Pk = − 1

2πi

∫

Γk

RA(z)dz. (2.4)

These projections have the following properties for k, l = 1,2, . . . ,m.

PkPl = δklPk,
m∑

k=1

Pk = I, PkA = APk. (2.5)

Here δkl denotes the Kronecker delta, viz.

δkl =



1 if k = l,
0 if k ≠ l.

We have ma(λk) = rankPk. One can show that APk = λkPk +Nk, where Nk is nilpotent,

with N
ma(λk)
k = 0. Define

S =
m∑

k=1

λkPk, N =
m∑

k=1

Nk.

Theorem 2.3 (Jordan canonical form). Let S and N be the operators defined above. Then

S is diagonalizable and N is nilpotent. They satisfy SN = NS. We have

A = S +N. (2.6)

If S′ is diagonalizable, N ′ nilpotent, S′N ′ = N ′S′, and A = S′+N ′, then S′ = S andN ′ = N ,

i.e. uniqueness holds.

The matrix version of this result will be presented and discussed in Section 3.

The definition of the pseudospectrum to be given below depends on the choice of a

norm on H . Let H = Cn. One family of norms often used are the p-norms. They are

given by

‖u‖p =
( n∑

k=1

|uk|p
)1/p

, 1 ≤ p <∞, (2.7)

‖u‖∞ = max
1≤k≤n

|uk|. (2.8)

The ‖u‖2 is the only norm in the family coming from an inner product, and is the

usual Euclidean norm. These norms are equivalent in the sense that they give the same

topology on H . Equivalence of the norms ‖·‖ and ‖·‖′ means that there exist constants

c and C , such that

c‖u‖ ≤ ‖u‖′ ≤ C‖u‖ for all u ∈H .
These constants usually depend on the dimension of H .
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Exercise 2.4. Find constants that show that the three norms ‖·‖1, ‖·‖2 and ‖·‖∞ on Cn

are equivalent. How do they depend on the dimension?

We will now assume that H is equipped with an inner product, denoted by 〈·, ·〉.
Usually we identify with Cn, and take

〈u,v〉 =
n∑

k=1

ukvk.

Note that our inner product is linear in the second variable. We assume that the reader

is familiar with the concepts of orthogonality and orthonormal bases. We also assume

that the reader is familiar with orthogonal projections.

Convention. In the sequel we will assume that the norm ‖·‖ is the one coming from

this inner product, i.e.

‖u‖ = ‖u‖2 =
√
〈u,u〉.

Given the inner product, the adjoint to A ∈ B(H ) is the unique linear operator A∗

satisfying 〈u,Av〉 = 〈A∗u,v〉 for all u,v ∈H . We can now state the spectral theorem.

Definition 2.5. An operator A on an inner product space H is said to be normal, if

A∗A = AA∗. An operator with A = A∗ is called a self-adjoint operator.

Theorem 2.6 (Spectral Theorem). Assume that A is normal. We write σ(A) = {λ1, λ2,

. . . , λm}, λi ≠ λj , i ≠ j. Then there exist orthogonal projections Pk, k = 1,2, . . . ,m,

satisfying

PkPl = δklPk,
m∑

k=1

Pk = I, PkA = APk,

such that

A =
m∑

k=1

λkPk.

Comparing the spectral theorem and the Jordan canonical form, then we see that for

a normal operator the nilpotent part is identically zero, and that the projections can be

chosen to be orthogonal.

The spectral theorem is often stated as the existence of a unitary transform U diag-

onalizing a matrix A. If A = UDU−1, then the columns in U constitute an orthonormal

basis for H consisting of eigenvectors for A. Further results concerning such similarity

transforms will be found in Section 3.

When H is an inner product space, we can define the singular values of A.

Definition 2.7. Let A ∈ B(H ). The singular values of A are the (non-negative) square

roots of the eigenvalues of A∗A.
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The operator norm is given by ‖A‖ = sup‖u‖=1‖Au‖. We have that ‖A‖ = smax(A),

the largest singular value of A. This follows from the fact that ‖A∗A‖ = ‖A‖2 and the

spectral theorem. If A is invertible, then ‖A−1‖ = (smin(A))−1. Here smin(A) denotes the

smallest singular value of A.

Exercise 2.8. Prove the statements above concerning the connections between operator

norms and singular values.

The condition number of an invertible matrix is defined as

cond(A) = ‖A‖ · ‖A−1‖. (2.9)

It follows that

cond(A) = smax(A)

smin(A)
.

The singular values give techniques for computing norm and condition number numeri-

cally, since eigenvalues of self-adjoint matrices can be computed efficiently and numeri-

cally stably, usually by iteration methods.

In practical computations a number of different norms on matrices are used. Thus

when computing the norm of a matrix in for example MATLAB or Maple, one should be

careful to get the right norm. In particular, one should remember that the default call

of norm in MATLAB gives the operator norm in the ‖·‖2-sense, whereas in Maple it gives

the operator norm in the ‖·‖∞-sense.

Let us briefly recall the terminology used in MATLAB. Let X = [xkl] be an n×nmatrix.

The command norm(X) computes the largest singular value of X and is thus equal to

the operator norm of X (with the norm ‖·‖2). We have

norm(X,1) = max{
n∑

k=1

|xkl| | l = 1, . . . , n},

and

norm(X,inf) = max{
n∑

l=1

|xkl| |k = 1, . . . , n}.

Note the interchange of the role of rows and columns in the two definitions. One should

note that norm(X,1) is the operator norm, if Cn is equipped with ‖·‖1, and norm(X,inf)

is the operator norm, if Cn is equipped with ‖·‖∞. Thus for consistency one can also use

the call norm(X,2) to compute norm(X).

Finally there is the Frobenius norm. It is defined as

norm(X,’fro’) =
√√√√

n∑

k=1

n∑

l=1

|xkl|2.

Thus this is the ‖·‖2 norm of X considered as a vector in Cn
2

.

The same norms can be computed in Maple using the command Norm from the

LinearAlgebra package, see the help pages in Maple, and remember that the default is

different from the one in MATLAB, as mentioned above.
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3 Some matrix results. Similarity transforms

In this section we supplement the discussion in the previous section, focusing on an

n×n matrix A with complex entries. The following concept is important.

Definition 3.1. Let A, B, and S be n×nmatrices. Assume that S is invertible. If B = S−1AS,

then the matrices A and B are said to be similar. S is called a similarity transform.

Note that without some kind of normalization a similarity transform is never unique.

If S is a similarity transform implementing the similarity B = S−1AS, then cS for any

c ∈ C, c ≠ 0, is also a similarity transform implementing the same similarity.

Assume that λ is an eigenvalue of A with an eigenvector v, then λ is an eigenvalue of

B, and S−1v a corresponding eigenvector. Thus the two matrices A and B have the same

eigenvalues with the same geometric multiplicities.

Thus if A is a linear operator on a finite dimensional vector space H , and we fix

a basis in H , we get a matrix A representing this linear operator. Since one basis is

mapped onto another basis by an invertible matrix S, any two matrix representations of

an operator are similar. The point of these observations is that the eigenvalues of A are

independent of the choice of basis and hence matrix representation, but the eigenvectors

are not independent of the choice of basis.

If A is normal, then there exists an orthonormal basis consisting of eigenvectors. If

we take U to be the matrix whose columns are these eigenvectors, then this matrix is

unitary. If A is any matrix representation of A, then Λ = U∗AU is a diagonal matrix with

the eigenvalues on the diagonal. This is often the form in which the spectral theorem

(Theorem 2.6) is given in elementary linear algebra texts.

Let us see what happens, if a matrix A is diagonalizable, but not normal. Then we

can find an invertible matrix V , such that

Λ = V−1AV, (3.1)

and the columns still consist of eigenvectors of A, see also Theorem 2.2. Now since A is

not normal, the eigenvectors of the matrix A may be a very ill conditioned basis of H ,

whereas the eigenvectors of the matrix Λ form an orthonormal basis, viz. the canonical

basis in Cn. The kind of problem that is encountered can be understood by computing

the condition number cond(V).

Let us now give an example, using the Toeplitz matrix from Section 10.1. We recall

a few details here, for the reader’s convenience. A is the n×n Toeplitz matrix with the
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following structure.

A =




0 1 0 · · · 0 0
1

4
0 1 · · · 0 0

0
1

4
0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 1

4
0




. (3.2)

Let Q denote the diagonal n×n matrix with entries 2,4,8, . . . ,2n on the diagonal. Then

one can verify that

QAQ−1 = B, (3.3)

where

B =




0
1

2
0 · · · 0 0

1

2
0

1

2
· · · 0 0

0
1

2
0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0
1

2

0 0 0 · · · 1

2
0




. (3.4)

The matrix B is symmetric, and its eigenvalues can be found to be

λk = cos
( kπ
n+ 1

)
, k = 1, . . . , n. (3.5)

Thus this matrix can be diagonalized using a unitary matrix U . Therefore the orig-

inal matrix A is diagonalized by V = Q−1U , using the conventions in (3.1). Since

multiplication by a unitary matrix leaves the condition number unchanged, we have

cond(V) = cond(Q). The condition number of Q given above is cond(Q) = 2n−1. Thus

for n = 25 the condition number cond(V) is approximately 1.6777 107, for n = 50 it is

5.6295 1014, and for n = 100 it is 6.3383 1029. From the explicit expression it is clear

that it grows exponentially with n.

Exercise 3.2. Verify all the statements above concerning the matrix A given in (3.2).

Try to find the diagonalizing matrix V by direct numerical computation, compute its

condition number, and compare with the exact values given above, for n = 25,50,100.

What are your conclusions?

Let vj denote the jth eigenvector of A. Then ej = V−1vj is just the jth canonical basis

vector in Cn, i.e. the vector with a one in entry j and all other entries equal to zero. A

consequence of the large condition number of the matrix V is reflected in the fact that

the basis consisting of the vj vectors is a poor basis for Cn.

Exercise 3.3. Verify the above statement by plotting the 25 eigenvectors. You can use

either Maple or MATLAB. Note that all vectors are large for small indices and very small

for large indices.
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Now let us recall one of the important results, which is valid for all matrices. It is

what is usually called Schur’s Lemma.

Theorem 3.4 (Schur’s Lemma). Let A be an n × n matrix. Then there exists a unitary

matrix U such that U−1AU = Aupper, where Aupper is an upper triangular matrix.

We return to the Jordan canonical form given in Theorem 2.3. We present the matrix

form of this result. Given an arbitrary n×n matrix A, there exist an invertible matrix V

and a matrix J with a particular structure, such that

J = V−1AV. (3.6)

Let us describe the structure of V and J in some detail. Assume that λj is an eigenvalue

of A. Recall thatma(λj) denotes the algebraic multiplicity of the eigenvalue, andmg(λj)

denotes its geometric multiplicity, i.e. the number of linearly independent eigenvectors.

Then there exist an n×ma(λj) matrix Vj and anma(λj)×ma(λj) matrix Jj , such that

AVj = VjJj . (3.7)

The matrix Vj has linearly independent columns, and the matrix Jj is a block diagonal

matrix, i.e. Jj = diag(Jj,1, . . . , Jj,mg(λj)). Each block has the structure

Jj,ℓ =




λj 1 0 · · · 0 0

0 λj 1 · · · 0 0

0 0 λj · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λj 1

0 0 0 · · · 0 λj




, ℓ = 1,2, . . . ,mg(λj). (3.8)

The number of rows and columns in each block depends on the particular matrix A.

The sum of the row dimensions (and column dimensions) must equal ma(λj) in order

to get a matrix Jj as described above. Since we have mg(λj) blocks, the total number

of ones above the diagonal is exactly ma(λj) −mg(λj). The columns of Vj consist of

what is sometimes called generalized eigenvectors of A corresponding to the eigenvalue

λj . This means that the subspace spanned by the columns of Vj, denoted by Vj, can be

described as

Vj = {v | (A− λjI)kv = 0 for some k}. (3.9)

Now the Jordan form (3.6) follows by forming the matrix as the columns in V1, fol-

lowed by the columns in V2 and so on. The matrix J has the block diagonal structure

J = diag(J1, . . . , Jm), where m is the number of distinct eigenvalues of A.

A few examples may clarify the above definitions. Consider first the matrix with just

one eigenvalue.

J =




3 0 0 0

0 3 0 0

0 0 3 1

0 0 0 3



.
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For this particular matrix ma(3) = 4 and mg(3) = 3. We have J = J1 and J1 =
diag(J1,1, J1,2, J1,3), where

J1,1 =
[
3
]
, J1,2 =

[
3
]
, and J1,3 =

[
3 1

0 3

]
.

As another example we take the Jordan matrix

J =




2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 4 1 0 0

0 0 0 0 4 0 0

0 0 0 0 0 6 0

0 0 0 0 0 0 6




.

This matrix has the eigenvalues 2,4,6. Eigenvalue 2 has algebraic multiplicity 2 and geo-

metric multiplicity 1. Eigenvalue 4 has algebraic multiplicity 3 and geometric multiplicity

2. For eigenvalue 6 the algebraic and geometric multiplicities are both 2.

We have in this case J = diag(J1, J2, J3), where

J1 =
[

2 1

0 2

]
,




4 0 0

0 4 1

0 0 4


 , and J3 =

[
6 0

0 6

]
.

We have J1 = J1,1, J2 = diag(J2,1, J2,2) and J3 = diag(J3,1, J3,2), where

J1,1 =
[

2 1

0 2

]
, J2,1 =

[
4
]
, J2,2 =

[
4 1

0 4

]
, J3,1 =

[
6
]
, and J3,2 =

[
6
]
.

Comparing the Jordan form and the result from Schur’s Lemma (Theorem 3.4) we

see that we can get a transformation of a given matrix A into an upper triangular matrix

using a unitary transform (which of course has condition number 1), and we can also

get a transformation into the canonical Jordan form, where the transformed matrix is

sparse (at most bidiagonal) and highly structured. But the transformation matrix may

have a very large condition number, as shown by the example above.

4 Results from operator theory

In this section we state some results from operator theory. We have decided not to

discuss unbounded operators, and we have also decided to focus on Hilbert spaces.

Most of the results on pseudospectra are valid for unbounded operators on Hilbert and

Banach spaces. Even if you main interest is the finite dimensional results, you will need
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the concepts and definitions from this section to read the following section. In reading

it you can safely assume that all Hilbert spaces are finite dimensional.

LetH be a Hilbert space (always with the complex numbers as the scalars). The inner

product is denoted by 〈·, ·〉, and the norm by ‖u‖ =
√
〈u,u〉. As in the finite dimensional

case our inner product is linear in the second variable.

We will not review the concepts of orthogonality and orthonormal basis. Neither will

we review the Riesz representation theorem, nor the properties of orthogonal projec-

tions. We refer the reader to any of the numerous introductions to functional analysis.

Our own favorite is [RS80], and we will sometimes refer to it for results we need. Another

favorite is [Kat95].

We denote the bounded operators on a Hilbert space H by B(H ), as in the finite

dimensional case. This space is a Banach space, equipped with the operator norm ‖A‖ =
sup‖u‖=1‖Au‖. The adjoint of A ∈ B(H ) is the unique bounded operator A∗ satisfying

〈v,Au〉 = 〈A∗v,u〉. We have ‖A∗‖ = ‖A‖ and ‖A∗A‖ = ‖A‖2.

We recall that the spectrum σ(A) consists of those z ∈ C, for which A − zI has no

bounded inverse. The spectrum of an operator A ∈ B(H ) is always non-empty. The

resolvent

RA(z) = (A− zI)−1, z ∉ σ(A),

is an analytic function with values in B(H ). The spectrum of A ∈ B(H ) is a compact

subset of the complex plane, which means that it is bounded and closed. For future

reference, we recall that Ω ⊆ C is compact, if and only if it is bounded and closed. That

Ω is bounded means there is an R > 0, such that Ω ⊆ {z | |z| ≤ R}. That Ω is closed

means that for any convergent sequence zn ∈ Ω we have limn→∞ zn ∈ Ω. There are two

very simple results on the resolvent that are important.

Proposition 4.1 (First Resolvent Equation). Let A ∈ B(H ) and let z1, z2 ∉ σ(A). Then

RA(z2)− RA(z1) = (z2 − z1)RA(z1)RA(z2) = (z2 − z1)RA(z2)RA(z1).

Exercise 4.2. Prove this result.

Proposition 4.3 (Second Resolvent Equation). LetA,B ∈ B(H ), and let C = B−A. Assume

that z ∉ σ(A)∪ σ(B). Then we have

RB(z)− RA(z) = −RA(z)CRB(z) = −RB(z)CRA(z).

If I + RA(z)C is invertible, then we have

RB(z) = (I + RA(z)C)−1RA(z).

Exercise 4.4. Prove this result.

We now recall the definition of the spectral radius.
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Definition 4.5. Let A ∈ B(H ). The spectral radius of A is defined by

ρ(A) = sup{|z| |z ∈ σ(A)}.

Theorem 4.6. Let A ∈ B(H ). Then

ρ(A) = lim
n→∞

‖An‖1/n = inf
n≥1
‖An‖1/n.

For all A we have that ρ(A) ≤ ‖A‖. If A is normal, then ρ(A) = ‖A‖.

Proof. See for example [RS80, Theorem VI.6].

We also need the numerical range of a linear operator. This is usually not a topic

in introductory courses on operator theory, but it plays an important role later. The

numerical range of A is sometimes called the field of values of A.

Definition 4.7. Let A ∈ B(H ). The numerical range of A is the set

W(A) = {〈u,Au〉 | ‖u‖ = 1}. (4.1)

Note that the condition in the definition is ‖u‖ = 1 and not ‖u‖ ≤ 1.

Theorem 4.8 (Toeplitz-Hausdorff). The numerical range W(A) is always a convex set. If

H is finite dimensional, then W(A) is a compact set.

Proof. The convexity is non-trivial to prove. See for example [Kat95]. Assume H finite

dimensional. Since u֏ 〈u,Au〉 is continuous and {u ∈H |‖u‖ = 1} is compact in this

case, the compactness of W(A) follows.

Exercise 4.9. Let H = C2 and let A be a 2 × 2 matrix. Show that W(A) is the union of

an ellipse and its interior (including the degenerate case, when it is a line segment or a

point).

Comment: This exercise is elementary in the sense that it requires only the definitions

and analytic geometry in the plane, but it is not easy. One strategy is to separate into

the cases

(i) A has one eigenvalue,

and

(ii) A has two different eigenvalues.

In case (i) one can reduce to a matrix
[

0 α

0 0

]
,

and in case (ii) to a matrix [
1 α

0 0

]
.

Here α ∈ C. The reduction is by translation and scaling. Even with this reduction the

case (ii) is not easy.
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In analogy with the spectral radius we define the numerical radius as follows.

Definition 4.10. Let A ∈ B(H ). The numerical radius of A is given by

µ(A) = sup{|z| |z ∈ W(A)}.
If Ω ⊂ C is a subset of the complex plane, then we denote the closure of this set by

cl(Ω). We recall that z ∈ cl(Ω), if and only if there is a convergent sequence zn ∈ Ω,

such that z = limn→∞ zn.

Proposition 4.11. Let A ∈ B(H ). Then σ(A) ⊆ cl(W(A)).

Proof. We refer to for example [Kat95] for the proof.

Let us note that in the finite dimensional case we have σ(A) ⊆ W(A), since W(A) is

closed. Since W(A) is convex, we have conv(σ(A)) ⊆ W(A). Here conv(Ω) denotes the

smallest closed convex set in the plane containing Ω ⊂ C. It is called the convex hull of

Ω.

We note the following general result:

Proposition 4.12. Let A ∈ B(H ). If A is normal, then W(A) = conv(σ(A)).

Proof. We refer to for example [Kat95] for the proof.

There is a result on the numerical range which shows that in the infinite dimensional

case the numerical range behaves nicely under approximation.

Theorem 4.13. Let H be an infinite dimensional Hilbert space, and let A ∈ B(H ) be a

bounded operator. Let Hn, n = 1,2,3, . . . be a sequence of closed subspaces of H , such

that Hn Î Hn+1, and such that
⋃∞
n=1Hn is dense in cH. Let Pn denote the orthogonal

projection onto Hn, and let An = PnAPn, considered as an operator on Hn, i.e. the

restriction of the operator A to the space Hn. Then we have the following results.

(i) For n = 1,2,3, . . . we have σ(An) ⊆ cl(W(An)) ⊆ cl(W(A)).

(ii) For n = 1,2,3, . . . we have cl(W(An)) ⊆ cl(W(An+1)).

(iii) We have cl(W(A)) = cl(⋃∞
n=1W(An)).

Proof. The first inclusion in (i) is a restatement of Proposition 4.11. The second inclusion

follows from

W(An) = {〈u,Au〉 |u ∈Hn, ‖u‖ = 1} ⊆ {〈u,Au〉 |u ∈H , ‖u‖ = 1} = W(A)
by taking closure. The result (ii) is proved in the same way. Concerning the result (iii),

then we note that since
⋃∞
n=1Hn is dense in H , we have u = limn→∞ Pnu for all u ∈H .

Thus we can use

lim
n→∞

〈Pnu,APnu〉
‖Pnu‖2

= 〈u,Au〉‖u‖2

to get the result (iii).
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A typical application of this result is to numerically find a good approximation to the

numerical range of an operator on an infinite dimensional Hilbert space, by taking as the

sequence Hn a sequence of finite dimensional subspaces.

We have decided not to state the spectral theorem for bounded normal operators in

an infinite dimensional Hilbert space. The definition of a normal operator is still that

A∗A = AA∗. See textbooks on operator theory and functional analysis.

We need to have a general functional calculus available. We will briefly introduce

the Dunford calculus. This calculus is also called the holomorfic functional calculus, see

[Dav07, page 27]. Let A ∈ B(H ) and let Ω ⊆ C be a connected open set, such that

σ(A) ⊂ Ω. Let f : Ω → C be a holomorphic function. Let Γ be a simple closed contour in

Ω containing σ(A) in its interior. Then we define

f(A) = −1

2πi

∫

Γ
f(z)RA(z)dz. (4.2)

(We freely use the Riemann integral of continuous functions with values in a Banach

space.)

It is possible to generalize by allowing sets Ω that are not connected and closed

contours with several components, but we do not assume that the reader is familiar

with this aspect of complex analysis. Thus we will only consider connected sets Ω and

simple closed contours in the definition of the Dunford calculus.

The functional calculus name is justified by the properties (αf + βg)(A) = αf(A)+
βg(A) and (fg)(A) = f(A)g(A) for f and g holomorphic functions satisfying the above

conditions. Here α and β are complex numbers. We also have f(A)∗ = f(A).
In some cases there is a different way to define functions of a bounded operator,

using a power series. If A ∈ B(H ), and if f has a power series expansion around zero

with radius of convergence ρ > ρ(A), viz.

f(z) =
∞∑

k=0

ckz
k, |z| < ρ,

(the series is absolutely and uniformly convergent for |z| ≤ ρ′ < ρ), then we can define

f(A) =
∞∑

k=0

ckA
k.

The series is norm convergent in B(H ). This definition, and the one using the Dunford

calculus, give the same f(A), when both are applicable.

Exercise 4.14. Carry out the details in the power series definition.

One often used consequence is the so-called Neumann series (the operator version

of the geometric series).
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Proposition 4.15. Let A ∈ B(H ) with ‖A‖ < 1. Then I −A is invertible and

(I −A)−1 =
∞∑

k=0

Ak,

where the series is norm convergent. We have

‖(I −A)−1‖ ≤ 1

1− ‖A‖ .

Exercise 4.16. Prove this result.

Exercise 4.17. Let A ∈ B(H ). Use Proposition 4.15 to show that for |z| > ‖A‖ we have

RA(z) = −
∞∑
n=0

z−n−1An. (4.3)

One consequence of Proposition 4.15 is the stability of invertibility for a bounded

operator. We state the result as follows.

Proposition 4.18. Assume that A,B ∈ B(H ), such that A is invertible. If ‖B‖ < ‖A−1‖−1,

then A+ B is invertible. We have

‖(A+ B)−1 −A−1‖ ≤ ‖B‖‖A−1‖
1− ‖B‖‖A−1‖ .

Proof. Write A + B = A(I + A−1B). The assumption implies ‖A−1B‖ < 1 and the results

follow from Proposition 4.15.

Another function often used in the functional calculus is the exponential function.

Since the power series for exp(z) has infinite radius of convergence, we can define

exp(A) by

exp(A) =
∞∑

k=0

1

k!
Ak.

This definition is valid for all A ∈ B(H ). If we consider the initial value problem

du

dt
(t) = Au(t),

u(0) = u0,

where u : R→H is a continuously differentiable function, then the solution is given by

u(t) = exp(tA)u0.

This result is probably familiar in the finite dimensional case, from the theory of linear

systems of ordinary differential equations, but it is valid also in this operator theory

context.

Exercise 4.19. Prove that for any A ∈ B(H ) we have

d

dt
exp(tA) = A exp(tA),

where the derivative is taken in operator norm sense.
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5 Pseudospectra

We now come to the definition of the pseudospectra. We will consider an operator

A ∈ B(H ). Unless stated explicitly, the definitions and results are valid for both the

finite dimensional and the infinite dimensional Hilbert spaces H . As mentioned in the

introduction, most definitions and results are also valid for closed operators on a Banach

space.

For a normal operator on a finite dimensional H we have the spectral theorem as

stated in Theorem 2.6, and in this case the eigenvalues and associated eigenprojections

give a valid ‘picture’ of the operator. But for non-normal operators this is not the case.

Let us look at the simple problem of solving an operator equationAu−zu = v, where

we assume that z ∉ σ(A). We want solutions that are stable under small perturbations

of the right hand side v and/or the operator A. Consider first Au′ − zu′ = v′ with

‖v − v′‖ < ε. Then ‖u−u′‖ < ε‖(A− zI)−1‖. Now the point is that the norm of the

resolvent ‖(A− zI)−1‖ can be large, even when z in not very close to the spectrum σ(A).

Thus what we need is that ε is sufficiently small, compared to ‖(A− zI)−1‖.

Consider next a small perturbation of A. Let B ∈ B(H ) with ‖B‖ < ε. We compare

the solutions to Au− zu = v and (A+ B)u′ − zu′ = v. We have

u−u′ = ((A− zI)−1 − (A+ B − zI)−1
)
v.

Using the second resolvent equation (see Proposition 4.3), we can rewrite this expression

as

u−u′ = (A− zI)−1B
(
I + (A− zI)−1B

)−1
(A− zI)−1v,

provided ‖(A− zI)−1B‖ ≤ ε‖(A− zI)−1‖ < 1. Using the Neumann series (see Proposi-

tion 4.18) we get the estimate

‖u−u′‖ ≤ ε‖(A− zI)−1‖
1− ε‖(A− zI)−1‖‖(A− zI)

−1‖‖v‖.

Thus again a good estimate requires that ε‖(A− zI)−1‖ is small.

We will now simplify our notation by using the resolvent notation, as in Section 4, i.e.

RA(z) = (A− zI)−1.

Definition 5.1. Let A ∈ B(H ) and ε > 0. The ε-pseudospectrum of A is given by

σε(A) = σ(A)∪ {z ∈ C \ σ(A) | ‖RA(z)‖ > ε−1}. (5.1)

The following theorem gives two important aspects of the pseudospectra. As a con-

sequence of this theorem one can use either condition (ii) or condition (iii) as alternate

definitions of the pseudospectrum.

Theorem 5.2. Let A ∈ B(H ) and ε > 0. Then the following three statements are equiva-

lent.
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(i) z ∈ σε(A).

(ii) There exists B ∈ B(H ) with ‖B‖ < ε such that z ∈ σ(A+ B).

(iii) z ∈ σ(A) or there exists v ∈H with ‖v‖ = 1 such that ‖(A− zI)v‖ < ε.
Proof. Let us first show that (i) implies (iii). Assume z ∈ σε(A) and z ∉ σ(A). Then we

can find u ∈ H such that ‖RA(z)u‖ > ε−1‖u‖. Let v = RA(z)u. Then ‖(A− zI)v‖ <
ε‖v‖, and (iii) follows by normalizing v.

Next we show that (iii) implies (ii). If z ∈ σ(A), we can take B = 0. Thus assume

z ∉ σ(A). Let v ∈ H with ‖v‖ = 1 and ‖(A− zI)v‖ < ε. Define a rank one operator B

by

Bu = −〈v,u〉(A− zI)v.
Then ‖B‖ < ε, and (A− zI + B)v = 0, such that z is an eigenvalue of A+ B.

Finally let us show that (ii) implies (i). Here we use proof by contradiction. Assume

that (ii) holds and furthermore that z ∉ σ(A) and ‖RA(z)‖ ≤ ε−1. We have

A+ B − zI = (I + BRA(z))(A− zI).

Now our assumptions imply that ‖BRA(z)‖ < ε · ε−1 = 1, thus (I + BRA(z)) is invertible,

see Proposition 4.15. Since (A−zI) is invertible, too, it follows thatA+B−zI is invertible,

contradicting z ∈ σ(A+ B).

The result (iii) is sometimes formulated using the following terminology.

Definition 5.3. Let A ∈ B(H ), ε > 0, z ∈ C, andu ∈H with ‖u‖ = 1. If ‖(A− zI)u‖ < ε,
then z is called an ε-pseudoeigenvalue for A and u is called a corresponding ε-pseudo-

eigenvector.

In the finite dimensional case we have the following result, which follows immedi-

ately from the discussion of singular values in Section 2.

Theorem 5.4. Assume that H is finite dimensional and A ∈ B(H ). Let ε > 0. Then

z ∈ σε(A), if and only if smin(A− zI) < ε.
Since the singular values of a matrix can be computed numerically, this result pro-

vides a method for plotting the pseudospectra of a given matrix. One chooses a finite

grid of points in the complex plane, and evaluates smin(A − zI) at each point. Plotting

level curves for these points provides a picture of the pseudospectra of A.

Let us now state some simple properties of the pseudospectra. We use the notation

Dδ = {z ∈ C | |z| < δ}.

Proposition 5.5. Let A ∈ B(H ). Each σε(A) is a bounded open subset of C. We have

σε1(A) ⊂ σε2(A) for 0 < ε1 < ε2. Furthermore, ∩ε>0σε(A) = σ(A). For δ > 0 we have

Dδ + σε(A) ⊆ σε+δ(A).
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Proof. The results are easy consequences of the definition and Theorem 5.2.

Exercise 5.6. Give the details of this proof.

Concerning the relation between the pseudospectra of A and A∗ we have the follow-

ing result. We use the notation Ω = {z |z ∈ Ω} for a subset Ω ⊆ C.

Proposition 5.7. Let A ∈ B(H ). Then for ε > 0 we have σε(A∗) = σε(A).

Proof. We recall that σ(A∗) = σ(A). Furthermore, if z ∉ σ(A), then ‖(A∗ − zI)−1‖ =
‖(A− zI)−1‖.

We have the following result.

Proposition 5.8. Let A ∈ B(H ) and assume that V ∈ B(H ) is invertible. Let κ =
cond(V), see (2.9) for the definition. Let B = V−1AV . Then

σ(B) = σ(A), (5.2)

and for ε > 0 we have

σε/κ(A) ⊆ σε(B) ⊆ σκε(A). (5.3)

Proof. We have RB(z) = V−1RA(z)V for z ∉ σ(A), which implies the first result. Then we

get ‖RB(z)‖ ≤ κ‖RA(z)‖ and ‖RA(z)‖ ≤ κ‖RB(z)‖, which imply the second result.

We give some further results on the location of the pseudospectra. We start with the

following general result. Although the result is well known, we include the proof. For a

subset Ω ⊂ C we set as usual

dist(z,Ω) = inf{|ζ − z| |ζ ∈ Ω},

and note that if Ω is compact, then the infimum is attained for some point in Ω.

Proposition 5.9. Let A ∈ B(H ). Then for z ∉ σ(A) we have

‖RA(z)‖ ≥ 1

dist(z,σ(A))
. (5.4)

If A is normal, then we have

‖RA(z)‖ = 1

dist(z,σ(A))
. (5.5)

Proof. Let z ∉ σ(A) and take ζ0 ∈ σ(A) such that |z − ζ0| = dist(z,σ(A)). Assume

‖RA(z)‖ < (dist(z,σ(A)))−1. Write (A − ζ0I) = (A − zI)(I + (z − ζ0)RA(z)). Due to

our assumptions both factors on the right hand side are invertible, leading to a contra-

diction. This proves the first result. The second result is a consequence of the spectral
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theorem. Let us give some details in the case whereH is finite dimensional. The Spectral

Theorem, Theorem 2.6, gives for a normal operator A that

(A− zI)−1 =
m∑

k=1

1

λk − z
Pk.

Assume u ∈ H with ‖u‖ = 1. The properties of the spectral projections imply that we

have

‖(A− zI)−1u‖2 =
m∑

k=1

1

|λk − z|2
‖Pku‖2 ≤ max

k=1...m

1

|λk − z|2
m∑

j=1

‖Pju‖2 = 1

dist(z,σ(A))2
.

This proves the result in the finite dimensional case.

Corollary 5.10. Let A ∈ B(H ) and ε > 0. Then

{z | dist(z,σ(A)) < ε} ⊆ σε(A). (5.6)

If A is normal, then

σε(A) = {z | dist(z,σ(A)) < ε}. (5.7)

We have the following result, where we get an inclusion in the other direction.

Theorem 5.11 (Bauer–Fike). Let A be an N ×N matrix, which is diagonalizable, such that

A = VΛV−1, where Λ is a diagonal matrix. Then for ε > 0 we have

{z | dist(σ(A), z) < ε} ⊆ σε(A) ⊆ {z | dist(σ(A), z) < κε}, (5.8)

where κ = cond(V).

Proof. The first inclusion is the result (5.6). The second inclusion follows from

‖(A− zI)−1‖ = ‖V(Λ− zI)−1V−1‖ ≤ κ‖(Λ− zI)−1‖ = κ

dist(σ(A), z)
,

since the diagonal matrix Λ is normal, such that we can use (5.5).

The result Theorem 5.2(ii) shows that if σε(A) is much larger than σ(A), then small

perturbations can move eigenvalues very far. See for example Figure 15. So it is im-

portant to know whether the pseudospectra are sensitive to small perturbations. If they

were, they would be of little value. Fortunately this is not the case. We have the following

result.

Theorem 5.12. Let A ∈ B(H ) and ε > 0 be given. Let E ∈ B(H ) with ‖E‖ < ε. Then we

have

σε−‖E‖(A) ⊆ σε(A+ E) ⊆ σε+‖E‖(A). (5.9)
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Proof. Let z ∈ σε−‖E‖(A). By Theorem 5.2(ii) we can find F ∈ B(H ) with ‖F‖ < ε − ‖E‖,

such that

z ∈ σ(A+ F) = σ((A+ E)+ (F − E)).
Now ‖F − E‖ ≤ ‖F‖ + ‖E‖ < ε, so Theorem 5.2(ii) implies z ∈ σε(A + E). The other

inclusion is proved in the same way.

Exercise 5.13. Prove the second inclusion in (5.9).

There is one nontrivial fact concerning the pseudospectra, which we cannot discuss

in detail, since it requires a substantial knowledge of nontrivial results in analysis and

partial differential equations.

To state the result we remind the reader of the definition of connected components

of an open subset of the complex plane. The connected components are the largest

connected open subsets of a given open set in the complex plane. The decomposition

into connected components is unique.

Theorem 5.14. Let H be finite dimensional, of dimension n. Let A ∈ B(H ). Let ε > 0

be arbitrary. Then σε(A) is non-empty, open, and bounded. It has at most n connected

components, and each connected component contains at least one eigenvalue of A.

The key ingredient in the proof of this result is the fact that the function f : z ֏

‖RA(z)‖ has no local maxima. This is a nontrivial result, which comes from the fact that

this function is what is called subharmonic. For results on subharmonic functions we

refer the reader to [Con78, Chapter X, §3.2]. We warn the reader that the function f may

have local minima, and we will actually give an explicit example later.

Exercise 5.15. For A ∈ B(H ) prove the following two results:

1. For any c ∈ C and ε > 0 we have σε(A+ cI) = c + σε(A).

2. For any c ∈ C, c ≠ 0, and ε > 0 we have σ|c|ε(cA) = cσε(A).

6 Examples I

In this section we give some examples of pseudospectra of matrices. The computations

are performed using MATLAB with the toolbox EigTool. We only mention a few features

of each example, and encourage the readers to experiment on their own with the possi-

bilities in this toolbox. In this section we show the figures generated using EigTool and

comment on various features seen in these figures.
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Figure 1: Pseudospectra of A

6.1 Example 1

The 2× 2 matrix A is given by

A =
[

0 1

0 0

]

This is of course the simplest non-normal matrix. The spectrum is σ(A) = {0}. In this

case the norm of the resolvent can be calculated explicitly. The result is

‖RA(z)‖ =
√

2√
1+ 2|z|2 −

√
1+ 4|z|2

.

Thus for z close to zero the behavior is

‖RA(z)‖ ≈ 1√
2|z|2 .

The pseudospectra from EigTool are shown in Figure 1. the values of ε are 10−1.5, 10−2,

10−2.5, and 10−3. You can read off these exponents from the scale on the right hand side

in Figure 1. In subsequent examples we will not mention the range of ε explicitly.

Exercise 6.1. Verify the results on the resolvent norm and its behavior for small z given

in this example. Do the exact values and the numerical values agree reasonably well?

Exercise 6.2. We modify the example by considering

Ac =
[

0 c

0 0

]
, c ≠ 0.
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Figure 2: Pseudospectra of B

Do some computer experiments finding the pseudospectra for both |c| small and |c|
large. You can take c > 0 without loss of generality. Also analyze what happens to the

pseudospectra as a function of c, for a fixed ε, using the definitions and Exercise 5.15

6.2 Example 2

We now take a normal matrix, for simplicity a diagonal matrix. We take

B =




1 0 0

0 −1 0

0 0 i


 .

The spectrum is σ(B) = {1,−1, i}. Some pseudospectra are shown in Figure 2. It is

evident from the figure that the pseudospectra for each ε considered is the union of

three disks centered at the three eigenvalues.

6.3 Example 3

For this example we take the following matrix

C =




1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0



.
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Figure 3: Pseudospectra of C . The boundary of the numerical range is plotted as a

dashed curve

We have σ(C) = {1,0}. Using the notation from Section 2 for algebraic and geometric

multiplicity, then we have ma(1) = mg(1) = 1, ma(0) = 4, mg(0) = 1. Some pseu-

dospectra are shown in Figure 3. It is evident from the figure that the resolvent norm

‖RC(z)‖ is much larger at comparable distances from 0 than from 1. On this plot we

have shown the boundary of the numerical range of C as a dashed curve.

Note that the matrix C is not in the Jordan canonical form. Let us also consider the

corresponding Jordan canonical form. Let us denote it by J. We have J = Q−1CQ, where

J =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1




and Q =




−1 −1 −1 −1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



.

The pseudospectra of J are shown in Figure 4 in full on the left hand side, and enlarged

around 1 in the right hand part. The numerical range is also plotted, as in Figure 3.

Comparing the two figures one sees how much closer one has to get to eigenvalue 1 for

the Jordan form, before the resolvent norm starts growing. This is a consequence of the

size of the condition number of Q. We have

cond(Q) = 3+ 2
√

2 ≈ 5.828427125.
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Figure 4: Left hand part: Pseudospectra of J, the Jordan canonical form of C . Right hand

part: Enlarged around eigenvalue 1. The boundary of the numerical range is plotted as

a dashed curve in both parts

6.4 Example 4

We will give another very simple example. This time we take a rank one projection,

which is not normal, i.e. a non-orthogonal projection. Let us start with a general setup.

Let H be a Hilbert space. Let P be a rank one projection, which is not normal. Then

there exists a pair a,b ∈H of linearly independent vectors, such that

Pu = 1

〈b,a〉〈b,u〉a. (6.1)

This projection is in the two-dimensional case often described as the projection onto

the line determined by a in the direction determined by b. It is straightforward to verify

that

P∗u = 1

〈a,b〉〈a,u〉b. (6.2)

One can check that P∗P = PP∗, if and only if b = νa for some ν ∈ C, ν ≠ 0, i.e. the two

vectors are linearly dependent. Thus the projection considered here is never normal.

Since P is a projection, we have σ(P) = {0,1}, and the eigenvalue 1 has multiplicity

1, whereas the eigenvalue 0 has multiplicity equal to the dimension of H minus one, in

the finite dimensional case, and infinite multiplicity in the infinite dimensional case. In

all cases the resolvent can be found explicitly. It is given as

(P − zI)−1 = 1

1− zP +
1

0− z(I − P), for all z ∈ C \ {0,1}. (6.3)

Exercise 6.3. Verify all the statements above, including (6.2) and (6.3).
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Figure 5: Left hand part: Pseudospectra of A from (6.4), with 〈b,a〉 = 10−2. Right hand

part: Enlarged around eigenvalue 1.

Now we will consider the case dimH = 2, in which case {a,b} is a basis for H . The

matrix of P in this basis is given as

A =




1
1

〈b,a〉
0 0


 . (6.4)

Thus if 〈b,a〉 is very small, i.e. the two vectors are almost orthogonal, the off-diagonal

entry is very large. This effect can be seen in the pseudospectra. We have taken the

matrix A in (6.4) and plotted some of the pseudospectra for 〈b,a〉 = 10−2 and 〈b,a〉 =
10−3 in Figure 5 and Figure 6, respectively. From the right hand part of Figure 6 one

sees that for ε = 10−4.5 the radius of the blue circle is approximately 0.03, which shows

a large deviation from the behavior in the normal case, where the radius would equal ε.

Exercise 6.4. Do some numerical experiments with matrices of the form (6.4).

If one constructs an orthonormal basis from the basis {a,b}, the picture changes

very little in this case. Let us carry out the details. Assume for definiteness that ‖a‖ = 1

and ‖b‖ = 1. Take as the first basis vector e1 = a and as the second basis vector

e2 = β(b−〈a,b〉a), where β = ‖b − 〈a,b〉a‖−1, using the usual Gram-Schmidt procedure.

Computing the matrix of P relative to the basis {e1, e2} yields the following result

B =
[

1 α

0 0

]
, where α = β( 1

〈b,a〉 − 〈a,b〉
)
. (6.5)

We have the estimate

‖b− 〈a,b〉a‖ ≤ 2,
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Figure 6: Left hand part: Pseudospectra of A from (6.4), with 〈b,a〉 = 10−3. Right hand

part: Enlarged around eigenvalue 1.

since a and b both have norm one, and also the estimate

‖b− 〈a,b〉a‖ ≥ ‖b‖ − ‖〈a,b〉a‖ = 1− |〈b,a〉|.

Thus we have the estimates
1

2
≤ β ≤ 1

1− |〈b,a〉| .

Thus if |〈b,a〉| is small, compared to ε, the pseudospectra of the matrices A and B will

be almost the same, see Theorem 5.12.

Finally let us diagonalize the matrix A. We have A = VΛV−1, where

V =




1 − 1

〈b,a〉
0 1


 and Λ =

[
1 0

0 0

]
.

The condition number of V can be found explicitly. We have

cond(V) = 1+ 2|〈b,a〉|2 +
√

1+ 4|〈b,a〉|2
2|〈b,a〉|2 .

Thus we see that the matrix V has large condition number, if |〈b,a〉| is small.

Exercise 6.5. Carry out the computations leading to V and cond(V) above.

Exercise 6.6. Compare through numerical experiments the pseudospectra obtained with

EigTool to the unions of disks obtained from Theorem 5.11.

26



7 Perturbation Theory

We will give some computations from perturbation theory to see how eigenvalues may

move far due to small perturbations, when a matrix is non-normal. We will not be

completely rigorous, since this requires a substantial machinery. The complete theory

for perturbation of eigenvalues on finite dimensional spaces can be found in [Kat95,

Chapter I and II]. We should caution the reader that this is not an easily accessible theory.

A fair amount of complex analysis is needed to understand the rigorous results.

First we consider the following set-up. Let A be an n × n matrix. Assume that λj is

a simple eigenvalue of A with corresponding eigenvector vj , i.e. Avj = λjvj and vj ≠ 0.

An eigenvalue λj is called simple, if ma(λj) = mg(λj) = 1, or equivalently, if λj is a

simple zero of the characteristic polynomial det(A− zI).
Let V be another n×nmatrix. We can assume ‖V‖ = 1. Consider a family of matrices

A(g) = A+ gV.

Now one can use the complex version of the implicit function theorem to conclude that

det(A(g)− zI) = 0 for sufficiently small g has a unique solution λj(g), with λj(0) = λj,
which then is a simple eigenvalue of A(g). We write A(g)vj(g) = λj(g)vj(g). One can

show that both the eigenvalue and eigenfunction are analytic functions of g for g small.

Thus we have power series expansions

λj(g) = λj + gλ1
j + g2λ2

j + · · · , (7.1)

vj(g) = vj + gv1
j + g2v2

j + · · · . (7.2)

Insert these expansions into the equation (A + gV)v(g) = λ(g)v(g) and equate the

coefficients of the powers of g. The result is for the coefficients to gj, j = 0,1,2 as

follows:

Avj = λjvj, (7.3)

Av1
j + Vvj = λjv1

j + λ1
jvj, (7.4)

Av2
j + Vv1

j = λjv2
j + λ1

jv
1
j + λ2

jvj. (7.5)

The equation (7.3) is just the given eigenvalue equation. We rewrite (7.4) as

(A− λjI)v1
j = (λ1

j I − V)vj. (7.6)

Our first goal is to find an expression for λ1
j . For this purpose we need another vector.

We have that λj is an eigenvalue of the adjoint A∗. Let uj ≠ 0 be an eigenvector, i.e.

A∗uj = λjuj. Now take inner product between uj and the left hand side of (7.6), and

compute as follows (remember that our inner product is linear in the second variable
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and conjugate linear in the first variable):

〈uj , (A− λj)v1
j 〉 = 〈A∗uj, v1

j 〉 − λj〈uj , v1
j 〉

= 〈λjuj, v1
j 〉 − λj〈uj , v1

j 〉
= λj〈uj, v1

j 〉 − λj〈uj , v1
j 〉 = 0.

Using this result, we get from (7.6), assuming 〈uj , vj〉 ≠ 0,

λ1
j =

〈uj, Vvj〉
〈uj , vj〉

. (7.7)

If A is normal, then we can take uj = vj . This is evident in the special case of a

selfadjoint A and follows from the property AA∗ = A∗A in the general case. Thus in the

normal case the effect of the perturbation V is determined by its size (which we here

have normalized to ‖V‖ = 1) and its mapping properties relative to vj.

If A is not normal, then λ1
j can become very large, if 〈uj , Vvj〉 ≈ 1 and 〈uj , vj〉 close

to zero. Note that if actually 〈uj , vj〉 = 0, then the derivation above of λ1
j is not valid.

In order to find also the first order change in the eigenvector using simple argu-

ments we need to make an assumption on A. We assume that all eigenvalues of A are

simple. This means that A has n distinct eigenvalues λ1, λ2, . . . , λn. Corresponding eigen-

vectors are denoted by v1, v2, . . . , vn. The eigenvalues of A∗ are λ1, λ2, . . . , λn, and the

corresponding eigenvectors are denoted by u1, u2, . . . , un. Both the {vj}j=1,...,n and the

{uj}j=1,...,n are bases for Cn. They have a special property. Assume that k ≠ j, such that

λk ≠ λj . We compute as follows.

0 = 〈uk, Avj〉 − 〈uk, Avj〉 = 〈A∗uk, vj〉 − 〈uk, Avj〉
= 〈λkuk, vj〉 − 〈uk, λjvj〉
= (λk − λj)〈uk, vj〉.

We conclude that 〈uk, vj〉 = 0 for all j, k = 1,2, . . . , n with k ≠ j. Furthermore, we must

have 〈uj, vj〉 ≠ 0 for all j = 1,2, . . . , n. This is seen as follows. Suppose 〈uj , vj〉 = 0

for some j. Then we have 〈uk, vj〉 = 0 for all k = 1,2, . . . , n. Thus vj is orthogonal to

all vectors in the basis {uj}j=1,...,n, which implies vj = 0, a contradiction. We will choose

to normalize by the condition 〈uj , vj〉 = 1 for all j = 1,2, . . . , n. Let us introduce some

terminology:

Definition 7.1. Let {vj}j=1,...,n and {uj}j=1,...,n be two bases for Cn. They are called a pair

of biorthogonal bases, if they satisfy

〈uk, vj〉 = δjk for all j, k = 1,2, . . . , n.

Here δjk denotes the Kronecker delta.
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There is a simple formula for the coefficients of any vector relative to each of these

bases.

Proposition 7.2. Let Let {vj}j=1,...,n and {uj}j=1,...,n be a pair of biorthogonal bases for Cn,

and let x ∈ Cn. Then we have

x =
n∑

k=1

〈uk, x〉vk, (7.8)

x =
n∑

j=1

〈vj, x〉uj . (7.9)

Exercise 7.3. Prove this proposition.

Now we come back to the computation of the term v1
j in (7.2). We use the above

result and the representation in Proposition 7.2

v1
j =

n∑

k=1

〈uk, v1
j 〉vk.

Thus we must try to compute 〈uk, v1
j 〉. Assume first that k ≠ j. Then we can use the

equation (7.6). Take inner product with uk on both sides to get

〈uk, (A− λjI)v1
j 〉 = λ1

j〈uk, vj〉 − 〈uk, Vvj〉.

Using 〈uk, vj〉 = 0 and A∗uk = λkuk we get

(λk − λj)〈uk, v1
j 〉 = −〈uk, Vvj〉.

Since λk − λj ≠ 0, we have

〈uk, v1
j 〉 =

〈uk, Vvj〉
λj − λk

.

We cannot determine the value of 〈uj , v1
j 〉 from the equations we have. This just reflects

the fact that (7.6) is an inhomogeneous linear equation with v1
j as the unknown, and the

solution is only determined up to a vector in the kernel (null space) of the coefficient

matrix A− λjI. We will need an additional condition. So for the moment we have found

v1
j = cvj +

n∑

k=1
k≠j

〈uk, Vvj〉
λj − λk

vk.

Inserting this expression into (7.2) and taking inner product with uj we find that

〈uj, vj(g)〉 = 〈uj , vj〉 + cg〈uj , vj〉 + O(g2) = 1+ cg +O(g2).
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The requirement one imposes is that for computation of a first order term we must have

〈uj , vj(g)〉 = 1+O(g2), leading to c = 0.

So the final result is that

vj(g) = vj + g
n∑

k=1
k≠j

〈uk, Vvj〉
λj − λk

vk.

We see that if the eigenvalues are closely spaced, then the contribution from the second

term can be large.

We now give an application of the result (7.7) to pseudospectra of matrices. Since we

have assumed ‖V‖ = 1, we get from (7.7) the estimate

|λ1
j | ≤

‖uj‖‖vj‖
|〈uj , vj〉|

= κ(λj). (7.10)

The number κ(λj) is called the condition number of the eigenvalue λj . It follows from

the Cauchy-Schwarz inequality that we always have κ(λj) ≥ 1. As before we let Dδ =
{z ∈ C | |z| < δ}.

Theorem 7.4. Let A be an n×nmatrix. Assume that the eigenvalues of A, λj , j = 1, . . . , n

all are simple. Let ε > 0. then we have

σε(A) ⊆
n⋃

j=1

(λj +Dεκ(λj)+O(ε2)). (7.11)

Proof. It follows from (7.1) and (7.10) that we have

|λj − λj(g)| ≤ κ(λj)|g| +O(g2),

for all perturbations V with ‖V‖ = 1, since we assume that all eigenvalues are simple. It

also follows from the arguments given above that κ(λj) always is finite. The result then

follows from Theorem 5.2(ii).

The theorem shows that for ε small the pseudospectra look like a union of disks with

radius εκ(λj) and centered at λj.

7.1 Examples

We will give two very simple examples illustrating the above results (and some of their

limitations). As the first example we take the matrix (6.4).

A =
[

1 α

0 0

]
, where α = 1

〈b,a〉 .
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Here we have introduced the parameter α to simplify the notation. The eigenvalues are

λ1 = 1 and λ2 = 0. The eigenvectors ofA andA∗ must be chosen such that 〈uj, vk〉 = δjk.
We get

v1 =
[

1

0

]
, v2 =

[
−α

1

]
, u1 =

[
1

α

]
, u2 =

[
0

1

]
.

We choose as the perturbation the matrix

V =
[

0 1

1 0

]
.

This matrix satisfies ‖V‖ = 1. Now it is straightforward to compute the first order

corrections to the eigenvalues and eigenvectors. We get

λ1
1 = α and λ1

2 = −α.

Exercise 7.5. Verify the above computations.

Exercise 7.6. Compute the first order corrections to the two eigenvectors.

This example is so simple that one can carry out the exact determinations of the

eigenvalues. The result is (for g sufficiently small)

λ1(g) = 1

2
+ 1

2

√
1+ 4(gα+ g2),

λ2(g) = 1

2
− 1

2

√
1+ 4(gα+ g2).

From these expressions one can find higher order corrections. Using a computer algebra

program one can find for example

λ1(g) = 1+αg + (1−α2)g2 + (−2α+ 2α3)g3 +O(g4), (7.12)

λ2(g) = 0−αg − (1−α2)g2 − (−2α+ 2α3)g3 +O(g4). (7.13)

We recall from the discussion in Section 6.4 that we mainly consider the case where α is

large. It is evident that for large α the coefficients to the powers of g grow quite rapidly.

Thus to get any approximation at all we need to have gα small. A numerical example,

based on the exact value and the three approximations to λ1(g) above, is shown in

Figure 7. We have taken α = 103. Note that for g ≥ 5.5 10−4 the second and third order

approximations are worse than the first order approximation.

The result from Theorem 7.4 can be applied to this matrix. One has to have ε to be

quite small, before one can begin to see the disks. It is easy to compute the eigenvalue

condition numbers. We have

κ(λ1) = κ(λ2) =
√

1+ |α|2.
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Figure 7: Black: λ1(g). Red: First order approximation. Green: Second order approxima-

tion. Blue: Third order approximation.
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Figure 8: Pseudospectra for the 2 × 2 matrix A with α = 103. Black circles come from

Theorem 7.4 for ε = 10−4 and ε = 10−3.5
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Figure 9: Pseudospectra for the 3 × 3 matrix S. Black circles are the ones from Theo-

rem 7.4 corresponding to ε = 10−2

Thus in our example with α = 103 we have κ(λ1) = κ(λ2) ≈ 103. We repeat the some of

the computations shown in Figure 6. In Figure 8 we have plotted a few pseudospectra.

We have also plotted in black two circles from Theorem 7.4, corresponding to ε = 10−4

and ε = 10−3.5. For the smaller value of ε the circle and the pseudospectrum boundary

almost coincide, whereas for the larger value there are substantial discrepancies.

Let us illustrate Theorem 7.4 with another example. Take the matrix

S =



−1 6 0

0 i 8

0 0
1

2


 .

The eigenvalues are λ1 = −1, λ2 = i, and λ3 = 1

2
. The three eigenvalue condition num-

bers can be computed exactly in Maple or approximately in MATLAB. The results for the

approximate values are

κ(λ1) ≈ 23.0, κ(λ2) ≈ 31.5, and κ(λ3) ≈ 29.5.

In Figure 9 we have plotted some pseudospectra for this matrix. The three circles cor-

responding to ε = 10−2 (magenta curves) from Theorem 7.4 (without the error term) are

plotted in black. It shows that the results from Theorem 7.4 have to be used with some

caution.
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8 Applications of pseudospectra I

We now give some applications of the pseudospectra. In some cases we can treat both

finite dimensional and infinite dimensional H . In other cases it is technically too de-

manding to treat the general case, so we treat only finite dimensional H . We first state

the results, and then we give the proofs.

Let us return to the problem considered briefly above. We consider the initial value

problem

du

dt
(t) = Au(t), (8.1)

u(0) = u0, (8.2)

where u : R→H is a continuously differentiable function. Then the solution is given by

u(t) = exp(tA)u0. (8.3)

In the finite dimensional case the following stability result is well known, see any intro-

ductory text on ordinary differential equations.

Proposition 8.1. Let A be an n × n matrix. Assume that all eigenvalues λ of A satisfy

Reλ < 0. Then we have

lim
t→∞
‖etA‖ = 0.

The result shows that 0 is an asymptotically stable solution to (8.1).

Now if A is not normal, then the solution can become very large, before it starts to

decay. Our goal is to show that you can use pseudospectra to quantify these qualitative

statements.

We start with an example.

Example 8.2. We consider the two matrices

A =



−1 1 0

0 −1 1

0 0 −1


 , B =



−1 1 5

0 −1 1

0 0 −1


 .

We note that they both have −1 as their only eigenvalue, and that both matrices are not

normal. We plot the operator norms ‖etA‖ and ‖etB‖ as functions of t in Figure 10. The

question is which curve belongs to which matrix? We will return to this question below,

and also explain the meaning of the green line segments on the figure.

To obtain results on the transient behavior of the solution to an initial value problem

as given in (8.1) and (8.2), we need a number of definitions.
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Figure 10: Plot of ‖etA‖ and ‖etB‖

Definition 8.3. We define the following quantities. Let A ∈ B(H ).

α(A) = sup{Rez |z ∈ σ(A)}, (8.4)

αε(A) = sup{Rez |z ∈ σε(A)}, (8.5)

ω(A) = sup{Rez |z ∈ W(A)}. (8.6)

α(A) is called the spectral abscissa of A, αε(A) is called the pseudospectral abscissa of A,

andω(A) is called the numerical abscissa of A.

Briefly stated, the value of ω(A) determines the initial behavior of ‖etA‖, while α(A)

determines the long time behavior. We state some precise results.

Theorem 8.4. Let A ∈ B(H ). Then we have

α(A) = lim
t→∞

1

t
log‖etA‖. (8.7)

Furthermore, we also have

‖etA‖ ≥ etα(A) for all t ≥ 0. (8.8)

The estimate (8.8) tells us that the norm can never decay faster than etα(A), while the

limit result (8.7) tells us that for t large the norm behaves precisely as etα(A).

Concerning the initial behavior, then we have the following result.

Theorem 8.5.

ω(A) = d

dt
‖etA‖

∣∣
t=0 = lim

t↓0
1

t
log‖etA‖. (8.9)

We also have

‖etA‖ ≤ etω(A) for all t ≥ 0. (8.10)
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The estimate (8.10) tells us that the norm can never grow faster than etω(A), while the

result (8.9) tells us that initially the solution actually grows that fast.

Now we see what kind of information the pseudospectra can provide. These results

are a little more complicated to state, and to use.

Theorem 8.6. For all ε > 0 we have

sup
t≥0

‖etA‖ ≥ αε(A)
ε

. (8.11)

The estimate (8.11) tells us that there will be values at some time t > 0 at least as

large as
αε(A)
ε

.

Definition 8.7. Let A ∈ B(H ). The Kreiss constant is given by

K(A) = sup
ε>0

αε(A)

ε
. (8.12)

Then we have

Corollary 8.8.

sup
t≥0

‖etA‖ ≥ K(A).

In the matrix case we can also get an upper bound.

Theorem 8.9. If A is an n×n matrix, then we have

‖etA‖ ≤ enK(A).
It is also possible to get an estimate valid for a finite time interval, but the estimate

is somewhat complicated. Here is a result of that type.

Theorem 8.10. Let a = Rez. Let K = Rez‖(A− zI)−1‖. Then for τ > 0 we have

sup
0≤t≤τ

‖etA‖ ≥ eaτ(1+ e
aτ − 1

K

)−1

Example 8.2 continued. In view of the results stated above, let us see how we can

answer the question posed in Example 8.2. We take the two matrices A and B, and

then use EigTool to find the pseudospectra. We also find the numerical range, and

compute the numerical abscissa, ω(A) and ω(B). The results are plotted in Figure 11.

The numerical results are

ω(A) = −0.292893 and ω(B) = 1.68614.

Thus using Theorem 8.5 it is clear that the upper (red) curve in Figure 10 is of ‖etB‖, and

the lower (blue) curve shows ‖etB‖. We have plotted the two tangent line segments from

Theorem 8.5 in green in Figure 10.

In EigTool the estimates in Theorem 8.10 can be computed and plotted. In Figure 12

we have plotted the result for the matrix B. The green curve plots the estimate from

Theorem 8.10 as a function of τ. The lower estimate (8.8) is plotted as a black dashed

curve.
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Figure 11: Pseudospectra of A (left hand plot) and B (right hand plot) from Example 8.2.

The black dashed curves show the boundaries of the numerical ranges. Note that the

scales on the two figures are different

8.1 Proofs

The proofs use the Dunford calculus as defined in (4.2). We start with a general result.

In some cases we refer to the literature, since the proofs are somewhat complicated or

require substantial preparation.

Proposition 8.11. Let A ∈ B(H ). Then we have ‖etA‖ ≤ et‖A‖ for all t ≥ 0. Assume that

we have an estimate

‖etA‖ ≤Metω for t ≥ 0, (8.13)

where M ≥ 1 and ω ∈ R. Then all z ∈ C with Rez > ω belong to the resolvent set of A,

and we have the formula

(A− zI)−1 = −
∫ ∞

0
e−tzetAdt. (8.14)

If Γ is a simple closed contour with σ(A) in its interior, then

etA = −1

2πi

∫

Γ
etz(A− zI)−1dz. (8.15)

Proof. The estimate ‖etA‖ ≤ et‖A‖ follows from the power series for the exponential

function.

To prove (8.14) one first notices that the assumptions imply that

‖e−tzetA‖ = ‖et(A−zI)‖ ≤Me−t(Rez−ω).

Thus the integral in (8.14) is defined. Then we use the result

et(A−zI) = (A− zI)−1 d

dt
et(A−zI).
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Figure 12: Transient plots for B using EigTool. The green curve is the lower estimate

obtained from Theorem 8.10, plotted as a function of τ. The dashed black curve is the

lower bound from (8.8). Note that EigTool uses the notation A for any matrix plotted

using this option
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Further details are omitted. The formula (8.15) is just the Dunford calculus definition of

etA. Now one has to know that this definition is the same as the power series definition.

Details are omitted. Detailed proofs can be found in [Dav07].

The transform in (8.14) is the Laplace transform. The inversion formula is (8.15).

Next we use this result to get an estimate of etA involving pseudospectra.

Proposition 8.12. Let A ∈ B(H ) and let ε > 0 be fixed. Let Γε be a simple closed contour

with σε(A) in its interior. Denote the arc length of Γε by Lε. Then for all t ≥ 0 we have

the estimate

‖etA‖ ≤ Lεe
tαε(A)

2πε
. (8.16)

Proof. The estimate (8.16) follows from (8.15) and the definition of αε(A), see (8.5).

Proof of Theorem 8.4. We begin with the proof of (8.8). The proof is by contradiction.

Assume there exists τ > 0 such that

‖eτA‖ < eτα(A).

To simplify the argument we will also assume that ‖etA‖ ≤ 1 for all t ≥ 0. This can

always be obtained by replacing A with A− ‖A‖I. Define β and ν by

‖eτA‖ = ν = eτβ.

Note that ν < eτα(A) implies β < α(A). Now we have

‖etA‖ ≤ 1 for 0 ≤ t < τ.

For τ ≤ t < 2τ we have

‖etA‖ = ‖e(τ+(t−τ))A‖ = ‖eτAe(t−τ)A‖ ≤ ν.

Continuing this argument we find that

‖etA‖ ≤ ν2 for 2τ ≤ t < 3τ,

and in general

‖etA‖ ≤ νn for nτ ≤ t < (n+ 1)τ.

Thus for nτ ≤ t < (n+ 1)τ we get

‖etA‖ ≤ enτβ = etβesβ ≤Metβ.

Here 0 ≤ s < 1 and M = sup0≤s<1 e
sβ.

Thus we have shown that ‖etA‖ ≤ Metβ for all t ≥ 0. Now we use Proposition 8.11

to conclude that all z ∈ C with Rez > β belong to the resolvent set of A. But this result

contradicts the definition of α(A), since β < α(A).
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Now let us consider (8.7). The estimate (8.8) immediately implies that

lim inf
t→∞

t−1 log‖etA‖ ≥ α(A).

Let ε > 0 be arbitrary. From (8.16) we conclude that

lim sup
t→∞

t−1 log‖etA‖ ≤ αε(A).

From Proposition 5.5 we get that limε↓0αε(A) = α(A). This remark concludes the proof

of Theorem 8.4.

Proof of Theorem 8.5. The proof is somewhat demanding. We have decided not to in-

clude it. We refer to [TE05, §17]. The result is also a consequence of the so-called

Lumer-Phillips theorem in semigroup theory, see [Dav07, Theorem 8.3.4]. Note that in

order to get from this theorem to Theorem 8.5 one has to do a number of computa-

tions.

Proof of Theorem 8.6. We can assume that αε(A) > 0, since otherwise there is nothing

to prove. Assume that for a z with Rez > 0 there exists a constant K > 1 such that

‖(A− zI)−1‖ = K

Rez
.

Then we can conclude that

sup
t≥0

‖etA‖ ≥ K.

To get this result let M = supt≥0‖etA‖. Then we use (8.14) to get

K

Rez
= ‖(A− zI)−1‖ = ‖

∫∞
0
e−ztetAdt‖ ≤M

∫∞
0
|e−zt|dt = M

Rez
,

which implies the result stated above.

Now we use this result to prove Theorem 8.6. Choose a z in the right half plane such

that Rez = αε(A). Then for this z we have

‖(A− zI)−1‖ = 1

ε
= K

Rez
, where K = αε(A)

ε
.

Now (8.11) follows from the first half of the proof.

Proof of Theorem 8.9. This result is highly non-trivial. See [TE05, §18].

Proof of Theorem 8.10. The proof can be found in [TE05, §15].
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9 Applications of pseudospectra II

Instead of the continuous time problem (8.1), (8.2) one can also consider the discrete

time problem. Thus one considers the problem

un+1 = Aun, (9.1)

u0 = φ. (9.2)

with the solution

un = Anφ. (9.3)

Results concerning the behavior for both small, intermediate, and large values of n are

similar to those for the continuous problem, but still somewhat different. We start with

some definitions. Proofs are given at the end of this section.

Definition 9.1. Let A ∈ B(H ). We define the following quantities.

ρ(A) = sup{|z| |z ∈ σ(A)}, (9.4)

ρε(A) = sup{|z| |z ∈ σε(A)}, (9.5)

µ(A) = sup{|z| |z ∈ W(A)}. (9.6)

ρ(A) is called the spectral radius of A, ρε(A) is called the pseudo-spectral radius of A, and

µ(A) is called the numerical radius of A.

Let us start with some upper bounds on An.

Theorem 9.2. Assume A ∈ B(H ). Then we have the following results.

(i) For n ≥ 0 we have

‖An‖ ≤ ‖A‖n. (9.7)

(ii) For any ε > 0 and all n ≥ 0 we have

‖An‖ ≤ (ρε(A))
n+1

ε
. (9.8)

We have the following result concerning the behavior for large n.

Theorem 9.3. Let A ∈ B(H ). We have

ρ(A) = lim
n→∞

‖An‖1/n. (9.9)

We also have

‖An‖ ≥ (ρ(A))n for all n ≥ 0. (9.10)

Thus the estimate (9.10) shows that the norm cannot decrease faster than (ρ(A))n,

and the result (9.9) shows that for sufficiently large n it behaves that way.

The initial behavior is governed by the numerical radius. We have the following

result.
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Theorem 9.4. Let A ∈ B(H ). Then we have

‖An‖ ≤ 2(µ(A))n for all n ≥ 0. (9.11)

Thus the numerical radius determines how fast the norm of the powers of A can

grow. Due to the factor 2 this result is not as good as one would like. But it is the best

result obtainable.

The intermediate behavior is governed by the pseudo-spectra. The simplest bound is

the following.

Theorem 9.5. Let A ∈ B(H ). Then we have for all ε > 0

sup
n≥0

‖An‖ ≥ ρε(A)− 1

ε
. (9.12)

Obviously, this bound only yields information, if ε and A satisfy that ρε(A) > 1. One

can do a scaling to get the following result.

Corollary 9.6. Let γ > 0. Then for all ε > 0 we have

sup
n≥0

‖γ−nAn‖ ≥ ρε(A)− γ
ε

. (9.13)

There is a number of other estimates, which we will not state here. We refer to [TE05].

9.1 Proofs

In this section we prove some of the results stated above. We start with the following

result.

Proposition 9.7. Let A ∈ B(H ). Assume that for some M ≥ 1 and γ > 0 we have

‖An‖ ≤Mγn for n ≥ 0.

Then any z ∈ C with |z| > γ belongs to the resolvent set of A, and we have the represen-

tation

(A− zI)−1 =
∞∑

k=0

−1

zk+1
Ak. (9.14)

Let Γ be a simple closed contour with σ(A) in its interior. Then we have

Ak = −1

2πi

∫

Γ
zk(A− zI)−1dz. (9.15)

Proof. The first result is a simple application of the geometric series. The second result

states a consequence of the Dunford calculus.
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Proof of Theorem 9.2. The estimate (9.7) is trivial. The estimate (9.8) follows from (9.15),

if one takes as Γ the circle centered at the origin with radius ρε(A).

Proof of Theorem 9.3. The results stated are standard results from functional analysis,

and proofs can be found in most introductions to functional analysis or operator theory.

See for example [RS80, Theorem VI.6].

Proof of Theorem 9.4. This is not an easy result to obtain. We refer to [TE05] for the

proof.

Proof of Theorem 9.5. We start with the following result. Assume that

‖(A− zI)−1‖ = K

|z| − 1
for some K > 1 and z with |z| = r > 1.

Then we can conclude that

sup
n≥0

‖An‖ ≥ rK − r + 1 > K. (9.16)

To obtain this result, let M = supn≥0‖An‖. We can without loss of generality assume

that this quantity is finite. Using the assumption and (9.14) we compute as follows.

rK

r − 1
= r‖(A− zI)−1‖ ≤ 1+M

∞∑

k=1

r−k = 1+ M

r − 1
.

Solving for M yields the first estimate in (9.16). The second estimate follows from rK −
r + 1 = K + (K − 1)(r − 1) > K.

Now apply this result to prove (9.12). We fix ε > 0 and choose a z such that |z| =
ρε(A). Solve for K in

‖(A− zI)−1‖ = 1

ε
= K

|z| − 1

to get

K = ρε(A)− 1

ε
,

and the result follows from (9.16).

10 Examples II

In this section we give a number of matrix examples illustrating the concepts introduced

in the previous sections. Several of the examples are from the book [TE05]. The figures

below have been generated using either the MATLAB toolbox EigTool or Maple.
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10.1 A Toeplitz matrix

A matrix with the following structure is called a Toeplitz matrix: A = [aij] with aij =
bi−j. Thus it looks like

A =




b0 b−1 b−2 · · · b1−N
b1 b0 b−1 · · · b2−N
b2 b1 b0 · · · b3−N
...

...
...

. . .
...

bN−1 bN−2 bN−3 · · · b0



. (10.1)

The entries are constant along lines parallel with the main diagonal.

A lot is known about Toeplitz matrices and their infinite dimensional analogues, the

Toeplitz operators. We will use a few Toeplitz matrices as examples.

We start with the following example. A is an N×N Toeplitz matrix with the following

structure.

A =




0 1 0 · · · 0 0
1

4
0 1 · · · 0 0

0
1

4
0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 1

4
0




. (10.2)

Let Q denote the diagonal N×N matrix with entries 2,4,8, . . . ,2N on the diagonal. Then

one can verify that

QAQ−1 = B, (10.3)

where

B =




0
1

2
0 · · · 0 0

1

2
0

1

2
· · · 0 0

0
1

2
0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0
1

2

0 0 0 · · · 1

2
0




. (10.4)

The matrix B is symmetric, and its eigenvalues can be found to be

λk = cos
( kπ
N + 1

)
, k = 1, . . . , N. (10.5)

Due to (10.3) the spectrum of A is the same. Thus A is a non-symmetric matrix with a

real spectrum. We will now look at its pseudospectra. For N = 64 the pseudospectra

and the eigenvalues are shown in Figure 13. This figure also shows the boundary of the

numerical range. The numerical abscissa is ω(A) = 1.24854.
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dim = 64
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Figure 13: Pseudospectra and eigenvalues of A. The black dashed curve is the boundary

of the numerical range

If one considers the infinite dimensional analogue of this matrix, then one can show

that the spectrum is the ellipse {z−1 + 1

4
z | |z| = 1}, and its interior.

Let us now illustrate the result in Theorem 5.2(ii). We take the matrix A and add

a random matrix E of norm ‖E‖ = 10−3. We then plot the eigenvalues of this matrix.

We repeat this procedure 1000 times. This generates Figure 14. In Figure 15 the same

procedure is repeated for ‖E‖ = 10−8 Notice that most of the eigenvalues move far from

the spectrum, even for the perturbations of size 10−8.

It is remarkable that for all finite values of N the spectrum of the matrix is on the

real line, thus not in any sense approximating the spectrum of the infinite dimensional

matrix. In other words, from computations of the spectrum of the truncated infinite

matrix one gets no impression of where the spectrum of the infinite matrix is located.

But the pseudospectra give a good approximation to the infinite matrix spectrum, since

it fills out the ellipse approximately. So one thing one can learn from this example is

that one can never be sure of the location of the spectrum of an infinite matrix, based

on computations with truncated finite matrices.

One can show that most of the eigenvalues in Figure 14 lie close to the ellipse, which

is the image of |z| = 10−3/64 under the map f(z) defined above.

One may also compare the numerical results above with Proposition 5.8. The condi-

tion number of Q can be found exactly, since Q is diagonal. We get cond(Q) = 2N−1.

Thus for N = 64 one has

cond(Q) = 263 = 9223372036854775808≈ 9.223372037 · 1018.

Let us now look at some of the results from Section 9, applied to the matrices A and

B. Since A and B have the same spectrum, they have the same spectral radius. Using
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Figure 14: Eigenvalues of A plotted in red. Blue points are eigenvalues of A + E, with E

random and of norm 10−3, for 1000 choices of E
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Figure 15: Eigenvalues of A plotted in red. Blue points are eigenvalues of A + E, with E

random and of norm 10−8, for 1000 choices of E
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(10.5), we get

ρ(A) = ρ(B) = cos
( π

N + 1

)

in general. Note that this number is strictly less than one. Since B is symmetric, the

norm equals the spectral radius, and we have

‖Bk‖ = ρ(Bk) = (ρ(B))k < 1 for all k ≥ 1. (10.6)

Using (10.3), we have

‖Ak‖ = ‖Q−1BkQ‖ ≤ ‖Q‖ · ‖Bk‖ · ‖Q−1‖ < cond(Q), (10.7)

which is large for N = 64. The results (10.7) and (10.6) imply that

lim
k→∞

‖Ak‖ = 0 and lim
k→∞

‖Bk‖ = 0.

But the initial and intermediate behavior are both quite different. This is illustrated in

Figure 16. Here we have plotted the norms ‖Ak‖ and ‖Bk‖ for k = 0, . . . ,1600. The

norms ‖Bk‖ decay monotonically, whereas the norms ‖Ak‖ initially grow exponentially.

Only for k larger than around 1000 can one see the decay setting in. The initial growth

is likeω(A)k. Hereω(A) ≈ 1.25. In Figure 17 we have carried the computations further

to the value k = 104. Now one sees the decay also in ‖Ak‖.

Exercise 10.1. Try to verify some of the statements and results in this example.

Exercise 10.2. Try to modify the matrix in this example to a circulant matrix, i.e. a

matrix where each row is obtained from the previous one by a shift. Take for example

A =




0 1 0 · · · 0
1

4
1

4
0 1 · · · 0 0

0
1

4
0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

1 0 0 · · · 1

4
0




. (10.8)

Compute spectrum and pseudospectra using EigTool. Discuss the results you find.

What do the results tell you about a circulant matrix? Can you prove this property of a

circulant matrix?

Exercise 10.3. If you are familiar with functional analysis and Fourier analysis, you real-

ize that the infinite Toeplitz matrix is a convolution with the sequence bk. The circulant

matrix from the previous exercise is a convolution acting on N-periodic sequences. Thus

the spectra of both can be found using Fourier analysis.
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Figure 16: Plots of the powers ‖Ak‖ (red) and ‖Bk‖ (blue) up to k = 1600. Note that the

vertical scale is logarithmic. The straight line is a plot of 1.25k
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Figure 17: Plots of the powers ‖Ak‖ (red) and ‖Bk‖ (blue) up to k = 10000. Note that the

vertical scale is logarithmic. The straight line is a plot of 1.25k
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10.2 Differentiation matrices

Many problems to be solved numerically involve differentiation, for example solving a

differential equation numerically. There are various ways of doing this. Given a sequence

of points x = {x0, x1, . . . , xN} and function values u = {u0, u1, . . . , uN}, where uj =
f(xj), i.e. sampled values of a function. Then one would like to find approximately the

values of the derivative of f at the sample points, f ′(xj).
One such technique is the finite difference method. For equally spaced sample points

with xj − xj−1 = h one can approximate the first derivative by

f ′(xj) ≈
uj −uj−1

h
or f ′(xj) ≈

uj+1 −uj
h

.

The second derivative can be approximated by the following expression

f ′′(xj) ≈
uj+1 +uj−1 − 2uj

h2
.

If f is sufficiently smooth, then Taylor’s theorem implies that the error in the approxi-

mation to the first derivative above is of the order O(h) (meaning that it is bounded by

a constant depending on the second derivative of f multiplied by h). The symmetric dif-

ference used in approximating the second derivative is better in the sense that the error

is O(h2), with a constant depending on the fourth derivative of f . Since differentiation

is linear, the map from the points u to the approximate derivatives is a linear one,

w = DNu,

where DN is an (N + 1)× (N + 1) differentiation matrix.

Exercise 10.4. Use Taylor’s theorem to verify the order of approximation statements

above.

Exercise 10.5. In using the second derivative approximation above one will need the val-

ues u−1 and uN+1 to approximate the derivatives at the end points. Assume that these

values always are equal to zero (Dirichlet boundary condition). Then the matrix im-

plementing the second derivative is a Toeplitz matrix. Find it. If one instead assumes a

periodic boundary condition, which means u−1 = uN and uN+1 = u0, the matrix becomes

a circulant matrix. Find also this matrix.

The finite difference method requires a large number of sample points to give a

good approximation to the derivative, i.e. a small error. If one is willing to use an

irregular grid for sampling, then there is a class of efficient methods called spectral

differentiation methods. A particular case is the Chebyshev differentiation method. We

fix the interval to be [−1,1] (this can always be obtained by a simple change of variables).

The Chebyshev points are given by

xj = cos
(jπ
N

)
, j = 0,1,2, . . . , N. (10.9)
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Note that these points cluster at the boundary points −1 and 1 for N large. One can

visualize the points as the partition of the unit arc from 0 to π in N equal arcs, and the

division points projected onto the interval [−1,1], see Figure 18.

Figure 18: The Chebyshev points for N = 9

Note that we start the indexing from zero. In implementations vectors and matrices

usually have to be indexed with the index sequence starting from one. This gives some

extra, fairly trivial, bookkeeping to be taken care of.

Assume that we have grid points given by (10.9) and a sequence u = {u0, u1, . . . , uN}.
We compute the derivative sequence w as follows. Let p be the unique polynomial of

degree N or less, which interpolates the points (xj , uj), j = 0, . . . , N . This means that

the polynomial satisfies

p(xj) = uj , j = 0, . . . , N.

Then we compute the derivative sequence as

wj = p′(xj), j = 0, . . . , N.

Exercise 10.6. Prove the existence and uniqueness of the interpolating polynomial of

degree less than or equal to N for a sequence of N + 1 points, as stated above.

Since differentiation is linear, there is a matrix DN , the Chebyshev differentiation

matrix, such that w = DNu. We will not go through the derivation of the formula for DN .

The results can be found in [Tre00]. We state the result for reference. We have for the

off-diagonal elements

(DN)ij = ci
cj

(−1)i+j

xi − xj
, i ≠ j, i, j = 0,1,2, . . . , N. (10.10)

Here c0 = cN = 2, and ci = 1, i = 1, . . . , N − 1. The diagonal entries are determined by

the requirement that the sum of each row is zero.
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The last condition can easily be understood. If we take the sequence uj = 1, j =
0,1, . . . , N , then the interpolating polynomial is the constant one p(x) = 1. Its derivative

is of course zero. Thus for this sequence u we have

DNu = 0,

or written for each entry

(DNu)i =
N∑

j=0

(DN)ij = 0.

Here are the first three Chebyshev differentiation matrices. For N = 1 we have x0 = 1

and x1 = −1, and

D1 =



1

2
−1

2

1

2
−1

2


 .

For N = 2 we have x0 = 1, x1 = 0, and x2 = −1, and

D2 =




3

2
−2

1

2

1

2
0 −1

2

−1

2
2 −3

2


 .

For N = 3 we have x0 = 1, x1 = 1

2
, x2 = −1

2
, and x3 = −1. The matrix is given by

D3 =




19

6
−4

4

3
−1

2

1 −1

3
−1

1

3

−1

3
1

1

3
−1

1

2
−4

3
4 −19

6



.

One can easily check that none of the three matrices is normal. We have the estimate

‖DN‖ > N
2

3
.

The upper left hand corner in DN can be shown to be (2N2+1)/6, which establishes this

result. See [Tre00].

We also have that all matrices DN are nilpotent. More precisely, we have

(DN)
N+1 = 0.

This result is a simple consequence of the differentiation method, and the uniqueness

of the interpolating polynomial. For any u we have that (DN)N+1u is the vector obtained

by interpolating with respect to the samples u and then differentiate the interpolating

polynomial N + 1 times. Since the polynomial is of degree at most N , this derivative is

zero, irrespective of u, which proves the result.
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Exercise 10.7. Give the details in the argument leading to the conclusion that (DN)N+1 =
0. Note that the uniqueness of the interpolating polynomial is essential in this argument.

Now if one tries to verify the nilpotency numerically, one rapidly runs into trouble.

The same happens, if one wants to look at the behavior of ‖(DN)k‖ as a function of k. The

behavior using floating point computations is not at all the one that the mathematical

result predicts, even for fairly small N .

We will now try to illustrate this and other phenomena. Maple is very convenient for

making experiments, when the expected result depends on the computational precision,

since we can vary this parameter, in contrast to MATLAB, where there is little control of

the precision available to the user.

We take a small DN , with N = 5. Thus we expect that ‖(D5)k‖ will be zero for k ≥ 6.

Let us see how this works out numerically. We compute with three different precisions,

which in Maple is given by the variable Digits. We take the values 8, 16, and 32. The

results are shown in Figure 19. The same computations for N = 10 with the same values

for the variable Digits are shown in Figure 20.

0 5 10 15 20

 10 - 80

 10 - 64

 10 - 48

 10 - 32

 10 - 16

 100

Figure 19: Plots of the powers ‖(D5)k‖ for k = 0,1, . . . ,20, computed with three levels

of precision, given by the Maple variable Digits. Blue curve: Digits=8, green curve:

Digits=16, and red curve: Digits=32. Note that the vertical scale is logarithmic.

For N = 5 we see from Figure 19 that the norm decreases substantially for k = 6. The

following iterations show the effects of the rounding errors and how the results are im-
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Figure 20: Plots of the powers ‖(D10)k‖ for k = 0,1, . . . ,22, computed with three levels

of precision, given by the Maple variable Digits. Blue curve: Digits=8, green curve:

Digits=16, and red curve: Digits=32. Note that the vertical scale is logarithmic.

proved by increasing the precision. The same comments apply to Figure 20. If we carry

the computations to larger values for k in the case Digits=8 for D10, we see exponential

growth of the norms ‖D10)k‖. Recall that the spectrum of DN always is σ(DN) = {0},
since it is nilpotent. Thus the the numerical behavior is quite different from the mathe-

matical one given in Theorem 9.3. The computations are shown in Figure 21.

Now let us see what we can learn about the matricesDN by using pseudospectra. Due

to the norm growth ‖DN‖ ≍ N2 it is preferable to use a scaled version of the matrices

when computing the pseudospectra. Thus we take

D̃N = N−2DN

in our computations. The pseudospectra as computed in EigTool are shown in Fig-

ure 22, for the matrices D̃10 and D̃30. If we rescale by the N2 factor, we see that the resol-

vent norm is large far from the spectrum σ(DN) = {0}. Numerically the computed eigen-

values are not close to zero. We have ρ(D̃10) ≈ 2.865 · 10−3 and ρ(D̃30) ≈ 1.061 · 10−2.
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Figure 21: Plot of the powers ‖(D10)k‖ for k = 0,1, . . . ,45, computed with Digits=8.

Note that the vertical scale is logarithmic.

11 Some infinite dimensional examples

In this section we will discuss some infinite dimensional examples. A full understanding

of this section requires some knowledge of functional analysis and operator theory, see

for example the books [Dav07, Kat95, Lax02, RS80]. We will not give all the technical

details, in particular concerning the examples involving unbounded operators.

11.1 An infinite Toeplitz matrix

In this section we discuss an infinite Toeplitz matrix and its approximation by finite

matrices. The Hilbert space we use is

H = ℓ2(Z) = {x = (xn)n∈Z |
∞∑

n=−∞
|xn|2 <∞}

with the inner product given by

〈y,x〉 =
∞∑

n=−∞
ynxn.
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Figure 22: Pseudospectra of D̃N for N = 10 (left hand part) and N = 30 (right hand part)

The canonical basis for ℓ2(Z) is given by {ej}j∈Z, where

(ej)n = δjn.

Thus ej is the doubly infinite sequence with the jth entry equal to 1 and all other entries

equal to zero.

We also need the Fourier transform F : ℓ2(Z) → L2([−π,π]) and its inverse. They

are given by

(Fx)(ω) = 1√
2π

∞∑
n=−∞

xke
ikω, (11.1)

(F−1f)k = 1√
2π

∫ π
−π
e−ikωf(ω)dω. (11.2)

Note that another Fourier transform is defined in the next section, using the same sym-

bol F .

The sequence a is defined by

a = 2e1 + e5,

such that

an =




2 for n = 1,

1 for n = 5,

0 for n ∈ Z \ {1,5}.
We then define the operator A by Ax = a∗ x, where ∗ denotes convolution, such that

(Ax)n =
∞∑

k=−∞
an−kxk = 2xn−1 + xn−5, n ∈ Z. (11.3)

The operator A is clearly a bounded operator onH . Using the Fourier transform we find

that

(FAF−1f)(ω) = (2eiω + e5iω
)
f(ω).
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Thus A is unitarily equvalent with a multiplication operator. This implies that A is a

normal operator, and also that the spectrum is given by

σ(A) = {2eiω + e5iω |ω ∈ [−π,π]}. (11.4)

The spectrum is shown in Figure 23.

−4 −3 −2 −1 0 1 2 3 4
−4
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−2

−1

0

1

2

3

4

Figure 23: Spectrum of the operator A defined in (11.3).

The matrix of A with respect to the canonical basis is easily found from (11.3). Write

the matrix as [ajk]. Then aj,j+1 = 2, aj,j+5 = 1, and all other entries are zero. Thus it

looks like 


. . .
...

...
...

...
...

...
...

...
. . .

. . . 0 0 0 0 0 0 0 0 . . .

. . . 2 0 0 0 0 0 0 0 . . .

. . . 0 2 0 0 0 0 0 0 . . .

. . . 0 0 2 0 0 0 0 0 . . .

. . . 0 0 0 2 0 0 0 0 . . .

. . . 1 0 0 0 2 0 0 0 . . .

. . . 0 1 0 0 0 2 0 0 . . .

. . . 0 0 1 0 0 0 2 0 . . .
. . .

...
...

...
...

...
...

...
...

. . .




.

This matrix is called a banded Toeplitz matrix. We define the subspace

Hn = {x ∈ ℓ2(Z) |xk = 0 for all |k| > n}
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and denote by An the matrix of the restriction of A to this subspace, again with respect

to the canonical basis. Thus An is the truncated matrix. Actually we can consider any

finite truncation of the matrix. Due to the banded structure of the matrix of A all these

matrices will be finite banded Toeplitz matrices.

The numerical range of A is given by

W(A) = conv(σ(A)),

since A is normal, see Proposition 4.12. Then Theorem 4.13 shows that the numerical

range of A can be approximated numerically using the numerical ranges of the truncated

matrices An
The spectra of An do in no sense approximate the spectrum of A. This is easily seen

since each An is lower triangular with zeroes on the main diagonal. Thus (An)n = 0 for

all n such that for all n we have σ(An) = {0}.Clearly the point zero and the spectrum

of A are very different.

Let us now look at the pseudospectra. They approximate the spectrum in some sense,

however it is not as good an approximation as is seen in other examples. In Figure 24

we show some pseudospectra in the case n = 20 (a 41× 42 matrix), and in Figure 25 the

computations are repeated for n = 200. The spectrum of the infinite matrix is shown in

both figures, as a blue curve. The boundary of the numerical range of the finite matrix

is shown as the dashed black curve. We note that in the case n = 20 the approximation

to the convex hull of the spectrum of A is fairly good, but improves considerably for

n = 200. For n = 200 we are getting close to the limits of what one can compute with

EigTool. Note that the resolvent norm is larger than 1060 quite far from zero. Also note

how far out the contour for ε = 1010, when one goes from n = 20 to n = 200.

Exercise 11.1. Repeat the computations leading to Figure 24 and Figure 25. Try other

values of n. Note that you have to modify several of the parameters in EigTool to get

the figures shown here.

11.2 Advection-diffusion operator

Let H = L2(R). This space is defined as

L2(R) = {u : R→ C |
∫∞
−∞
|u(x)|2dx < ∞}.

The inner product is given by

〈u,v〉 =
∫∞
−∞
u(x)v(x)dx.

There are some technical matters concerning the integral, which has to be the Lebesgue

integral, and identification of functions that differ on a set of Lebesgue measure zero,

which we omit. The space L2(R) is a Hilbert space.
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Figure 24: Plot of the pseudospectra of the Toeplitz matrix A20. The black dashed curve

is the boundary of the numerical range of A20. The blue curve is the spectrum of the

infinite dimensional Toeplitz matrix A, see Figure 23.

Let us recall the definition of the Fourier transform F : H →H and its inverse. The

Fourier transform and its inverse are given by

(Fu)(ξ) = û(ξ) = 1√
2π

∫∞
−∞
u(x)e−ixξdx, (11.5)

(F−1v)(x) = v̌(x) = 1√
2π

∫∞
−∞
v(ξ)eixξdξ. (11.6)

Again, there are some technical details convergence of these integrals that we omit. The

operator F is unitary, due to the choice of the constant in front of the integral.

We let D denote the differentiation operator, such that Du(x) = u′(x). For u ∈ H
the differentiation is in the sense of distributions. The operator we want to consider is

given by

Aη = ηD2 +D, η > 0. (11.7)

It is defined on a dense subset ofH , consisting of all functionsuH such thatDu,D2u ∈
H . Let us explain a little about this operator. It occurs in several different places in

mathematical physics. It is related to the description of advection-diffusion, which is

sometimes also called convection-diffusion. The related time-dependent partial differ-

ential equation is
∂f

∂t
= η∂

2f

∂x2
+ ∂f
∂x
.
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Figure 25: Plot of the pseudospectra of the Toeplitz matrix A200. The black dashed curve

is the boundary of the numerical range of A200. The blue curve is the spectrum of the

infinite dimensional Toeplitz matrix A, see Figure 23.

The parameter η is the diffusion strength. If η is small, it is the drift term (advection)

that determines the behavior. The equation above can be solved by considering f(t, x)

as a function of t with values in H . Writing φ(t) = f(t, ·) the equation can be thought

of as the equation
d

dt
φ(t) = Aηφ(t)

with the (formal) solution

φ(t) = etAηφ(0).
All this can be made rigorous. See the references given above.

Thus it is clear that to understand the behavior of solutions to this partial differential

equation a good understanding of the operator Aη is desirable, including its spectrum,

its pseudospectra, and its numerical range.

To approximate numerically one could consider first a reduction to a finite interval,

and then a discretization of the operator on the finite interval, using spectral methods,

[Tre00]. We will carry out a number of steps in that direction and end up with some

numerical experiments based on the Chebyshev differentiation matrix from Section 10.2.

The spectrum of A is easy to determine using the Fourier transform. We have that

FAηF−1v(ξ) = (−ηξ2 + iξ)v(ξ). Thus we have

σ(Aη) = {−ηξ2 + iξ |ξ ∈ R}, (11.8)
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which is a parabola. This result also implies that A is a normal operator. The numerical

range of a normal operator is the convex hull of its spectrum, as mentioned after Propo-

sition 4.11, a result that also holds for unbounded normal operators. Thus we have the

result

W(Aη) = {x + iy |x ≤ −ηy2}, (11.9)

i.e. the parabola and its interior.

Now let us reduce to a problem on a finite interval. We take as our space H a =
L2([−a,a]), a > 0. The operator Aη is restricted to this space with Dirichlet boundary

conditions. This means that we consider Aη restricted to the dense set C∞0 ((−a,a)) (the

set of smooth functions with support in the open interval (−a,a)) and then take what is

called the closure of this operator. The closure is denoted by Aη,a. Informally stated the

functions in the domain of Aη,a must satisfy the two boundary conditions u(−a) = 0

and u(a) = 0. Details can be found in [Dav07, Lax02].

Now we determine the spectrum of Aη,a. We will use a change of dependent variable

to do this. Let M be the operator of multiplication by exp(−x/(2η)). It is a bounded

operator on H a wit the inverse equal to multiplication by exp(−x/(2η)). Thus we have

M−1Aη,aM = ηD2 − 1

4η
I = T η

by a straightforward calculation. The spectrum is preserved under a similarity trans-

form. We solve the eigenvalue problem for T η. Written explicitly as an ordinary differ-

ential equation problem, we have to solve the problem

ηu′′(x)− 1

4η
u(x) = λu(x), u(−a) = u(a) = 0.

The solution of this problem is completely elementary. One finds a sequence of eigen-

values

λk = − 1

4η
− ηπ

2k2

4a2
, k = 1,2,3, . . . , (11.10)

and corresponding normalized eigenfunctions

vk(x) =




1√
a

cos(πkx/(2a)), for k odd,

1√
a

sin(πkx/(2a)), for k even.

Using Fourier analysis one can verify that the functions {vk}k∈N form an orthonormal

basis of Ha. Thus we have shown that

σ(Aη,a) =
{
− 1

4η
− ηπ

2k2

4a2

∣∣∣k = 1,2,3, . . .

}
(11.11)
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The corresponding eigenfunctions (not normalized) are given by

vk(x) =


e−x/(2η) cos(πkx/(2a)), for k odd,

e−x/(2η) sin(πkx/(2a)), for k even.
(11.12)

Exercise 11.2. Carry out the details in the computations leading to (11.11) and (11.12).

Now the remarkable fact is that the spectra σ(Aη,a) do not converge or even approx-

imate the spectrum of σ(Aη) for large a. The spectra are all a sequence of points on the

negative real axis, whereas the spectrum of Aη is given by the parabola in (11.8).

However, the numerical ranges of Aη,a do approximate the numerical range of Aη

given in (11.9), due to Theorem 4.13.

We now look at what we can say about the pseudospectra in general. We have the

following result, where we for simplicity will take η = 1. Let us introduce the notation

P = {x + iy |x < −y2}.

Now given ε > 0 and λ ∈ P, there exists a0 > 0, such that λ ∈ σε(A1,a). The constant a0

depends on ε and λ. Thus the pseudospectra ‘fill up’ the interior of the parabola (11.8)

for η = 1, i.e. the spectrum of A1.

To prove this result we will use the characterization of the pseudospectra given in

Theorem 5.2(iii). Let r1 and r2 denote the roots of the polynomial z2 + z − λ, labelled in

such a manner that Re(r2 − r1) ≤ 0. It is a tedious elementary exercise to verify that for

λ ∈ P we have Re r1 < 0 and Re r2 < 0.

Choose a small δ > 0 and a function χ ∈ C∞(R), such that 0 ≤ χ(x) ≤ 1 for all x ∈ R,

and

χ(x) =



1 for x < −δ,
0 for x ≥ 0.

We now define

φa(x) = er1(x+a) − er2(x+a),

ψ̃a(x) = χ(x − a)φa(x),

ψa(x) = 1

ca
ψ̃a(x),

where

ca =
(∫ a

−a
|ψ̃a(x)|2dx

)1/2

.

With these definitions we have

ψa(−a) = ψa(a) = 0 and ‖ψa‖H a = 1.

This means that ψa is a smooth function satisfying the boundary conditions, so it be-

longs to the domain of A1,a. Furthermore it is normalized.
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A computation shows that we have

‖A1,aψa − λψa‖ ≤ ceRe r1(2a−δ). (11.13)

Thus we can determine an a0 > 0 such that for a > a0 we have ceRer1(2a−δ) < ε, which

verifies Theorem 5.2(iii).

Since the estimate (11.13) is not quite straightforward, we will give some of the de-

tails. First one notices that due to Re r1 < 0, Re r2 < 0, and the choice of φa, we get

that

0 <

∫∞
−∞
|ψ̃a(x)|2dx < ∞.

Thus we can determine a1 > 0 and 0 < C1 < C2 <∞ such that for a > a1 we have

C1 ≤ ca ≤ C2.

Next we use that r1 and r2 are the roots in the polynomial z2+z−λ to get that A1,aφa =
λφa. This leads to the result

A1,aψ̃a(x) = λψ̃a(x)+ χ′(x − a)φa(x)+ 2χ′(x − a)φ′a(x)+ χ′′(x − a)φa(x).

By construction the functions χ′(x−a) and χ′′(x−a) are nonzero only for a−δ ≤ x ≤ a.

Therefore we get an estimate

|φa(x)| ≤ 2eRer1(2a−δ), x ∈ [a− δ,a].

which leads to

|A1,aψ̃a(x)− λψ̃a(x)| ≤ ceRer1(2a−δ), x ∈ [a− δ,a],

and then

|A1,aψa(x)− λψa(x)| ≤ c

C1

eRer1(2a−δ), x ∈ [a− δ,a].

This estimate implies (11.13).

We will now discuss how to approximate Aη,a by a matrix, by using a discretization.

We here use the spectral method discussed in Section 10.2, the Chebyshev differentiation

matrix. As formulated in Section 10.2 this method is modelled on the differentiation

operator on the interval [−1,1]. Thus we should carry out a change of variables to get

from the interval [−a,a] to the interval [−1,1]. The map

Φ : L2([−a,a]) → L2([−1,1]), (Φu)(x) = √au(ax)

is unitary and performs the change of variables. We have

ΦAη,aΦ−1 = 1

a
Aη/a,1,
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as can be seen by a straightforward computation. Thus large a results can be obtained

by choosing η sufficiently small, and then scaling the results. Using the result from

Exercise 5.15 and the fact that Φ is unitary, we get that

σε(A
η,a) = 1

a
σε/a(A

η/a,1).

Given the Chebyshev differentiation matrix (10.10), we can impose the Dirichlet bound-

ary condition by deleting the first row. the first column, the last row, and the last column,

i.e. in MATLAB notation we take the matrix D(2 : N,2 : N) as the discretized differenti-

ation operator. Note that for a given N the matrix from (10.10) is an (N + 1) × (N + 1)

matrix, such that after deletion we end up with an (N − 1)× (N − 1) matrix.

In figure Figure 26 we show the result of a computation using EigTool, in the case

where N = 40 in (10.10) and η = 1/30. The black dashed curve is the parabola given

in (11.8). The results of similar computations for N = 100 and η = 1/30 are shown in

Figure 27, with the right hand part enlarged in Figure 28.

These numerical results again show that the pseudospectra may give good informa-

tion on the location of the spectrum of the infinite model.

Exercise 11.3. Verify the computations given above.

Exercise 11.4. Carry out further numerical experiments for various values of η.
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Figure 26: Plot of the pseudospectra of the discretized Aη,1 for η = 1/30 and N = 40 in

(10.10). The black dashed curve is the parabola (11.8).

These numerical results again show that the pseudospectra may give good informa-

tion on the location of the spectrum of the infinite model.
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Figure 27: Plot of the pseudospectra of the discretized Aη,1 for η = 1/30 and N = 100 in

(10.10). The black dashed curve is the parabola (11.8).

Exercise 11.5. Verify the computations given above.

Exercise 11.6. Carry out further numerical experiments for various values of η.
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Figure 28: Enlargement of the right hand part of Figure 27
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