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Paths and Reparametrizations in Differential Geometry

I = [0, 1] the unit interval.
path: p : I → Rn, continuous, differentiable on (0, 1).
regular path: p′(t) 6= 0, t ∈ (0, 1).
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Paths and Reparametrizations in Differential Geometry

I = [0, 1] the unit interval.
path: p : I → Rn, continuous, differentiable on (0, 1).
regular path: p′(t) 6= 0, t ∈ (0, 1).
reparametrization: ϕ : (I ; 0, 1) → (I , 0, 1), differentiable in (0, 1),
and ϕ′(t) 6= 0, i.e., strictly increasing.
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Paths and Reparametrizations in Differential Geometry

I = [0, 1] the unit interval.
path: p : I → Rn, continuous, differentiable on (0, 1).
regular path: p′(t) 6= 0, t ∈ (0, 1).
reparametrization: ϕ : (I ; 0, 1) → (I , 0, 1), differentiable in (0, 1),
and ϕ′(t) 6= 0, i.e., strictly increasing.
Consequence: For every path p and every reparametrization ϕ, p
and p ◦ ϕ have the same trace.
In differential geometry, one investigates invariants of the traces =
reparametrization equivalence classes of paths—e.g., curvature,
torsion.
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Paths and Reparametrizations in Topology
Basic Definitions and some Results

path: continuous map p : I → X , a Hausdorff space.
regular?, reparametrization?
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Paths and Reparametrizations in Topology
Basic Definitions and some Results

path: continuous map p : I → X , a Hausdorff space.
regular?, reparametrization?

Definition

◮ A path p : I → X is regular if it is constant or if there is no
interval [a, b], a 6= b on which p is constant.
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Paths and Reparametrizations in Topology
Basic Definitions and some Results

path: continuous map p : I → X , a Hausdorff space.
regular?, reparametrization?

Definition

◮ A path p : I → X is regular if it is constant or if there is no
interval [a, b], a 6= b on which p is constant.

◮ A continuous map ϕ : (I ; 0, 1) → (I ; 0, 1) is called a
reparametrization if it is increasing, i.e.,
0 ≤ s ≤ t ≤ 1 ⇒ ϕ(s) ≤ ϕ(t).
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Paths and Reparametrizations in Topology
Basic Definitions and some Results

path: continuous map p : I → X , a Hausdorff space.
regular?, reparametrization?

Definition

◮ A path p : I → X is regular if it is constant or if there is no
interval [a, b], a 6= b on which p is constant.

◮ A continuous map ϕ : (I ; 0, 1) → (I ; 0, 1) is called a
reparametrization if it is increasing, i.e.,
0 ≤ s ≤ t ≤ 1 ⇒ ϕ(s) ≤ ϕ(t).

◮ Two paths p, q : I → X are reparametrization equivalent if
there exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.
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Paths and Reparametrizations in Topology
Basic Definitions and some Results

path: continuous map p : I → X , a Hausdorff space.
regular?, reparametrization?

Definition

◮ A path p : I → X is regular if it is constant or if there is no
interval [a, b], a 6= b on which p is constant.

◮ A continuous map ϕ : (I ; 0, 1) → (I ; 0, 1) is called a
reparametrization if it is increasing, i.e.,
0 ≤ s ≤ t ≤ 1 ⇒ ϕ(s) ≤ ϕ(t).

◮ Two paths p, q : I → X are reparametrization equivalent if
there exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.

Theorem

◮ Reparametrization equivalence is an equivalence relation.
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Paths and Reparametrizations in Topology
Basic Definitions and some Results

path: continuous map p : I → X , a Hausdorff space.
regular?, reparametrization?

Definition

◮ A path p : I → X is regular if it is constant or if there is no
interval [a, b], a 6= b on which p is constant.

◮ A continuous map ϕ : (I ; 0, 1) → (I ; 0, 1) is called a
reparametrization if it is increasing, i.e.,
0 ≤ s ≤ t ≤ 1 ⇒ ϕ(s) ≤ ϕ(t).

◮ Two paths p, q : I → X are reparametrization equivalent if
there exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.

Theorem

◮ Reparametrization equivalence is an equivalence relation.

◮ Every path is reparametrization equivalent to a regular path.
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Tools: Stop intervals, stop values, stop map etc.

Definition

◮ Given a path p in X . An interval [a, b] ⊂ I is a p-stop interval
if it is a maximal interval on which p is constant.

◮ Let P[ ](I ) = {[a, b] | 0 ≤ a < b ≤ 1}. Then ∆(p) ⊂ P[ ](I ) is
the (ordered) subset consisting of all p-stop intervals.
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Tools: Stop intervals, stop values, stop map etc.

Definition

◮ Given a path p in X . An interval [a, b] ⊂ I is a p-stop interval
if it is a maximal interval on which p is constant.

◮ Let P[ ](I ) = {[a, b] | 0 ≤ a < b ≤ 1}. Then ∆(p) ⊂ P[ ](I ) is
the (ordered) subset consisting of all p-stop intervals.

◮ An element c ∈ X is a p-stop value if there is a p-stop
interval J ∈ ∆p with p(J) = {c}. We let Cp ⊆ X denote the
set of all p-stop values.
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Tools: Stop intervals, stop values, stop map etc.

Definition

◮ Given a path p in X . An interval [a, b] ⊂ I is a p-stop interval
if it is a maximal interval on which p is constant.

◮ Let P[ ](I ) = {[a, b] | 0 ≤ a < b ≤ 1}. Then ∆(p) ⊂ P[ ](I ) is
the (ordered) subset consisting of all p-stop intervals.

◮ An element c ∈ X is a p-stop value if there is a p-stop
interval J ∈ ∆p with p(J) = {c}. We let Cp ⊆ X denote the
set of all p-stop values.

◮ p induces the p-stop map Fp : ∆p → Cp with
Fp(J) = c ⇔ p(J) = {c}.
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Tools: Stop intervals, stop values, stop map etc.

Definition

◮ Given a path p in X . An interval [a, b] ⊂ I is a p-stop interval
if it is a maximal interval on which p is constant.

◮ Let P[ ](I ) = {[a, b] | 0 ≤ a < b ≤ 1}. Then ∆(p) ⊂ P[ ](I ) is
the (ordered) subset consisting of all p-stop intervals.

◮ An element c ∈ X is a p-stop value if there is a p-stop
interval J ∈ ∆p with p(J) = {c}. We let Cp ⊆ X denote the
set of all p-stop values.

◮ p induces the p-stop map Fp : ∆p → Cp with
Fp(J) = c ⇔ p(J) = {c}.

Proposition

The sets ∆p and Cp are at most countable.
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Reparametrizations in their own right

Inc+(I ) := {ϕ : (I ; 0, 1) → (I ; 0, 1) | ϕ increasing } ⊃
Rep+(I ) := {ϕ ∈ Inc+(I ) | ϕ continuous } ⊃ a monoid
Homeo+(I ) := {ϕ ∈ Rep+(I ) | ϕ homeomorphic } a group
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Reparametrizations in their own right

Inc+(I ) := {ϕ : (I ; 0, 1) → (I ; 0, 1) | ϕ increasing } ⊃
Rep+(I ) := {ϕ ∈ Inc+(I ) | ϕ continuous } ⊃ a monoid
Homeo+(I ) := {ϕ ∈ Rep+(I ) | ϕ homeomorphic } a group

Fact
An element ϕ ∈ Inc+(I ) is contained in

◮ Rep+(I ) ⇔ ϕ is surjective,

◮ Homeo+(I ) ⇔ ϕ is bijective
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Reparametrizations in their own right

Inc+(I ) := {ϕ : (I ; 0, 1) → (I ; 0, 1) | ϕ increasing } ⊃
Rep+(I ) := {ϕ ∈ Inc+(I ) | ϕ continuous } ⊃ a monoid
Homeo+(I ) := {ϕ ∈ Rep+(I ) | ϕ homeomorphic } a group

Fact
An element ϕ ∈ Inc+(I ) is contained in

◮ Rep+(I ) ⇔ ϕ is surjective,

◮ Homeo+(I ) ⇔ ϕ is bijective

Figure: Stop intervals and stop values of a reparametrization
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All countable sets are stop value sets!

Proposition

For every (at most) countable set C ⊂ I , there is a
reparametrization ϕ ∈ Rep+(I ) with Cϕ = C.
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All countable sets are stop value sets!

Proposition

For every (at most) countable set C ⊂ I , there is a
reparametrization ϕ ∈ Rep+(I ) with Cϕ = C.

Proof.

1. Construct a sequence of piecewise linear maps ϕn ∈ Rep+(I )

x
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x
k−

c
n

x
n−

x
n+

Figure: Inserting the stop value cn

inserting one stop value cn at a time.
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All countable sets are stop value sets!

Proposition

For every (at most) countable set C ⊂ I , there is a
reparametrization ϕ ∈ Rep+(I ) with Cϕ = C.

Proof.

1. Construct a sequence of piecewise linear maps ϕn ∈ Rep+(I )

x
i+

x
k−

c
n

x
n−

x
n+

Figure: Inserting the stop value cn

inserting one stop value cn at a time.

2. Make sure that ‖ ϕn+1 − ϕn ‖< 1
2n to ensure uniform

convergence,
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Classification of Reparametrizations - Questions
Focusing on the combinatorial data

Given

◮ an at most countable subset ∆ ⊂ P[ ](I ) of disjoint closed
intervals

◮ an at most countable subset C ⊂ I and

◮ an order-preserving bijection F : ∆ → C
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Classification of Reparametrizations - Questions
Focusing on the combinatorial data

Given

◮ an at most countable subset ∆ ⊂ P[ ](I ) of disjoint closed
intervals

◮ an at most countable subset C ⊂ I and

◮ an order-preserving bijection F : ∆ → C

1. Is there a reparametrization ϕ ∈ Rep+(I ) suc that
∆ϕ = ∆,Cϕ = C ,Fϕ = F?

2. How many?
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Classification of Reparametrizations - Answers

1. Yes iff the following conditions are met for Jn,Km ∈ ∆:
For max Jn ↑ x ∈ I ,min Kn ↓ y ∈ I :

1.1 x = y ⇒ limF (Jn) = limF (Kn),
1.2 x < y ⇒ limF (Jn) < limF (Kn),
1.3 x = 1 ⇒ limF (Jn) = 1,
1.4 y = 0 ⇒ limF (Kn) = 0.
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Classification of Reparametrizations - Answers

1. Yes iff the following conditions are met for Jn,Km ∈ ∆:
For max Jn ↑ x ∈ I ,min Kn ↓ y ∈ I :

1.1 x = y ⇒ limF (Jn) = limF (Kn),
1.2 x < y ⇒ limF (Jn) < limF (Kn),
1.3 x = 1 ⇒ limF (Jn) = 1,
1.4 y = 0 ⇒ limF (Kn) = 0.

2. Let D =
⋃

J∈∆ (the stop set), O = I \ D̄ =
⋃

J∈Γ (the move
set, Js: disjoint maximal open intervals):
The set of reparametrizations with stop map F is in
one-to-one correspondence with

∏
J∈Γ Homeo+(I ).
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Classification of Reparametrizations - Answers

1. Yes iff the following conditions are met for Jn,Km ∈ ∆:
For max Jn ↑ x ∈ I ,min Kn ↓ y ∈ I :

1.1 x = y ⇒ limF (Jn) = limF (Kn),
1.2 x < y ⇒ limF (Jn) < limF (Kn),
1.3 x = 1 ⇒ limF (Jn) = 1,
1.4 y = 0 ⇒ limF (Kn) = 0.

2. Let D =
⋃

J∈∆ (the stop set), O = I \ D̄ =
⋃

J∈Γ (the move
set, Js: disjoint maximal open intervals):
The set of reparametrizations with stop map F is in
one-to-one correspondence with

∏
J∈Γ Homeo+(I ).

The first answer above opens up for a combinatorial study of
reparametrizations.
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Algebra: Compositions and Factorizations – Questions
through stop maps

1. Given ϕ, ψ ∈ Rep+(I ) with associated stop maps
Fϕ : ∆ϕ → Cϕ,Fψ : ∆ψ → Cψ.
Composition: Give a description of ∆φ◦ψ,Cφ◦ψ,Fφ◦ψ.
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Algebra: Compositions and Factorizations – Questions
through stop maps

1. Given ϕ, ψ ∈ Rep+(I ) with associated stop maps
Fϕ : ∆ϕ → Cϕ,Fψ : ∆ψ → Cψ.
Composition: Give a description of ∆φ◦ψ,Cφ◦ψ,Fφ◦ψ.

2. Let α, ϕ ∈ Rep+(I ).
Under which conditions are there factorizations

I

ϕ

��

I

ϕ

��

α // I

I
α //

ψ
@@�

�
�

�
I resp. I

ψ

@@�
�

�
�

?

Martin Raussen Aalborg University, Denmark Reparametrizations of Continuous Paths



Compositions and Factorizations – Selected Answers

1. Cϕ◦ψ = φ(Cψ) ∪ Cϕ.
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Compositions and Factorizations – Selected Answers

1. Cϕ◦ψ = φ(Cψ) ∪ Cϕ.

2. 2.1 if and only if Cϕ ⊆ Cα.
In that case Cψ can be chosen arbitrarily in the range
ϕ−1(Cα \ Cϕ) ⊆ Cψ ⊆ ϕ−1(Cα \ Cϕ) ∪ Dϕ.

2.2 if and only if there exists a map iϕα : ∆ϕ → ∆α such that
J ⊆ iϕα(J) for every J ∈ ∆ϕ. (∆ϕ is a refinement of ∆α).
If so, ψ is uniquely determined.
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Compositions and Factorizations – Selected Answers

1. Cϕ◦ψ = φ(Cψ) ∪ Cϕ.

2. 2.1 if and only if Cϕ ⊆ Cα.
In that case Cψ can be chosen arbitrarily in the range
ϕ−1(Cα \ Cϕ) ⊆ Cψ ⊆ ϕ−1(Cα \ Cϕ) ∪ Dϕ.

2.2 if and only if there exists a map iϕα : ∆ϕ → ∆α such that
J ⊆ iϕα(J) for every J ∈ ∆ϕ. (∆ϕ is a refinement of ∆α).
If so, ψ is uniquely determined.

Lifts are constructed using the stop maps discussed previously.
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The algebra of reparametrizations up to homeomorphisms

Consider the group action
Rep+(I ) × Homeo+(I ) → Rep+(I ), (ϕ, ψ) 7→ ϕ ◦ ψ.
Along an orbit, the stop values are preserved.
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The algebra of reparametrizations up to homeomorphisms

Consider the group action
Rep+(I ) × Homeo+(I ) → Rep+(I ), (ϕ, ψ) 7→ ϕ ◦ ψ.
Along an orbit, the stop values are preserved.
More precisely: let Pc(I ) denote the set of countable subsets of I .

Proposition

C : Rep+(I )/Homeo+(I ) → Pc(I ), C ([α]) = Cα is a bijection.
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The algebra of reparametrizations up to homeomorphisms

Consider the group action
Rep+(I ) × Homeo+(I ) → Rep+(I ), (ϕ, ψ) 7→ ϕ ◦ ψ.
Along an orbit, the stop values are preserved.
More precisely: let Pc(I ) denote the set of countable subsets of I .

Proposition

C : Rep+(I )/Homeo+(I ) → Pc(I ), C ([α]) = Cα is a bijection.

The map C becomes even an isomorphism of distributive lattices
with natural operations corresponding to ∪,∩, e.g.:

Proposition

For every ϕ1, ϕ2 ∈ Rep+(I ), there exist ψ1, ψ2 ∈ Rep+(I )

completing the diagram I
ψ1 //___

ψ2

���
�
� I

ϕ1

��
I ϕ2

// I

with Cϕ1◦ψ1
= Cϕ2◦ψ2

= Cϕ1 ∪ Cϕ2 .
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Reparametrization equivalence is an equivalence relation

Definition
Two paths p, q : I → X are reparametrization equivalent if there
exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.
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Reparametrization equivalence is an equivalence relation

Definition
Two paths p, q : I → X are reparametrization equivalent if there
exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.

Theorem
Reparametrization equivalence is an equivalence relation.
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Reparametrization equivalence is an equivalence relation

Definition
Two paths p, q : I → X are reparametrization equivalent if there
exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.

Theorem
Reparametrization equivalence is an equivalence relation.

Proof.
Transitivity: Assume p ◦ ϕ = q ◦ ψ and q ◦ ϕ′ = r ◦ ψ′ for paths
p, q, r ∈ P(X ) and reparametrizations ϕ,ϕ′, ψ, ψ′ ∈ Rep+(I ).
There are reparametrizations η, η′ ∈ Rep+(I ) such that
ψ ◦ η = ϕ′ ◦ η′; hence p ◦ ϕ ◦ η = r ◦ ψ′ ◦ η′.
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Every path is reparametrization equivalent to a regular path

Theorem
For every path p in X , there exists a regular path q in X and a
reparametrization ϕ such that p = q ◦ ϕ.
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Every path is reparametrization equivalent to a regular path

Theorem
For every path p in X , there exists a regular path q in X and a
reparametrization ϕ such that p = q ◦ ϕ.

Proof.
(using results on reparametrizations!)

1. Define m : ∆p → I the “midpoint” map on the stop intervals;
C = m(∆p) ⊂ I .
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Every path is reparametrization equivalent to a regular path

Theorem
For every path p in X , there exists a regular path q in X and a
reparametrization ϕ such that p = q ◦ ϕ.

Proof.
(using results on reparametrizations!)

1. Define m : ∆p → I the “midpoint” map on the stop intervals;
C = m(∆p) ⊂ I .

2. m : ∆p → C is the stop function of a reparametrization
ϕ—check 4 conditions!

Martin Raussen Aalborg University, Denmark Reparametrizations of Continuous Paths



Every path is reparametrization equivalent to a regular path

Theorem
For every path p in X , there exists a regular path q in X and a
reparametrization ϕ such that p = q ◦ ϕ.

Proof.
(using results on reparametrizations!)

1. Define m : ∆p → I the “midpoint” map on the stop intervals;
C = m(∆p) ⊂ I .

2. m : ∆p → C is the stop function of a reparametrization
ϕ—check 4 conditions!

3. There is a factorization I
p

//

ϕ

��

X

I

q

??�
�

�
�

through a regular path q.

Check continuity!
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Traces = Regular Traces

P(X )(x , y) space of paths p in X with p(0) = x and p(y) = 1
R(X )(x , y) space of regular paths p in X with p(0) = x and
p(y) = 1
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Traces = Regular Traces

P(X )(x , y) space of paths p in X with p(0) = x and p(y) = 1
R(X )(x , y) space of regular paths p in X with p(0) = x and
p(y) = 1
T (X )(x , y) quotient space of paths up to reparametrization
equivalence
TR(X )(x , y) quotient space of regular paths up to stricly
increasing reparametrizations

Martin Raussen Aalborg University, Denmark Reparametrizations of Continuous Paths



Traces = Regular Traces

P(X )(x , y) space of paths p in X with p(0) = x and p(y) = 1
R(X )(x , y) space of regular paths p in X with p(0) = x and
p(y) = 1
T (X )(x , y) quotient space of paths up to reparametrization
equivalence
TR(X )(x , y) quotient space of regular paths up to stricly
increasing reparametrizations

Theorem
For every two points x , y ∈ X in a Hausdorff space X , the map
i : TR(X )(x , y) → T (X )(x , y) is a homeomorphism.
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Traces = Regular Traces

P(X )(x , y) space of paths p in X with p(0) = x and p(y) = 1
R(X )(x , y) space of regular paths p in X with p(0) = x and
p(y) = 1
T (X )(x , y) quotient space of paths up to reparametrization
equivalence
TR(X )(x , y) quotient space of regular paths up to stricly
increasing reparametrizations

Theorem
For every two points x , y ∈ X in a Hausdorff space X , the map
i : TR(X )(x , y) → T (X )(x , y) is a homeomorphism.

Corollary

R(X )(x , y) and T (X )(x , y) are homotopy equivalent.
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Traces = Regular Traces on saturated d-spaces

d-space (Grandis):
a topological space with a set ~P(X ) ⊂ P(X ) of directed paths,
closed under (increasing) reparametrizations and under
concatenation.
saturated d-space:
If p ∈ P(X ), ϕ ∈ Rep+(I ) and p ◦ ϕ ∈ ~P(X ), then p ∈ ~P(X ).
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Traces = Regular Traces on saturated d-spaces

d-space (Grandis):
a topological space with a set ~P(X ) ⊂ P(X ) of directed paths,
closed under (increasing) reparametrizations and under
concatenation.
saturated d-space:
If p ∈ P(X ), ϕ ∈ Rep+(I ) and p ◦ ϕ ∈ ~P(X ), then p ∈ ~P(X ).

Corollary

Let X denote a saturated d-space and let x , y ∈ X. The map
~i : ~TR(X )(x , y) → ~T (X )(x , y) induced by inclusion
~R(X )(x , y) →֒ ~P(X )(x , y) is a homeomorphism.
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Traces = Regular Traces on saturated d-spaces

d-space (Grandis):
a topological space with a set ~P(X ) ⊂ P(X ) of directed paths,
closed under (increasing) reparametrizations and under
concatenation.
saturated d-space:
If p ∈ P(X ), ϕ ∈ Rep+(I ) and p ◦ ϕ ∈ ~P(X ), then p ∈ ~P(X ).

Corollary

Let X denote a saturated d-space and let x , y ∈ X. The map
~i : ~TR(X )(x , y) → ~T (X )(x , y) induced by inclusion
~R(X )(x , y) →֒ ~P(X )(x , y) is a homeomorphism.

d-spaces are used to model concurrency geometrically—directed
paths model concurrent executions. The Corollary opens up for an
algebraic topological and categorical investigation of the spaces of
traces (concatenation is associative!) via functors from algebraic
topology (homotopy, homology etc.)
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