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Intro: State space, directed paths and trace space
Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA

State space:
a 3D cube~I3 \ F
minus 4 box obstructions
pairwise connected

Path space model contained
in torus (∂∆2)2 –
homotopy equivalent to a
wedge of two circles and a
point: (S1 ∨ S1) t ∗

Analogy in standard algebraic topology
Relation between space X and loop space ΩX .
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Intro: State space and trace space
with loops

Example 2: Punctured torus

• • • •

• •
X

• •

• N • •

• • • •

State space: Punctured torus
X and branch point N:
2D torus ∂∆2 × ∂∆2 with a
rectangle ∆1 × ∆1 removed

Path space model:
Discrete infinite space of
dimension 0 corresponding
to {r ,u}∗.

Question: Path space for a
punctured torus in higher
dimensions?
Joint work with L. Fajstrup
and K. Ziemiański.
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Motivation: Concurrency
Semaphores: A simple model for mutual exclusion

Mutual exclusion
occurs, when n processes Pi compete for m resources Rj .

Only k processes can be served at any given time.

Semaphores
Semantics: A processor has to lock a resource and to
relinquish the lock later on!
Description/abstraction: Pi : . . . PRj . . . VRj . . . (E.W. Dijkstra)
P: probeer; V : verhoog
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A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Unsafe

Un−

reachable

T1

T2

Pa Pb Vb Va

Pb

Pa

Va

Vb

(0,0)

(1,1)

PV-diagram from
P1 : PaPbVbVa
P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).
Dipaths that are dihomotopic
(through a 1-parameter
deformation consisting of
dipaths) correspond to
equivalent executions.
Deadlocks, unsafe and
unreachable regions may
occur.
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Simple Higher Dimensional Automata
Semaphore models

The state space
A linear PV-program is modeled as the complement of a
forbidden region F consisting of a number of holes in an
n-cube:

Hole = isothetic hyperrectangle
R i =]ai

1,b
i
1[× · · · ×]ai

n,bi
n[⊂ In,1 ≤ i ≤ l :

with minimal vertex ai and maximal vertex bi .
State space X =~In \ F , F =

⋃l
i=1 R i

X inherits a partial order from~In. d-paths are order
preserving.

More general concurrent programs HDA

Higher Dimensional Automata (HDA, V. Pratt; 1990):
Cubical complexes: like simplicial complexes,
with (partially ordered) hypercubes instead of simplices as
building blocks.
d-paths are order preserving.
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Spaces of d-paths/traces – up to dihomotopy
Schedules

Definition
X a d-space, a,b ∈ X .
p :~I → X a d-path in X (continuous and
“order-preserving”) from a to b.
~P(X )(a,b) = {p :~I → X | p(0) = a,p(b) = 1,p a d-path}.
Trace space ~T (X )(a,b) = ~P(X )(a,b) modulo
increasing reparametrizations.
In most cases: ~P(X )(a,b) ' ~T (X )(a,b).
A dihomotopy in ~P(X )(a,b) is a map H :~I × I → X such
that Ht ∈ ~P(X )(a,b), t ∈ I; ie a path in ~P(X )(a,b).

Aim:

Description of the homotopy type of ~P(X )(a,b) as explicit finite
dimensional (prod-)simplicial complex.
In particular: its path components, ie the dihomotopy classes of
d-paths (executions).
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Tool: Subspaces of X and of ~P(X )(0,1)

X =~In \ F ,F =
⋃l

i=1 R i ;R i = [ai ,bi ];0,1 the two corners in In.

Definition
1 Xij = {x ∈ X | x ≤ bi ⇒ xj ≤ ai

j} –
direction j restricted at hole i

2 M a binary l × n-matrix: XM =
⋂

mij=1 Xij –
Which directions are restricted at which hole?

Examples: two holes in 2D – one hole in 3D (dark)
M =[
1 0
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 1
0 1

]
M =
[100] [010] [001]
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Covers by contractible (or empty) subspaces
Bookkeeping with binary matrices

Binary matrices
Ml,n poset (≤) of binary l × n-matrices

MR,∗
l,n no row vector is the zero vector –

every hole obstructed in at least one direction

A cover by contractible subspaces

Theorem
1

~P(X )(0,1) =
⋃

M∈MR,∗
l,n

~P(XM)(0,1).

2 Every path space ~P(XM)(0,1),M ∈ MR,∗
l,n , is

empty or contractible. Which is which?

Proof.

Subspaces XM ,M ∈ MR,∗
l,n are closed under ∨ = l.u.b.
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A combinatorial model and its geometric realization
First examples

Combinatorics
poset category
C(X )(0,1) ⊆ MR,∗

l,n ⊆ Ml,n
M ∈ C(X )(0,1) “alive”

Topology:
prodsimplicial complex
T(X )(0,1) ⊆ (∆n−1)l

∆M = ∆m1 × · · · × ∆ml ⊆
T(X )(0,1) – one simplex ∆mi

for every hole
⇔ ~P(XM)(0,1) 6= ∅.

Examples of path spaces

[
1 0
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 1
0 1

]
T(X1)(0,1) = (∂∆1)2

= 4∗
T(X2)(0,1) = 3∗

⊃ C(X )(0,1)
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Further examples

State spaces, “alive” matrices and path spaces

1 X =~In \~Jn

C(X )(0,1) =
MR,∗

1,n \ {[1, . . . ,1]}.
T(X )(0,1) =
∂∆n−1 ' Sn−2.

2 X =~In \ (~Jn
0 ∪~Jn

1 )
C(X )(0,1) =
MR,∗

2,n \ matrices
with a
[1, . . . ,1]-row.
T(X )(0,1) '
Sn−2 × Sn−2.

t0

t1

t2

t0

t1

t2 0

1

t0

t1

t2

t0

t1

t2

[
1 0 0
0 0 1

] [
0 0 0
1 1 1

]
alive dead
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Homotopy equivalence between path space
~P(X )(0,1) and prodsimplicial complex T(X )(0,1)

Theorem (A variant of the nerve lemma)

~P(X )(0,1) ' T(X )(0,1) ' ∆C(X )(0,1).

Proof.

Functors D, E , T : C(X )(0,1)(op) → Top:
D(M) = ~P(XM)(0,1),
E(M) = ∆M ,
T (M) = ∗
colim D = ~P(X )(0,1), colim E = T(X )(0,1),
hocolim T = ∆C(X )(0,1).
The trivial natural transformations D ⇒ T , E ⇒ T yield:
hocolim D ' hocolim T ∗ ' hocolim T ' hocolim E .
Projection lemma:
hocolim D ' colim D, hocolim E ' colim E .
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From C(X )(0,1) to properties of path space
Questions answered by homology calculations using T(X )(0,1)

Questions

Is ~P(X )(0,1) path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?
Determination of path-components?
Are components simply connected?
Other topological properties?

Strategies – Attempts

Implementation of T(X )(0,1) in ALCOOL at CEA/LIX-lab.:
Goubault, Haucourt, Mimram
The prodsimplicial structure on C(X )(0,1)↔ T(X )(0,1)
leads to an associated chain complex of vector spaces
over a field.
Use fast algorithms (eg Mrozek’s CrHom etc) to calculate
the homology groups of these chain complexes even for
quite big complexes: M. Juda (Krakow).
Number of path-components: rkH0(T(X )(0,1)).
For path-components alone, there are fast “discrete”
methods, that also yield representatives in each path
component (ALCOOL).
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Open problem: Huge complexes – complexity

Huge prodsimplicial complexes
l obstructions, n processors:
T(X )(0,1) is a subcomplex of (∂∆n−1)l :
potentially a huge high-dimensional complex.

Possible antidotes
Smaller models? Make use of partial order among the
obstructions R i , and in particular the inherited partial order
among their extensions R i

j with respect to ⊆.
Work in progress: yields simplicial complex of far smaller
dimension!
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Open problems: Variation of end points
Conncection to MD persistence?

Components?!

So far: ~T (X )(0,1) - fixed end points.
Now: Variation of ~T (X )(a,b) of start and end point, giving
rise to filtrations.
At which thresholds do homotopy types change?
How to cut up X × X into components so that the
homotopy type of trace spaces with end point pair in a
component is invariant?
Birth and death of homology classes?
Compare with multidimensional persistence (Carlsson,
Zomorodian).
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Case: d-paths on a punctured torus

Punctured torus and n-space

n-torus T n = Rn/Zn .
forbidden region F n = ([1

4 ,
3
4 ]

n + Zn)/Zn ⊂ T n.
punctured torus Y n = T n \ F n

punctured n-space a Ỹ n = Rn \ ([1
4 ,

3
4 ]

n + Zn)

with d-paths from quotient map Rn ↓ T n.
auniversal cover

Aim: Describe the homotopy type of ~P(Y ) = ~P(Y )(0,0)

~P(Y ) ↪→ ΩY (0,0) disjoint union ~P(Y ) =
⊔

k≥0
~P(k)(Y )

with multiindex = multidegree k = (k1, . . . , kn) ∈ Zn
+, ki ≥ 0.

~P(k)(Y ) ∼= ~P(Ỹ n)(0,k) =: Z (k).
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Path spaces as colimits

Category J (n)

Poset category of proper non-empty subsets of [1 : n] with
inclusions as morphisms.
Via characteristic functions isomorphic to the category of
non-identical bit sequences of length n: ε = (ε1, . . . εn) ∈ J (n).
BJ (n) ∼= ∂∆n−1 ∼= Sn−2.

Definition

Uε(k) := {x ∈ Rn| ε j = 1⇒ xj ≤ kj − 3
4 or ∃i : xi ≥ ki − 1

4}
Zε(k) := ~P(Uε(k))(0,k).

Lemma
Zε(k) ' Z (k− ε).

Theorem
Z (k) = colimε∈J (n) Zε(k) ' hocolimε∈J (n) Zε(k) '
hocolimε∈J (n) Z (k− ε).
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An equivalent homotopy colimit construction

Inductive homotopy colimites

Using the category J (n) construct for k ∈ Zn,k ≥ 0:
X (k) = ∗ if ∏n

1 ki = 0;
X (k) = hocolimε∈J (n) X (k− ε).

By construction k ≤ l⇒ X (k) ⊆ X (l); X (1) ∼= ∂∆n−1.

Inductive homotopy equivalences

q(k) : Z (k)→ X (k):

∏n
1 ki = 0⇒ Z (k) contractible, X (k) = ∗

q(k) = hocolimε∈J (n) q(k− ε) : Z (k) ∼=
hocolimε∈J (n) Z (k− ε)→ hocolimε∈J (n) X (k− ε) = X (k).
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Homology and cohomology of space Z (k) of d-paths

Definition
l� m ∈ Zn

+ ⇔ lj < mj ,1 ≤ j ≤ n.
On = {(l,m)| l� m or m� l} ⊂ Zn

+ × Zn
+.

B(k) := Zn
+(≤ k)× Zn

+(≤ k) \ On.
I(k) :=< lm| (l,m) ∈ B(k) >≤ Z[Zn

+(≤ k)].

Theorem
For n > 2, H∗(Z (k)) = Z[Zn

+(≤ k)]/I(k).
H∗(Z (k)) ∼= H∗(Z (k)) as abelian groups.

Proof
Spectral sequence argument, using projectivity of the functor
H∗ : J (n)→ Ab∗, k 7→ H∗(Z (k))
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Interpretation via cube sequences
Betti numbers

Cube sequences

[a∗] := [0� a1 � a2 � · · · � ar = l] ∈ An
r (n−2)(l) - of size

l ∈ Zn
+, length r and degree r (n− 2).

An
∗(∗) the free abelian group generated by all cube sequences.

An
∗(≤ k) :=

⊕
l≤k An

∗(l).
Hr (n−2)(Z (k)) ∼= An

r (n−2)(≤ k) – generated by cube sequences
of length r and size ≤ k.

Betti numbers of Z (k)

Theorem

n = 2: β0 = (k1+k2
k1

); βj = 0, j > 0;

n > 2: β0 = 1, βi(n−2) = ∏n
1 (

kj
i ), βj = 0 else.

Corollary
1 Small homological dimension of Z (k): (minj kj)(n− 2).
2 Duality: For k = (k , . . . , k), βi(Z (k)) = βk(n−2)−i(Z (k)).

Why?
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To conclude

Conclusions and challenges

From a (rather compact) state space model (shape of data)
to a finite dimensional trace space model (represent
shape).
Calculations of invariants (Betti numbers) of path space
possible for state spaces of a moderate size (measuring
shape).
Dimension of trace space model reflects not the size but
the complexity of state space (number of obstructions,
number of processors); still: curse of dimensionality.
Challenge: General properties of path spaces for
algorithms solving types of problems in a distributed
manner?
Connections to the work of Herlihy and Rajsbaum
protocol complex etc
Challenge: Morphisms between HDA d-maps between
cubical state spaces functorial maps between trace
spaces. Properties? Equivalences?
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Want to know more?
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Advertisement for ACAT
Thank you!

ESF network ACAT

Applied and Computational Algebraic Topology
http:
//www.esf.org/acat

http://acat.lix.
polytechnique.fr/

Thank you for your attention!
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