Spaces of executions as simplicial complexes

Martin Raussen

Department of Mathematical Sciences Aalborg University Denmark

Topological data analysis and machine learning theory

BIRS

October 18, 2012

Table of Contents

Agenda Examples: State spaces and associated path spaces in Higher Dimensional Automata (HDA) Motivation: Concurrency Simplest case: State spaces and path spaces related to linear **PV-programs** Tool: Cutting up path spaces into contractible subspaces Homotopy type of path space described by a matrix poset category and realized by a prodsimplicial complex Algorithmics: Detecting dead and alive subcomplexes/matrices Outlook: How to handle general HDA – with directed loops Case: Directed loops on a punctured torus (joint with L. Fajstrup (Aalborg) K. Ziemiański, (Warsaw))

Intro: State space, directed paths and trace space Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA

State space: a 3D cube 7³ \ F minus 4 box obstructions pairwise connected Path space model contained in torus $(\partial \Delta^2)^2$ – homotopy equivalent to a wedge of two circles and a point: $(S^1 \lor S^1) \sqcup *$

Analogy in standard algebraic topology

Relation between space *X* and loop space ΩX .

Martin Raussen

Spaces of executions as simplicial complexes

Intro: State space and trace space with loops

Example 2: Punctured torus

State space: Punctured torus *X* and branch point \blacktriangle : 2D torus $\partial \Delta^2 \times \partial \Delta^2$ with a rectangle $\Delta^1 \times \Delta^1$ removed Path space model: Discrete infinite space of dimension 0 corresponding to $\{r, u\}^*$.

Question: Path space for a punctured torus in higher dimensions? Joint work with L. Fajstrup and K. Ziemiański.

Motivation: Concurrency Semaphores: A simple model for mutual exclusion

Mutual exclusion

occurs, when *n* processes P_i compete for *m* resources R_j .

Only k processes can be served at any given time.

Semaphores

Semantics: A processor has to lock a resource and to relinquish the lock later on! **Description/abstraction:** $P_i : \ldots PR_j \ldots VR_j \ldots$ (E.W. Dijkstra) *P*: probeer; *V*: verhoog

A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example

Executions are directed paths – since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are **di**homotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions. Deadlocks, unsafe and unreachable regions may occur.

Simple Higher Dimensional Automata Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube:

- Hole = isothetic hyperrectangle
 Rⁱ =]aⁱ₁, bⁱ₁[×···×]aⁱ_n, bⁱ_n[⊂ Iⁿ, 1 ≤ i ≤ l: with minimal vertex aⁱ and maximal vertex bⁱ.
- State space X = *i*ⁿ \ F, F = ∪^l_{i=1} Rⁱ X inherits a partial order from *i*ⁿ. d-paths are order preserving.

More general concurrent programs ~~ HDA

Higher Dimensional Automata (HDA, V. Pratt; 1990):

- Cubical complexes: like simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.
- d-paths are order preserving.

Spaces of d-paths/traces – up to dihomotopy Schedules

Definition

X a d-space, a, b ∈ X. p: 1→ X a d-path in X (continuous and "order-preserving") from a to b.
P(X)(a, b) = {p: 1→ X | p(0) = a, p(b) = 1, p a d-path}. Trace space T(X)(a, b) = P(X)(a, b) modulo increasing reparametrizations. In most cases: P(X)(a, b) ≃ T(X)(a, b).
A dihomotopy in P(X)(a, b) is a map H : 1×1→ X such

• A dinomotopy in P(X)(a, b) is a map $H: I \times I \to X$ such that $H_t \in \vec{P}(X)(a, b)$, $t \in I$; is a path in $\vec{P}(X)(a, b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a, b)$ as explicit finite dimensional (prod-)simplicial complex. In particular: its path components, ie the dihomotopy classes of d-paths (executions). Tool: Subspaces of X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

 $X = \vec{I}^n \setminus F$, $F = \bigcup_{i=1}^l R^i$; $R^i = [\mathbf{a}^i, \mathbf{b}^i]$; **0**, **1** the two corners in I^n .

Definition

- $X_{ij} = \{x \in X | x \le \mathbf{b}^i \Rightarrow x_j \le a_j^i\}$ direction *j* restricted at hole *i*
- *M* a binary $l \times n$ -matrix: $X_M = \bigcap_{m_{ij}=1} X_{ij}$ Which directions are restricted at which hole?

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector – every hole obstructed in at least one direction

A combinatorial model and its geometric realization

Combinatorics poset category $C(X)(\mathbf{0},\mathbf{1}) \subseteq M_{l,n}^{R,*} \subseteq M_{l,n}$ $M \in C(X)(\mathbf{0},\mathbf{1})$ "alive" Topology:

prodsimplicial complex $\mathbf{T}(X)(\mathbf{0},\mathbf{1}) \subseteq (\Delta^{n-1})^{I}$ $\Delta_{M} = \Delta_{m_{1}} \times \cdots \times \Delta_{m_{l}} \subseteq$ $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$ – one simplex $\Delta_{m_{i}}$ for every hole

 $\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$

Further examples

State spaces, "alive" matrices and path spaces

Homotopy equivalence between path space $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ and prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

 $\vec{P}(X)(\mathbf{0},\mathbf{1})\simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1})\simeq \Delta \mathcal{C}(X)(\mathbf{0},\mathbf{1}).$

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T} : \mathcal{C}(X)(\mathbf{0}, \mathbf{1})^{(\mathsf{OP})} \to \mathsf{Top}:$ $\mathcal{D}(M) = \vec{P}(X_M)(\mathbf{0}, \mathbf{1}),$ $\mathcal{E}(M) = \Delta_M,$ $\mathcal{T}(M) = *$
- colim $\mathcal{D} = \vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations D ⇒ T, E ⇒ T yield: hocolim D ≃ hocolim T* ≃ hocolim T ≃ hocolim E.
- Projection lemma: hocolim D ≃ colim D, hocolim E ≃ colim E.

From C(X)(0, 1) to properties of path space Questions answered by homology calculations using T(X)(0, 1)

Questions

- Is P(X)(0, 1) path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected? Other topological properties?

Strategies – Attempts

- Implementation of T(X)(0, 1) in ALCOOL at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0, 1) ↔ T(X)(0, 1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek's CrHom etc) to calculate the homology groups of these chain complexes even for quite big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are fast "discrete" methods, that also yield representatives in each path component (ALCOOL).

Huge prodsimplicial complexes

I obstructions, *n* processors: T(X)(0, 1) is a subcomplex of $(\partial \Delta^{n-1})^{I}$: potentially a huge high-dimensional complex.

Possible antidotes

- Smaller models? Make use of partial order among the obstructions Rⁱ, and in particular the inherited partial order among their extensions Rⁱ_i with respect to ⊆.
- Work in progress: yields simplicial complex of far smaller dimension!

Open problems: Variation of end points

Conncection to MD persistence?

Components?!

- So far: $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ fixed end points.
- Now: Variation of $\vec{T}(X)(\mathbf{a}, \mathbf{b})$ of start and end point, giving rise to filtrations.
- At which thresholds do homotopy types change?
- How to cut up X × X into components so that the homotopy type of trace spaces with end point pair in a component is invariant?
- Birth and death of homology classes?
- Compare with multidimensional persistence (Carlsson, Zomorodian).

Punctured torus and *n*-space

n-torus $T^n = \mathbf{R}^n / \mathbf{z}^n$. forbidden region $F^n = ([\frac{1}{4}, \frac{3}{4}]^n + \mathbf{Z}^n) / \mathbf{z}^n \subset T^n$. punctured torus $Y^n = T^n \setminus F^n$ punctured *n*-space ${}^a \tilde{Y}^n = \mathbf{R}^n \setminus ([\frac{1}{4}, \frac{3}{4}]^n + \mathbf{Z}^n)$ with d-paths from quotient map $\mathbf{R}^n \downarrow T^n$.

^auniversal cover

Aim: Describe the homotopy type of $\vec{P}(Y) = \vec{P}(Y)(\mathbf{0}, \mathbf{0})$

 $\vec{P}(Y) \hookrightarrow \Omega Y(\mathbf{0}, \mathbf{0}) \rightsquigarrow \text{disjoint union } \vec{P}(Y) = \bigsqcup_{\mathbf{k} \ge \mathbf{0}} \vec{P}(\mathbf{k})(Y)$ with multiindex = multidegree $\mathbf{k} = (k_1, \dots, k_n) \in \mathbf{Z}_+^n, k_i \ge \mathbf{0}$. $\vec{P}(\mathbf{k})(Y) \cong \vec{P}(\tilde{Y}^n)(\mathbf{0}, \mathbf{k}) =: Z(\mathbf{k})$.

Path spaces as colimits

Category $\mathcal{J}(n)$

Poset category of proper non-empty subsets of [1 : n] with inclusions as morphisms. Via characteristic functions isomorphic to the category of non-identical bit sequences of length n: $\varepsilon = (\varepsilon_1, \ldots \varepsilon_n) \in \mathcal{J}(n)$. $B\mathcal{J}(n) \cong \partial \Delta^{n-1} \cong S^{n-2}$.

Definition

$$U_{\varepsilon}(\mathbf{k}) := \{ \mathbf{x} \in \mathbf{R}^n | \varepsilon_j = 1 \Rightarrow x_j \le k_j - \frac{3}{4} \text{ or } \exists i : x_i \ge k_i - \frac{1}{4} \}$$

$$Z_{\varepsilon}(\mathbf{k}) := \vec{P}(U_{\varepsilon}(\mathbf{k}))(\mathbf{0}, \mathbf{k}).$$

Lemma

$$Z_{\varepsilon}(\mathbf{k})\simeq Z(\mathbf{k}-\varepsilon).$$

Theorem

$$\begin{split} Z(\mathbf{k}) &= \operatorname{colim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\mathbf{k}) \simeq \\ \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z(\mathbf{k} - \varepsilon). \end{split}$$

Inductive homotopy colimites

Using the category $\mathcal{J}(n)$ construct for $\mathbf{k} \in \mathbf{Z}^n$, $\mathbf{k} \ge \mathbf{0}$:

•
$$X(\mathbf{k}) = *$$
 if $\prod_{i=1}^{n} k_i = 0$;

•
$$X(\mathbf{k}) = \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} X(\mathbf{k} - \varepsilon).$$

By construction $\mathbf{k} \leq \mathbf{I} \Rightarrow X(\mathbf{k}) \subseteq X(\mathbf{I}); X(\mathbf{1}) \cong \partial \Delta^{n-1}$.

Inductive homotopy equivalences

 $q(\mathbf{k}): Z(\mathbf{k})
ightarrow X(\mathbf{k})$:

- $\prod_{i=1}^{n} k_i = 0 \Rightarrow Z(\mathbf{k})$ contractible, $X(\mathbf{k}) = *$
- $q(\mathbf{k}) = \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} q(\mathbf{k} \varepsilon) : Z(\mathbf{k}) \cong \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z(\mathbf{k} \varepsilon) \to \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} X(\mathbf{k} \varepsilon) = X(\mathbf{k}).$

Homology and cohomology of space $Z(\mathbf{k})$ of d-paths

Definition

- $\mathbf{I} \ll \mathbf{m} \in \mathbf{Z}_{+}^{n} \Leftrightarrow l_{j} < m_{j}, 1 \leq j \leq n.$
- $\mathcal{O}^n = \{ (\mathbf{I}, \mathbf{m}) | \mathbf{I} \ll \mathbf{m} \text{ or } \mathbf{m} \ll \mathbf{I} \} \subset \mathbf{Z}_+^n \times \mathbf{Z}_+^n.$
- $\mathbf{B}(\mathbf{k}) := \mathbf{Z}_{+}^{n} (\leq \mathbf{k}) \times \mathbf{Z}_{+}^{n} (\leq \mathbf{k}) \setminus \mathcal{O}^{n}.$
- $\mathcal{I}(\mathbf{k}) := < \mathbf{Im} | (\mathbf{I}, \mathbf{m}) \in \mathbf{B}(\mathbf{k}) > \le \mathbf{Z}[\mathbf{Z}_{+}^{n}(\le \mathbf{k})].$

Theorem

For n > 2, $H^*(Z(\mathbf{k})) = \mathbf{Z}[\mathbf{Z}^n_+(\leq \mathbf{k})]/_{\mathcal{I}(\mathbf{k})}$. $H_*(Z(\mathbf{k})) \cong H^*(Z(\mathbf{k}))$ as abelian groups.

Proof

Spectral sequence argument, using projectivity of the functor $H_* : \mathcal{J}(n) \to Ab_*, \ \mathbf{k} \mapsto H_*(Z(\mathbf{k}))$

Interpretation via cube sequences Betti numbers

Cube sequences

$$\begin{split} & [\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}] \in A^n_{r(n-2)}(\mathbf{I}) \text{ - of size} \\ & \mathbf{I} \in \mathbf{Z}^n_+, \text{length } r \text{ and degree } r(n-2). \\ & A^n_*(*) \text{ the free abelian group generated by all cube sequences.} \\ & A^n_*(\leq \mathbf{k}) := \bigoplus_{\mathbf{I} \leq \mathbf{k}} A^n_*(\mathbf{I}). \\ & H_{r(n-2)}(Z(\mathbf{k})) \cong A^n_{r(n-2)}(\leq \mathbf{k}) - \text{generated by cube sequences} \\ & \text{of length } r \text{ and size } \leq \mathbf{k}. \end{split}$$

Betti numbers of $Z(\mathbf{k})$

Theorem

$$n = 2; \ \beta_0 = \binom{k_1 + k_2}{k_1}; \beta_j = 0, \ j > 0; n > 2; \ \beta_0 = 1, \ \beta_{i(n-2)} = \prod_1^n \binom{k_j}{i}, \ \beta_j = 0 \ else.$$

Corollary

 Small homological dimension of Z(k): (min_j k_j)(n - 2).
 Duality: For k = (k,...,k), β_i(Z(k)) = β_{k(n-2)-i}(Z(k)). Why?

To conclude

Conclusions and challenges

- From a (rather compact) state space model (shape of data) to a finite dimensional trace space model (represent shape).
- Calculations of invariants (Betti numbers) of path space possible for state spaces of a moderate size (measuring shape).
- Dimension of trace space model reflects **not** the **size** but the **complexity** of state space (number of obstructions, number of processors); still: **curse of dimensionality**.
- Challenge: General properties of path spaces for algorithms solving types of problems in a distributed manner?

Connections to the work of Herlihy and Rajsbaum protocol complex etc

 Challenge: Morphisms between HDA ~>> d-maps between cubical state spaces ~>> functorial maps between trace spaces. Properties? Equivalences?

Want to know more?

References

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683 – 1714.
- MR, Execution spaces for simple HDA, Appl. Alg. Eng. Comm. Comp. 23 (2012), 59 – 84.
- MR, Simplicial models for trace spaces II: General Higher Dimensional Automata, AGT 12 (2012), 1741 – 1761.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup et al., Trace Spaces: an efficient new technique for State-Space Reduction, Proceedings ESOP, Lect. Notes Comput. Sci. 7211 (2012), 274 – 294.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. **12** (2010), 231 244.

Advertisement for ACAT Thank you!

ESF network ACAT

Applied and Computational Algebraic Topologyhttp:http://acat.lix.//www.esf.org/acatpolytechnique.fr/

Thank you for your attention!