

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals

Martin Raussen

Department of mathematical sciences Aalborg University

Cergy-Pontoise

26.5.2011

Martin Raussen Complex pearls

Möbius transformations

Definition

Möbius transformation: a rational function f : C → C of the form f(z) = az+b/cz+d, a, b, c, d ∈ C, ad - bc ≠ 0.
C = C ∪ {∞}.

•
$$f(-d/c) = \infty, f(\infty) = a/c.$$

August Ferdinand Möbius 1790 – 1868

イロン イボン イヨン イヨ

Möbius transformations

Examples of Möbius transformations Imagine them on the Riemann sphere

Translation $z \mapsto z + b$ Rotation $z \mapsto (\cos\theta + i\sin\theta) \cdot z$ Zoom $z \mapsto az, a \in \mathbf{R}, a > 0$ Circle inversion $z \mapsto 1/z$

Stereographic projection allows to identify the unit sphere S^2 with \overline{C} . How do these transformations look like on the sphere?

Have a look!

The algebra of Möbius transformations 2 × 2-matrices

- $GL(2, \mathbb{C})$: the group af all invertible 2 × 2-matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with complex coefficients; invertible: $det(A) = ad - bc \neq 0$.
- $A \in GL(2, \mathbb{C})$ corresponds to the MT $z \mapsto \frac{az+b}{cz+d}$.
- Multiplication of matrices corresponds to composition of transformations.
- The Möbius transformation given by a matrix A has an inverse Möbius transformation given by A⁻¹.
- The matrices A og rA, $r \neq 0$, describe the same AT.
- Hence the group of Möbius transformations is isomorphic to the projective group PGL(2, C) = GL(2, C)/C* a 8 2 = 6 dimensional Lie group: 6 real degrees of freedom.

The algebra of Möbius transformations 2 × 2-matrices

- $GL(2, \mathbb{C})$: the group af all invertible 2 × 2-matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with complex coefficients; invertible: $det(A) = ad - bc \neq 0$.
- $A \in GL(2, \mathbb{C})$ corresponds to the MT $z \mapsto \frac{az+b}{cz+d}$.
- Multiplication of matrices corresponds to composition of transformations.
- The Möbius transformation given by a matrix A has an inverse Möbius transformation given by A⁻¹.
- The matrices A og rA, $r \neq 0$, describe the same MT.
- Hence the group of Möbius transformations is isomorphic to the projective group PGL(2, C) = GL(2, C)/C* a 8 2 = 6 dimensional Lie group: 6 real degrees of freedom.

The geometry of Möbius transformations 1

Theorem

- Every Möbius transformation is a composition of translations, rotations, zooms (dilations) and inversions.
- A Möbius transformation is conformal (angle preserving).
- A Möbiustransformation maps circles into circles (straight line = circle through ∞).
- Given two sets of 3 distinct points P_1 , P_2 , P_3 and Q_1 , Q_2 , Q_3 in \overline{C} . There is **one** *MT* f with $f(P_i) = Q_i$.

Proof.

Martin Raussen

The geometry of Möbius transformations 1

Theorem

- Every Möbius transformation is a composition of translations, rotations, zooms (dilations) and inversions.
- A Möbius transformation is conformal (angle preserving).
- A Möbiustransformation maps circles into circles (straight line = circle through ∞).
- Given two sets of 3 distinct points P_1 , P_2 , P_3 and Q_1 , Q_2 , Q_3 in \overline{C} . There is **one** *MT* f with $f(P_i) = Q_i$.

Proof.

```
(1)
\frac{az+b}{cz+d} = \frac{a}{c} + \frac{(bc-ad)/c^2}{z+d/c}
```

Martin Raussen

The geometry of Möbius transformations 1

Theorem

- Every Möbius transformation is a composition of translations, rotations, zooms (dilations) and inversions.
- A Möbius transformation is conformal (angle preserving).
- A Möbiustransformation maps circles into circles (straight line = circle through ∞).
- Given two sets of 3 distinct points P_1 , P_2 , P_3 and Q_1 , Q_2 , Q_3 in \overline{C} . There is one *MT* f with $f(P_i) = Q_i$.

Proof. (1) $\frac{az+b}{cz+d} = \frac{a}{c} + \frac{(bc-ad)/c^2}{z+d/c}$ (4) To map (P_1, P_2, P_3) to $(0, 1, \infty)$, use $f_P(z) = \frac{(z-P_1)(P_2-P_3)}{(z-P_3)(P_2-P_1)}$ $f_{\Omega}: (Q_1, Q_2, Q_3) \mapsto$ $(0, 1, \infty).$ $f := (f_0)^{-1} \circ f_P$. Uniqueness: Only id maps $(0, 1, \infty)$ to $(0, 1, \infty).$ Three complex degrees of freedom!

Martin Raussen

The geometry of Möbius transformations 2 Conjugation and fix points

Two Möbius transformations f_1 , f_2 are **conjugate** if there exists a Möbius transformation T (a "change of coordinates") such that

 $f_2 = T \circ f_1 \circ T^{-1}.$

Conjugate Möbius transformations have similar geometric properties; in particular the same number of fixed points, invariant circles etc.

A Möbius transformation ($\neq id$) has either two fix points or just one.

If a MT has two fix points, then it is conjugate to one of the form $z \mapsto az$

If a MT has only one fixed point, then it is conjugate to a translation $z \mapsto z + b$.

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The geometry of Möbius transformations 2 Conjugation and fix points

Two Möbius transformations f_1 , f_2 are **conjugate** if there exists a Möbius transformation T (a "change of coordinates") such that

 $f_2 = T \circ f_1 \circ T^{-1}.$

Conjugate Möbius transformations have similar geometric properties; in particular the same number of fixed points, invariant circles etc.

A Möbius transformation ($\neq id$) has either two fix points or just one.

If a MT has two fix points, then it is conjugate to one of the form $z \mapsto az$. $z \mapsto \frac{1}{2}$?

If a MT has only one fixed point, then it is conjugate to a translation $z \mapsto z + b$.

Geometric and algebraic classification the trace!

A Möbius transformation can be described by a matrix *A* with det(*A*) = 1 (almost uniquely). Consider the trace Tr(A) = a + dof such a corresponding matrix *A*. The associated Möbius transformation (\neq *id*) is parabolic (one fix point): conjugate to $z \mapsto z + b \Leftrightarrow Tr(A) = \pm 2$ elliptic (invariant circles): conjugate to $z \mapsto az$, $|a| = 1 \Leftrightarrow Tr(A) \in]-2, 2[$ loxodromic conjugate to $z \mapsto az$, $|a| \neq 1 \Leftrightarrow Tr(A) \notin [-2, 2]$

< □ > < □ > < □ > < □ >

Geometric and algebraic classification the trace!

A Möbius transformation can be described by a matrix A with det(A) = 1 (almost uniquely). Consider the trace Tr(A) = a + dof such a corresponding matrix A. The associated Möbius transformation ($\neq id$) is parabolic (one fix point): conjugate to $z \mapsto z + b \Leftrightarrow Tr(A) = \pm 2$ elliptic (invariant circles): conjugate to $z \mapsto az$, $|a| = 1 \Leftrightarrow Tr(A) \in]-2, 2[$ loxodromic conjugate to $z \mapsto az$, $|a| \neq 1 \Leftrightarrow Tr(A) \notin [-2, 2]$

Examples M.C. Escher (1898 – 1972)

Background: Hyperbolic geometry Models: Eugenio Beltrami, Felix Klein, Henri Poincaré

Background for classical geometry: Euclid, based on 5 postulates.

- 2000 years of struggle concerning the parallel postulate: Is it independent of/ios it a consequence of the 4 others?
- Gauss, Bolyai, Lobachevski, 1820 1830: Alternative geometries, angle sum in a triangle differs from 180°. Hyperbolic geometri: Angle sum in triangle less than 180°; can be arbitrarily small. Homogeneous, (Gauss-) curvature < 0. Absolute length: Two similar triangles are congruent Beltrami, ca. 1870: Models that can be "embedded" into Euclidan geometry.
- Prize: The meaning of "line", "length", "distance", "angle" may differ from its Euclidean counterpart.

Background: Hyperbolic geometry Models: Eugenio Beltrami, Felix Klein, Henri Poincaré

Background for classical geometry: Euclid, based on 5 postulates.

2000 years of struggle concerning the parallel postulate: Is it independent of/ios it a consequence of the 4 others? Gauss, Bolyai, Lobachevski, 1820 – 1830: Alternative geometries, angle sum in a triangle differs from 180⁰. Hyperbolic geometri: Angle sum in triangle less than 180⁰; can be arbitrarily small. Homogeneous, (Gauss-) curvature < 0. Absolute length: Two similar triangles are congruent! Beltrami, ca. 1870: Models that can be "embedded" into Euclidan geometry. Prize: The meaning of "line", "length", "distance", "angle may

differ from its Euclidean counterpart.

Background: Hyperbolic geometry Models: Eugenio Beltrami, Felix Klein, Henri Poincaré

- Background for classical geometry: Euclid, based on 5 postulates.
- 2000 years of struggle concerning the parallel postulate: Is it independent of/ios it a consequence of the 4 others? Gauss, Bolyai, Lobachevski, 1820 – 1830: Alternative geometries, angle sum in a triangle differs from 180⁰. Hyperbolic geometri: Angle sum in triangle less than 180⁰; can be arbitrarily small. Homogeneous, (Gauss-) curvature < 0. Absolute length: Two similar triangles are congruent! Beltrami, ca. 1870: Models that can be "embedded" into Euclidan geometry.
- Prize: The meaning of "line", "length", "distance", "angle" may differ from its Euclidean counterpart.

Image: A mathematical stress of the second stres

Models for hyperbolic geometry Geodesic curves, length, angle

Poincaré's upper half plane:

 $H = \{z \in \mathbb{C} | \Im z > 0\}$. Geodesic curves (lines): half lines and half circles perpendicular on the real axis. Angles like in Euclidean geometry. Length: line element $ds^2 = \frac{dx^2 + dy^2}{y} -$ real axis has distance ∞ from interior.

Upper half plane model

curves: Circular arcs pero the boundary. in Euclidean geometry. ine element $ds^2 = \frac{dx^2+dy^2}{1-x^2-y^2}$ circle has distance ∞ from ts. **Klein's disk K:** Same disc. Geodesic curves = secants Different definition of angles. Hyperbolic patterns

Models for hyperbolic geometry Geodesic curves, length, angle

Poincaré's upper half plane:

 $H = \{z \in \mathbf{C} | \Im z > 0\}$. Geodesic curves (lines): half lines and half circles perpendicular on the real axis. Angles like in Euclidean geometry. Length: line element $ds^2 = \frac{dx^2 + dy^2}{dx^2 + dy^2}$. real axis has distance ∞ from interior. Poincaré's disk: $D = \{z \in \mathbb{C} | |z| < 1\}$. Geodesic curves: Circular arcs perpendiuclar to the boundary. Angles like in Euclidean geometry. Length by line element $ds^2 = \frac{dx^2 + dy^2}{1 - x^2 - v^2}$ curves = secants - boundary circle has distance ∞ from interior points.

Models for hyperbolic geometry Geodesic curves, length, angle

Poincaré's upper half plane:

 $H = \{z \in \mathbf{C} | \Im z > 0\}$. Geodesic curves (lines): half lines and half circles perpendicular on the real axis. Angles like in Euclidean geometry. Length: line element $ds^2 = \frac{dx^2 + dy^2}{dx^2 + dy^2}$ real axis has distance ∞ from interior. Poincaré's disk: $D = \{z \in \mathbf{C} | |z| < 1\}$. Geodesic curves: Circular arcs perpendiuclar to the boundary. Angles like in Euclidean geometry. Length by line element $ds^2 = \frac{dx^2 + dy^2}{1 - x^2 - v^2}$ - boundary circle has distance ∞ from interior points.

Klein's disk *K*: Same disc. Geodesic curves = secants. Different definition of angles.

Isometries in models of hyperbolic geometry as Möbius transformations!

Isometry: distance- and angle preserving transformation. in Poincaré's upper half plane H: Möbius transformations in $SL(2, \mathbf{R})$: $z \mapsto \frac{az+b}{cz+d}$, a, b, c, $d \in \mathbb{R}$, ad - bc = 1. Horizontal translations $z \mapsto z + b, b \in \mathbf{R}$; Dilations $z \mapsto rz, r > 0$; Mirror inversions $z \mapsto -\frac{1}{z}$. Henri Poincaré 1854 - 1912

Image: A matrix

Isometries in models of hyperbolic geometry as Möbius transformations!

Isometry: distance- and angle preserving transformation. in Poincaré's upper half plane H: Möbius transformations in $SL(2, \mathbf{R})$: $z \mapsto \frac{az+b}{cz+d}$, a, b, c, $d \in \mathbb{R}$, ad - bc = 1. Horizontal translations $z \mapsto z + b, b \in \mathbf{R}$; Dilations $z \mapsto rz, r > 0$; Mirror inversions $z \mapsto -\frac{1}{2}$. in Poincaré's disk D: Möbius transformations $z \mapsto e^{i\theta} \frac{z+z_0}{\overline{z_0}z+1}, \ \theta \in \mathbf{R}, |z_0| < 1.$ Henri Poincaré The two models are equivalent: 1854 - 1912

Isometries in models of hyperbolic geometry as Möbius transformations!

Isometry: distance- and angle preserving transformation. in Poincaré's upper half plane H: Möbius transformations in $SL(2, \mathbf{R})$: $z \mapsto \frac{az+b}{cz+d}$, a, b, c, $d \in \mathbb{R}$, ad - bc = 1. Horizontal translations $z \mapsto z + b, b \in \mathbf{R}$; Dilations $z \mapsto rz, r > 0$; Mirror inversions $z \mapsto -\frac{1}{2}$. in Poincaré's disk D: Möbius transformations $z\mapsto e^{i heta}rac{z+z_0}{\overline{z_0}z+1},\ heta\in \mathbf{R}, |z_0|<1.$ Henri Poincaré The two models are equivalent: 1854 - 1912Apply $T: H \to D, T(z) = \frac{iz+1}{z+i}$ and its inverse T^{-1}

Hyperbolic tesselations

Regular tesselation in Euklidean geometry – Schläfli symbols: Only (n, k) = (3, 6), (4, 4), (6, 3) - k regular *n*-gons – possible. Angle sum = $180^0 \Rightarrow \frac{1}{n} + \frac{1}{k} = \frac{1}{2}$. in hyperbolic geometry: $\frac{1}{n} + \frac{1}{k} < \frac{1}{2}$: Infinitely many possibilities!

Pattern preserving transformations form a discrete subgroup or the group of all Möbius transformations.

Do it yourself! <u>2</u> (...) (...)

Martin Raussen

Hyperbolic tesselations

Regular tesselation in Euklidean geometry – Schläfli symbols: Only (n, k) = (3, 6), (4, 4), (6, 3) - k regular *n*-gons – possible. Angle sum = $180^0 \Rightarrow \frac{1}{n} + \frac{1}{k} = \frac{1}{2}$. in hyperbolic geometry: $\frac{1}{n} + \frac{1}{k} < \frac{1}{2}$: Infinitely many possibilities!

Pattern preserving transformations form a discrete subgroup or the group of all Möbius transformations.

 Do it yourself!
 2
 <</th>
 >
 <</th>
 ≥
 <</th>
 >
 <</th>
 ≥
 <</th>
 >
 ≥
 <</th>

Martin Raussen

Schottky groups Discrete subgroups within Möbius transformations

How do the transformations in this (Schottky)-subgroup act on **C**?

Martin Raussen

Friedrich Schottky

Schottky groups Discrete subgroups within Möbius transformations

Given two disjoint circles C_1 , D_1 in **C**. There is a Möbius transformation *A* mapping the outside/inside of C_1 into the inside/ouside of C_2 . What does $a = A^{-1}$? Correspondingly: two disjoint circles C_2 , D_2 in **C**, disjoint with C_1 , D_1 . Möbius transformations *B*, *b*. The subgroup < A, B > generated by *A*, *B* consists of all "words" in the alphabet A,a,B,b (only relations:

Aa = aA = e = Bb = bB).

Examples:

A, a, B, b, A², AB, Ab, a², aB, ab<u>, BA, Ba, B², bA</u>, ba, b², A³, A²B, AB

How do the transformations in this (Schottky)-subgroup act on **C**?

Martin Raussen

Friedrich Schottky

Schottky groups Discrete subgroups within Möbius transformations

Given two disjoint circles C_1 , D_1 in **C**. There is a Möbius transformation *A* mapping the outside/inside of C_1 into the inside/ouside of C_2 . What does $a = A^{-1}$? Correspondingly: two disjoint circles C_2 , D_2 in **C**, disjoint with C_1 , D_1 . Möbius transformations *B*, *b*. The subgroup < A, B > generated by *A*, *B* consists of all "words" in the alphabet A,a,B,b (only relations: Aa = aA = e = Bb = bB). Examples:

A, a, B, b, A², AB, Ab, a², aB, ab, BA, Ba, B², bA, ba, b², A³, A²B, ABa, .

How do the transformations in this (Schottky)-subgroup act on **C**?

Martin Raussen

Friedrich Schottky

Schottky groups Discrete subgroups within Möbius transformations

Given two disjoint circles C_1 , D_1 in **C**. There is a Möbius transformation *A* mapping the outside/inside of C_1 into the inside/ouside of C_2 . What does $a = A^{-1}$? Correspondingly: two disjoint circles C_2 , D_2 in **C**, disjoint with C_1 , D_1 . Möbius transformations *B*, *b*. The subgroup < A, B > generated by *A*, *B* consists of all "words" in the alphabet A,a,B,b (only relations: Aa = aA = e = Bb = bB). Examples: $A = B = b = A^2 + AB = Ab = a^2 + AB = AB = BA = BB = B^2 + AB = A^2 + A^3 = A^2B = AB$

A, a, B, b, A², AB, Ab, a², aB, ab, BA, Ba, B², bA, ba, b², A³, A²B, ABa, .

How do the transformations in this (Schottky)-subgroup act on $\overline{\mathbb{C}}$?

Friedrich Schottky 1851 ≕ 1935 ≅ ∽۹

Martin Raussen

From Schottky group to fractal

- One step: Apply (one of) the operations *A*, *a*, *B*, *b*.
- Result: Three outer disks are "copied" into an inner disk.
- These "new" circles are then copied again in the next step.
- "Babushka" principle: Copy within copy within copy...~ a point in the limit set ~ fractal.
- What is the shape of this limit set?

< 17 ▶

From Schottky group to fractal

- One step: Apply (one of) the operations *A*, *a*, *B*, *b*.
- Result: Three outer disks are "copied" into an inner disk.
- These "new" circles are then copied again in the next step.
- "Babushka" principle: Copy within copy within copy...~> a point in the limit set ~> fractal.
- What is the shape of this limit set?

< 17 ▶

Kleinian groups, Fuchsian groups and limit sets Background and terminology

Definition

Kleinian group: a discrete subgroup of Möbius transformations Fuchsian group: a Kleinian group of Möbius transformations that preserve the upper half plane *H* (hyperbolic

Orbit: of a point $z_0 \in \mathbf{C}$ under the action of a group G $\{g \cdot z_0 | g \in G\}$

Limit set: $\Lambda(G)$: consists of all limit points of alle orbits. Regular set: $\Omega(G) := \overline{C} \setminus \Lambda(G)$.

isometries, real coefficients)

Kleinian groups, Fuchsian groups and limit sets Background and terminology

Definition

Kleinian group: a discrete subgroup of Möbius transformations

- Fuchsian group: a Kleinian group of Möbius transformations that preserve the upper half plane *H* (hyperbolic isometries, real coefficients)
 - **Orbit:** of a point $z_0 \in \mathbf{C}$ under the action of a group *G*: $\{g \cdot z_0 | g \in G\}$

Limit set: $\Lambda(G)$: consists of all limit points of alle orbits. Regular set: $\Omega(G)$:= $\overline{C} \setminus \Lambda(G)$.

Limit sets for Schottky grpups Properties

starting with disjoint circles:

The limit set $\Lambda(G)$ for a Schottky group G is a fractal set. It

- is totally disconnected;
- has positive Hausdorff dimension;
- has area 0 (fractal "dust").

Limit sets for Schottky grpups Properties

starting with disjoint circles:

The limit set $\Lambda(G)$ for a Schottky group G is a fractal set. It

- is totally disconnected;
- has positive Hausdorff dimension;
- has area 0 (fractal "dust").

Limit sets for Schottky grpups Properties

starting with disjoint circles:

The limit set $\Lambda(G)$ for a Schottky group G is a fractal set. It

- is totally disconnected;
- has positive Hausdorff dimension;
- has area 0 (fractal "dust").

Cayley graph and limit fractal Convergence of "boundaries" in the Cayley graph

Every limit point in $\Lambda(G)$ corresponds to an infinite word in the four symbols *A*, *a*, *B*, *b* ("fractal mail addresses").

The limit fractal $\Lambda(G)$ corresponds also to the **boundary** of the **Cayley graph** for the group G – the metric space that is the limit of the boundaries of words of limited length (Abel prize recipient M. Gromov).

Cayley graph and limit fractal Convergence of "boundaries" in the Cayley graph

Every limit point in $\Lambda(G)$ corresponds to an infinite word in the four symbols *A*, *a*, *B*, *b* ("fractal mail addresses"). The limit fractal $\Lambda(G)$ corresponds also to the **boundary** of the **Cayley graph** for the group *G* – the metric space that is the limit of the boundaries of words of limited length (Abel prize recipient M. Gromov).

"Kissing Schottky groups" and fractal curves For tangent circles

The dust connects up and gives rise to a **fractal curve**:

F. Klein and R. Fricke knew that already back in 1897 – without access to a computer!

・ロト ・ 日 ・ ・ ヨ ・

3.0

Martin Raussen

"Kissing Schottky groups" and fractal curves For tangent circles

The dust connects up and gives rise to a **fractal curve**:

F. Klein and R. Fricke knew that already back in 1897 – without access to a computer!

・ロト ・回ト ・ヨト

-

Have a try! Martin Raussen Compl

Outlook to modern research: 3D hyperbolic geometry following Poincaré's traces

Model: **3D** ball with boundary sphere S^2 (at distance ∞ from interior points).

"Planes" in this model:

Spherical caps perpendicular to the boundary.

Result: a 3D tesselation by hyperbolic polyhedra.

To be analyzed at $S^2 = \overline{\mathbf{C}}$ on which the full Möbius group $PGL(2, \mathbf{C})$ acts.

Most 3D-**manifolds** can be given a hyperbolic structure (Thurston, Perelman).

Outlook to modern research: 3D hyperbolic geometry following Poincaré's traces

Model: **3D** ball with boundary sphere S^2 (at distance ∞ from interior points).

"Planes" in this model:

Spherical caps perpendicular to the boundary.

Result: a 3D tesselation by hyperbolic polyhedra.

To be analyzed at $S^2 = \overline{C}$ on which the full Möbius group $PGL(2, \mathbb{C})$ acts.

Most 3D-**manifolds** can be given a hyperbolic structure (Thurston, Perelman).

Outlook to modern research: 3D hyperbolic geometry following Poincaré's traces

Model: **3D ball** with boundary sphere S^2 (at distance ∞ from interior points).

"Planes" in this model:

Spherical caps perpendicular to the boundary.

Result: a 3D tesselation by hyperbolic polyhedra.

To be analyzed at $S^2 = \overline{C}$ on which the full Möbius group $PGL(2, \mathbb{C})$ acts.

Most 3D-manifolds can be given a hyperbolic structure (Thurston, Perelman).

Möbius transformations and number theory Modular forms

Modular group consists of Möbius transformations with integer coefficients: *PSL*(2, **Z**).

Acts on the upper half plane H.

Fundamental domains boundaries composed of circular arcs.

Modular form Meromorphic function satisfying

$$f(\frac{az+b}{cz+d}) = (cz+d)^{k}f(z).$$

Important tool in

Analytic number theory Moonshine. Fermat-Wiles-Taylor.

Martin Raussen

References partially web based

- D. Mumford, C. Series, D. Wright, *Indra's Pearls: The Vision of Felix Klein*, Cambridge University Press, New York, 2002
- Indra's Pearls associated web portal
- A. Marden, Review of Indra's Pearls, Notices of the AMS 50, no.1 (2003), 38 – 44
- C. Series, D. Wright, Non-Euclidean geometry and Indra's pearls, Plus 43, 2007
- R. Fricke, F. Klein, Vorlesungen über die Theorie der Automorphen Functionen, Teubner, 1897
- D. Joyce, Hyperbolic Tesselations
- Not Knot, Geometry Center, A.K. Peters
- R. van der Veen, Project Indra's Pearls

Thanks!

Thanks for your attention!

Questions???

Thanks!

Thanks for your attention!

Questions???

