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Möbius transformations

Definition

Möbius transformation:
a rational function f : C → C of the
form
f (z) = az+b

cz+d , a,b, c,d ∈ C,

ad − bc 6= 0.

C = C ∪ {∞}.

f (−d/c) = ∞, f (∞) = a/c.
August Ferdinand
Möbius
1790 – 1868
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Examples of Möbius transformations
Imagine them on the Riemann sphere

Translation z 7→ z + b

Rotation z 7→ (cosθ + i sin θ) · z

Zoom z 7→ az,a ∈ R,a > 0

Circle inversion z 7→ 1/z

Stereographic projection allows to
identify the unit sphere S2 with C.
How do these transformations look
like on the sphere?

Have a look!
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The algebra of Möbius transformations
2 × 2-matrices

GL(2,C): the group af all invertible 2 × 2-matrices

A =

[

a b
c d

]

with complex coefficients;

invertible: det(A) = ad − bc 6= 0.
A ∈ GL(2,C) corresponds to the MT z 7→ az+b

cz+d .
Multiplication of matrices corresponds to composition of
transformations.
The Möbius transformation given by a matrix A has an
inverse Möbius transformation given by A−1.
The matrices A og rA, r 6= 0, describe the same MT.
Hence the group of Möbius transformations is isomorphic
to the projective group PGL(2,C) = GL(2,C)/C∗ –
a 8 − 2 = 6− dimensional Lie group:
6 real degrees of freedom.
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The geometry of Möbius transformations 1

Theorem
1 Every Möbius transformation is

a composition of translations,
rotations, zooms (dilations) and
inversions.

2 A Möbius transformation is
conformal (angle preserving).

3 A Möbiustransformation maps
circles into circles (straight line
= circle through ∞).

4 Given two sets of 3 distinct
points P1,P2,P3 and
Q1,Q2,Q3 in C. There is one
MT f with f (Pi) = Qi .

Proof.

(1)
az+b
cz+d = a

c + (bc−ad)/c2

z+d/c .
(4) To map (P1,P2,P3)
to (0,1,∞), use
fP(z) =

(z−P1)(P2−P3)
(z−P3)(P2−P1)

fQ : (Q1,Q2,Q3) 7→
(0,1,∞).
f := (fQ)−1 ◦ fP .
Uniqueness: Only id
maps (0,1,∞) to
(0,1,∞).
Three complex degrees
of freedom!
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The geometry of Möbius transformations 2
Conjugation and fix points

Two Möbius transformations f1, f2 are conjugate if there exists a
Möbius transformation T (a “change of coordinates”) such that

f2 = T ◦ f1 ◦ T−1
.

Conjugate Möbius transformations have similar geometric
properties; in particular the same number of fixed points,
invariant circles etc.
A Möbius transformation ( 6= id ) has either two fix points or just
one.
If a MT has two fix points, then it is conjugate to one of the form
z 7→ az. z 7→ 1

z ?
If a MT has only one fixed point, then it is conjugate to a
translation z 7→ z + b.
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Geometric and algebraic classification
the trace!

A Möbius transformation can be described by a matrix A with
det(A) = 1 (almost uniquely). Consider the trace Tr(A) = a + d
of such a corresponding matrix A.
The associated Möbius transformation ( 6= id ) is

parabolic (one fix point): conjugate to
z 7→ z + b ⇔ Tr(A) = ±2

elliptic (invariant circles): conjugate to
z 7→ az, |a| = 1 ⇔ Tr(A) ∈]− 2,2[

loxodromic conjugate to z 7→ az, |a| 6= 1 ⇔ Tr(A) 6∈ [−2,2]
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Examples
M.C. Escher (1898 – 1972)
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Background: Hyperbolic geometry
Models: Eugenio Beltrami, Felix Klein, Henri Poincaré

Background for classical geometry: Euclid, based on 5
postulates.
2000 years of struggle concerning the parallel postulate: Is it
independent of/ios it a consequence of the 4 others?
Gauss, Bolyai, Lobachevski, 1820 – 1830: Alternative
geometries, angle sum in a triangle differs from 1800.
Hyperbolic geometri: Angle sum in triangle less than 1800; can
be arbitrarily small. Homogeneous, (Gauss-) curvature < 0.
Absolute length: Two similar triangles are congruent!
Beltrami, ca. 1870: Models that can be “embedded” into
Euclidan geometry.
Prize: The meaning of “line”, “length”, “distance”, “angle” may
differ from its Euclidean counterpart.
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Models for hyperbolic geometry
Geodesic curves, length, angle

Poincaré’s upper half plane:
H = {z ∈ C|ℑz > 0}. Geodesic
curves (lines): half lines and half cir-
cles perpendicular on the real axis.
Angles like in Euclidean geometry.
Length: line element ds2 = dx2+dy2

y –
real axis has distance ∞ from interior.
Poincaré’s disk: D = {z ∈ C||z| < 1}.

Geodesic curves: Circular arcs per-
pendiuclar to the boundary.
Angles like in Euclidean geometry.
Length by line element ds2 = dx2+dy2

1−x2−y2

– boundary circle has distance ∞ from
interior points.

Klein’s disk K :
Same disc. Geodesic
curves = secants.
Different definition of
angles.
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Isometries in models of hyperbolic geometry
as Möbius transformations!

Isometry: distance- and angle preserving transformation.
in Poincaré’s upper half plane H:
Möbius transformations in SL(2,R):
z 7→ az+b

cz+d , a,b, c,d∈ R, ad − bc= 1.
Horizontal translations z 7→ z + b,b ∈ R;
Dilations z 7→ rz, r > 0;
Mirror inversions z 7→ − 1

z .
in Poincaré’s disk D:

Möbius transformations
z 7→ eiθ z+z0

z̄0z+1 , θ ∈ R, |z0| < 1.
The two models are equivalent:
Apply T : H → D,T (z) = iz+1

z+i
and its inverse T−1!

Henri Poincaré
1854 – 1912
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Hyperbolic tesselations

Regular tesselation in Euklidean geometry – Schläfli symbols:
Only (n, k) = (3,6), (4,4), (6,3) – k regular n-gons – possible.
Angle sum = 1800 ⇒ 1

n + 1
k = 1

2 .
in hyperbolic geometry: 1

n + 1
k <

1
2 : Infinitely many possibilities!

Pattern preserving transformations form a discrete subgroup or
the group of all Möbius transformations.

Do it yourself! 2
Martin Raussen Complex pearls

http://aleph0.clarku.edu/~djoyce/poincare/PoincareApplet.html
http://www.plunk.org/~hatch/HyperbolicApplet/
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Schottky groups
Discrete subgroups within Möbius transformations

Given two disjoint circles C1,D1 in C.
There is a Möbius transformation A mapping the outside/inside
of C1 into the inside/ouside of C2. What does a = A−1?
Correspondingly: two disjoint circles C2,D2 in C, disjoint with
C1,D1. Möbius transformations B,b.
The subgroup < A,B > generated by A,B consists of all
“words” in the alphabet A,a,B,b (only relations:
Aa = aA = e = Bb = bB).
Examples:
A,a,B,b,A2

,AB,Ab,a2
,aB,ab,BA,Ba,B2

,bA,ba,b2
,A3

,A2B,ABa, . .

How do the transformations in
this (Schottky)-subgroup act
on C?

Friedrich
Schottky
1851 – 1935
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From Schottky group to fractal

One step: Apply (one of) the
operations A,a,B,b.

Result: Three outer disks are
“copied” into an inner disk.

These “new” circles are then
copied again in the next step.

“Babushka” principle: Copy
within copy within copy... a
point in the limit set fractal.

What is the shape of this limit
set?

Martin Raussen Complex pearls
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Kleinian groups, Fuchsian groups and limit sets
Background and terminology

Definition

Kleinian group: a discrete subgroup of Möbius transformations

Fuchsian group: a Kleinian group of Möbius transformations
that preserve the upper half plane H (hyperbolic
isometries, real coefficients)

Orbit: of a point z0 ∈ C under the action of a group G:
{g · z0|g ∈ G}

Limit set: Λ(G): consists of all limit points of alle orbits.

Regular set: Ω(G):= C \ Λ(G).
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Limit sets for Schottky grpups
Properties

starting with disjoint circles:

The limit set Λ(G) for a Schottky
group G is a fractal set. It

is totally disconnected;

has positive Hausdorff
dimension;

has area 0 (fractal “dust”).
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Cayley graph and limit fractal
Convergence of “boundaries” in the Cayley graph

Every limit point in Λ(G) corresponds to an infinite word in the
four symbols A,a,B,b (“fractal mail addresses”).
The limit fractal Λ(G) corresponds also to the boundary of the
Cayley graph for the group G – the metric space that is the limit
of the boundaries of words of limited length (Abel prize
recipient M. Gromov).

Martin Raussen Complex pearls
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“Kissing Schottky groups” and fractal curves
For tangent circles

The dust connects up and
gives rise to a fractal curve:

F. Klein and R. Fricke knew
that already back in 1897 –
without access to a computer!

Have a try!
Martin Raussen Complex pearls

http://www.math.northwestern.edu/~wphooper/visual/circleinv/
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Outlook to modern research: 3D hyperbolic geometry
following Poincaré’s traces

Model: 3D ball with boundary
sphere S2 (at distance ∞ from in-
terior points).
“Planes” in this model:
Spherical caps perpendicular to the
boundary.
Result: a 3D tesselation by hyper-

bolic polyhedra.
To be analyzed at S2 = C on which
the full Möbius group PGL(2,C)
acts.
Most 3D-manifolds can be given
a hyperbolic structure (Thurston,
Perelman).

Martin Raussen Complex pearls



Möbius transformations
Hyperbolic patterns

Schottky groups, Schottky dance

Outlook to modern research: 3D hyperbolic geometry
following Poincaré’s traces

Model: 3D ball with boundary
sphere S2 (at distance ∞ from in-
terior points).
“Planes” in this model:
Spherical caps perpendicular to the
boundary.
Result: a 3D tesselation by hyper-

bolic polyhedra.
To be analyzed at S2 = C on which
the full Möbius group PGL(2,C)
acts.
Most 3D-manifolds can be given
a hyperbolic structure (Thurston,
Perelman).

Martin Raussen Complex pearls



Möbius transformations
Hyperbolic patterns

Schottky groups, Schottky dance

Outlook to modern research: 3D hyperbolic geometry
following Poincaré’s traces

Model: 3D ball with boundary
sphere S2 (at distance ∞ from in-
terior points).
“Planes” in this model:
Spherical caps perpendicular to the
boundary.
Result: a 3D tesselation by hyper-

bolic polyhedra.
To be analyzed at S2 = C on which
the full Möbius group PGL(2,C)
acts.
Most 3D-manifolds can be given
a hyperbolic structure (Thurston,
Perelman).

Martin Raussen Complex pearls



Möbius transformations
Hyperbolic patterns

Schottky groups, Schottky dance

Möbius transformations and number theory
Modular forms

Modular group consists of Möbius transformations with integer
coefficients: PSL(2,Z).
Acts on the upper half plane H.

Fundamental domains boundaries composed of circular arcs.

Modular form Meromorphic function satisfying

f (
az + b
cz + d

) = (cz + d)k f (z).

Important tool in
Analytic number theory Moonshine. Fermat-Wiles-Taylor.
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Thanks!

Thanks for your attention!

Questions???
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