

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals

Martin Raussen

Department of mathematical sciences
Aalborg University

> Cergy-Pontoise

Möbius transformations

Definition

- Möbius transformation: a rational function $f: \overline{\mathbf{C}} \rightarrow \overline{\mathbf{C}}$ of the form

$$
\begin{aligned}
& f(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbf{C}, \\
& a d-b c \neq 0 .
\end{aligned}
$$

- $\overline{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$.
- $f(-d / c)=\infty, f(\infty)=a / c$.

August Ferdinand Möbius
1790-1868

Examples of Möbius transformations

Imagine them on the Riemann sphere

Translation $z \mapsto z+b$
Rotation $z \mapsto(\cos \theta+i \sin \theta) \cdot z$

$$
\text { Zoom } z \mapsto a z, a \in \mathbf{R}, a>0
$$

Circle inversion $z \mapsto 1 / z$
Stereographic projection allows to identify the unit sphere S^{2} with $\overline{\mathbf{C}}$. How do these transformations look like on the sphere?

Have a look!

The algebra of Möbius transformations

- $G L(2, \mathbf{C})$: the group af all invertible 2×2-matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with complex coefficients; invertible: $\operatorname{det}(A)=a d-b c \neq 0$.
- $A \in G L(2, C)$ corresponds to the MT $z \mapsto \frac{a z+b}{c z+d}$.
- Multiplication of matrices corresponds to composition of transformations.
- The Möbius transformation given by a matrix A has an inverse Möbius transformation given by A^{-1}.
- Hence the group of Möbius transformations is isomorphic to the projective group $P G L(2, \mathbf{C})=G L(2, \mathbf{C})_{/ \mathbf{C}^{*}}-$

The algebra of Möbius transformations
 2×2-matrices

- $G L(2, \mathbf{C})$: the group af all invertible 2×2-matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with complex coefficients; invertible: $\operatorname{det}(A)=a d-b c \neq 0$.
- $A \in G L(2, \mathbf{C})$ corresponds to the MT $z \mapsto \frac{a z+b}{c z+d}$.
- Multiplication of matrices corresponds to composition of transformations.
- The Möbius transformation given by a matrix A has an inverse Möbius transformation given by A^{-1}.
- The matrices A og $r A, r \neq 0$, describe the same MT.
- Hence the group of Möbius transformations is isomorphic to the projective group $P G L(2, \mathbf{C})=G L(2, \mathbf{C})_{/ \mathbf{C}^{*}}-$ a $8-2=6$ - dimensional Lie group: 6 real degrees of freedom.

The geometry of Möbius transformations 1

Theorem

(1) Every Möbius transformation is a composition of translations, rotations, zooms (dilations) and inversions.
(2) A Möbius transformation is conformal (angle preserving).
(3) A Möbiustransformation maps circles into circles (straight line = circle through ∞).
(4) Given two sets of 3 distinct points P_{1}, P_{2}, P_{3} and Q_{1}, Q_{2}, Q_{3} in $\overline{\mathbf{C}}$. There is one MT f with $f\left(P_{i}\right)=Q_{i}$.

Proof.

The geometry of Möbius transformations 1

Theorem

(1. Every Möbius transformation is a composition of translations, rotations, zooms (dilations) and inversions.
(2) A Möbius transformation is conformal (angle preserving).
(3) A Möbiustransformation maps circles into circles (straight line $=$ circle through ∞).
(9) Given two sets of 3 distinct points P_{1}, P_{2}, P_{3} and Q_{1}, Q_{2}, Q_{3} in $\overline{\mathbf{C}}$. There is one MT f with $f\left(P_{i}\right)=Q_{i}$.
(1)

$$
\frac{a z+b}{c z+d}=\frac{a}{c}+\frac{(b c-a d) / c^{2}}{z+d / c}
$$

The geometry of Möbius transformations 1

Theorem

© Every Möbius transformation is a composition of translations, rotations, zooms (dilations) and inversions.
(2) A Möbius transformation is conformal (angle preserving).
(3) A Möbiustransformation maps circles into circles (straight line $=$ circle through ∞).
(9) Given two sets of 3 distinct points P_{1}, P_{2}, P_{3} and Q_{1}, Q_{2}, Q_{3} in $\overline{\mathbf{C}}$. There is one MT f with $f\left(P_{i}\right)=Q_{i}$.

Proof.

(1)

$$
\frac{a z+b}{c z+d}=\frac{a}{c}+\frac{(b c-a d) / c^{2}}{z+d / c}
$$

$$
\text { (4) To map }\left(P_{1}, P_{2}, P_{3}\right)
$$

to $(0,1, \infty)$, use $f_{P}(z)=\frac{\left(z-P_{1}\right)\left(P_{2}-P_{3}\right)}{\left(z-P_{3}\right)\left(P_{2}-P_{1}\right)}$ $f_{Q}:\left(Q_{1}, Q_{2}, Q_{3}\right) \mapsto$ $(0,1, \infty)$.
$f:=\left(f_{Q}\right)^{-1} \circ f_{P}$.
Uniqueness: Only id
maps $(0,1, \infty)$ to $(0,1, \infty)$.
Three complex degrees of freedom!

The geometry of Möbius transformations 2 Conjugation and fix points

Two Möbius transformations f_{1}, f_{2} are conjugate if there exists a Möbius transformation T (a "change of coordinates") such that

$$
f_{2}=T \circ f_{1} \circ T^{-1} .
$$

Conjugate Möbius transformations have similar geometric properties; in particular the same number of fixed points, invariant circles etc.
A Möbius transformation $(\neq i d)$ has either two fix points or
one

The geometry of Möbius transformations 2 Conjugation and fix points

Two Möbius transformations f_{1}, f_{2} are conjugate if there exists a Möbius transformation T (a "change of coordinates") such that

$$
f_{2}=T \circ f_{1} \circ T^{-1}
$$

Conjugate Möbius transformations have similar geometric properties; in particular the same number of fixed points, invariant circles etc.
A Möbius transformation $(\neq i d)$ has either two fix points or just one.
If a MT has two fix points, then it is conjugate to one of the form
$z \mapsto a z$.

$$
z \mapsto \frac{1}{z} ?
$$

If a MT has only one fixed point, then it is conjugate to a translation $z \mapsto z+b$.

Geometric and algebraic classification the trace!

A Möbius transformation can be described by a matrix A with $\operatorname{det}(A)=1$ (almost uniquely). Consider the trace $\operatorname{Tr}(A)=a+d$ of such a corresponding matrix A.
parabolic (one fix point): conjugate to

$$
z \mapsto z+b \Leftrightarrow \operatorname{Tr}(A)= \pm 2
$$

elliptic (invariant circles): conjugate to

$$
z \mapsto a z,|a|=1 \Leftrightarrow \operatorname{Tr}(A) \in]-2,2[
$$

loxodromic conjugate to $z \mapsto a z,|a| \neq 1 \Leftrightarrow \operatorname{Tr}(A) \notin[-2,2]$

Geometric and algebraic classification the trace!

A Möbius transformation can be described by a matrix A with $\operatorname{det}(A)=1$ (almost uniquely). Consider the trace $\operatorname{Tr}(A)=a+d$ of such a corresponding matrix A.
The associated Möbius transformation $(\neq i d)$ is
parabolic (one fix point): conjugate to

$$
z \mapsto z+b \Leftrightarrow \operatorname{Tr}(A)= \pm 2
$$

elliptic (invariant circles): conjugate to

$$
z \mapsto a z,|a|=1 \Leftrightarrow \operatorname{Tr}(A) \in]-2,2[
$$

loxodromic conjugate to $z \mapsto a z,|a| \neq 1 \Leftrightarrow \operatorname{Tr}(A) \notin[-2,2]$

Examples

M.C. Escher (1898-1972)

Martin Raussen

Background: Hyperbolic geometry

Models: Eugenio Beltrami, Felix Klein, Henri Poincaré
Background for classical geometry: Euclid, based on 5 postulates.
2000 years of struggle concerning the parallel postulate: Is it independent of/ios it a consequence of the 4 others?
Gauss, Bolyai, Lobachevski
geometries, angle sum in a triangle differs from
Hyperbolic geometri: Angle sum in triangle less than 180°
be arbitrarily small. Homogeneous, (Gauss-) curvature <0 Absolute length: Two similar triangles are congruemt Beltrami, ca. 1870: Models that can be "embedded" ito Euclidan geometry. Prize: The meaning of "line", "length", "distance", "angle Lanay differ from its Euclidean counterpart.

Background: Hyperbolic geometry

Models: Eugenio Beltrami, Felix Klein, Henri Poincaré
Background for classical geometry: Euclid, based on 5 postulates.
2000 years of struggle concerning the parallel postulate: Is it independent of/ios it a consequence of the 4 others?
Gauss, Bolyai, Lobachevski, 1820 - 1830: Alternative geometries, angle sum in a triangle differs from 180°. Hyperbolic geometri: Angle sum in triangle less than 180°; can be arbitrarily small. Homogeneous, (Gauss-) curvature <0. Absolute length: Two similar triangles are congruent!

Background: Hyperbolic geometry

Models: Eugenio Beltrami, Felix Klein, Henri Poincaré
Background for classical geometry: Euclid, based on 5 postulates.
2000 years of struggle concerning the parallel postulate: Is it independent of/ios it a consequence of the 4 others?
Gauss, Bolyai, Lobachevski, 1820 - 1830: Alternative geometries, angle sum in a triangle differs from 180°. Hyperbolic geometri: Angle sum in triangle less than 180°; can be arbitrarily small. Homogeneous, (Gauss-) curvature <0. Absolute length: Two similar triangles are congruent! Beltrami, ca. 1870: Models that can be "embedded" into Euclidan geometry.
Prize: The meaning of "line", "length", "distance", "angle" may differ from its Euclidean counterpart.

Models for hyperbolic geometry

Geodesic curves, length, angle
Poincaré's upper half plane:
Figure 1: The same lines in trree differentmodels: Note that the parallel
Geodesic curves (lines): half lines and half circles perpendicular on the real axis. Angles like in Euclidean geometry.
 Length: line element $d s^{2}=\frac{d x^{2}+d y^{2}}{y}-$ real axis has distance ∞ from interior.

Upper halfplare model

Poincarés disk: D
Geodesic curves: Circular arcs per-

pendiuclar to the boundary

 Angles like in Euclidean geometry> Length by line element $d s^{2}=\frac{d x^{2}+d y^{2}}{x^{2}}$

- boundary circle has distance ∞ from interior points

Models for hyperbolic geometry

Geodesic curves, length, angle

Poincaré's upper half plane:

Figure 1: The same lines in trree different models: Note that the parallel
$H=\{z \in \mathbf{C} \mid \Im z>0\}$. Geodesic curves (lines): half lines and half circles perpendicular on the real axis.
Angles like in Euclidean geometry.
Length: line element $d s^{2}=\frac{d x^{2}+d y^{2}}{y}-$ real axis has distance ∞ from interior.

Upper halrplare model Poincaré's disk: $D=\{z \in \mathbf{C}| | z \mid<1\}$.
Geodesic curves: Circular arcs perpendiuclar to the boundary.
Angles like in Euclidean geometry.
Length by line element $d s^{2}=\frac{d x^{2}+d y^{2}}{1-x^{2}-y^{2}}$

- boundary circle has distance ∞ from interior points.

Models for hyperbolic geometry

Geodesic curves, length, angle

Poincaré's upper half plane:

$H=\{z \in \mathbf{C} \mid \Im z>0\}$. Geodesic curves (lines): half lines and half circles perpendicular on the real axis.
Angles like in Euclidean geometry.
Length: line element $d s^{2}=\frac{d x^{2}+d y^{2}}{y}-$ real axis has distance ∞ from interior.

Figure 1: The same lines in trree differentmodels. Note that the parallel postulat fois here.

Upper halrplare model

Poincaré's disk: $D=\{z \in \mathbf{C}| | z \mid<1\}$.
Geodesic curves: Circular arcs perpendiuclar to the boundary.
Angles like in Euclidean geometry.
Length by line element $d s^{2}=\frac{d x^{2}+d y^{2}}{1-x^{2}-y^{2}}$

- boundary circle has distance ∞ from interior points.

Klein's disk K:
Same disc. Geodesic
curves = secants.
Different definition of angles.

Isometries in models of hyperbolic geometry

Isometry: distance- and angle preserving transformation. in Poincaré's upper half plane H :
Möbius transformations in $S L(2, \mathbf{R})$:
$z \mapsto \frac{a z+b}{c z+d}, a, b, c, d \in \mathbf{R}, a d-b c=1$.
Horizontal translations $z \mapsto z+b, b \in \mathbf{R}$;
Dilations $z \mapsto r z, r>0$;
Mirror inversions $z \mapsto-\frac{1}{z}$.
in Poincaré's disk D:
Möbius transformations

The two models are equivalent:
Apply $T: H \rightarrow D, T(z)=\frac{i z+1}{z+i}$

Henri Poincaré 1854-1912

Isometries in models of hyperbolic geometry

 as Möbius transformations!Isometry: distance- and angle preserving transformation. in Poincaré's upper half plane H :
Möbius transformations in $S L(2, \mathbf{R})$:
$z \mapsto \frac{a z+b}{c z+d}, a, b, c, d \in \mathbf{R}, a d-b c=1$.
Horizontal translations $z \mapsto z+b, b \in \mathbf{R}$;
Dilations $z \mapsto r z, r>0$;
Mirror inversions $z \mapsto-\frac{1}{z}$.
in Poincaré's disk D:
Möbius transformations
$z \mapsto e^{i \theta} \frac{z+z_{0}}{z_{0} z+1}, \theta \in \mathbf{R},\left|z_{0}\right|<1$.
The two models are equivalent:
Apply $T: H \rightarrow D, T(z)=\frac{i z+1}{z+i}$

Henri Poincaré 1854-1912

Isometries in models of hyperbolic geometry

 as Möbius transformations!Isometry: distance- and angle preserving transformation. in Poincaré's upper half plane H :
Möbius transformations in $S L(2, \mathbf{R})$:
$z \mapsto \frac{a z+b}{c z+d}, a, b, c, d \in \mathbf{R}, a d-b c=1$.
Horizontal translations $z \mapsto z+b, b \in \mathbf{R}$;
Dilations $z \mapsto r z, r>0$;
Mirror inversions $z \mapsto-\frac{1}{z}$.
in Poincaré's disk D :
Möbius transformations
$z \mapsto e^{i \theta} \frac{z+z_{0}}{\bar{z}_{0} z+1}, \theta \in \mathbf{R},\left|z_{0}\right|<1$.
The two models are equivalent:
Apply $T: H \rightarrow D, T(z)=\frac{i z+1}{z+i}$

Henri Poincaré
1854-1912
and its inverse T^{-1} !

Hyperbolic tesselations

Regular tesselation in Euklidean geometry - Schläfli symbols: Only $(n, k)=(3,6),(4,4),(6,3)-k$ regular n-gons - possible. Angle sum $=180^{\circ} \Rightarrow \frac{1}{n}+\frac{1}{k}=\frac{1}{2}$.
in hyperbolic geometry: $\frac{1}{n}+\frac{1}{k}<\frac{1}{2}$: Infinitely many possibilities!

Pattern preserving transformations form a discrete sulogretp or the group of all Möbius transformations.

Hyperbolic tesselations

Regular tesselation in Euklidean geometry - Schläfli symbols: Only $(n, k)=(3,6),(4,4),(6,3)-k$ regular n-gons - possible. Angle sum $=180^{\circ} \Rightarrow \frac{1}{n}+\frac{1}{k}=\frac{1}{2}$.
in hyperbolic geometry: $\frac{1}{n}+\frac{1}{k}<\frac{1}{2}$: Infinitely many possibilities!

Pattern preserving transformations form a discrete subgroup or the group of all Möbius transformations.

Schottky groups

Discrete subgroups within Möbius transformations
Given two disjoint circles C_{1}, D_{1} in \mathbf{C}.
There is a Möbius transformation A mapping the outside/inside of C_{1} into the inside/ouside of C_{2}. What does $a=A^{-1}$?

Martin Raussen

Complex pearls

Schottky groups

Discrete subgroups within Möbius transformations
Given two disjoint circles C_{1}, D_{1} in \mathbf{C}.
There is a Möbius transformation A mapping the outside/inside of C_{1} into the inside/ouside of C_{2}. What does $a=A^{-1}$? Correspondingly: two disjoint circles C_{2}, D_{2} in \mathbf{C}, disjoint with C_{1}, D_{1}. Möbius transformations B, b.

Complex pearls

Schottky groups

Discrete subgroups within Möbius transformations
Given two disjoint circles C_{1}, D_{1} in \mathbf{C}.
There is a Möbius transformation A mapping the outside/inside of C_{1} into the inside/ouside of C_{2}. What does $a=A^{-1}$?
Correspondingly: two disjoint circles C_{2}, D_{2} in \mathbf{C}, disjoint with C_{1}, D_{1}. Möbius transformations B, b.
The subgroup $<A, B>$ generated by A, B consists of all "words" in the alphabet $\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}$ (only relations:
$A a=a A=e=B b=b B)$.
Examples:
$A, a, B, b, A^{2}, A B, A b, a^{2}, a B, a b, B A, B a, B^{2}, b A, b a, b^{2}, A^{3}, A^{2} B, A B a,$.

Schottky groups

Discrete subgroups within Möbius transformations
Given two disjoint circles C_{1}, D_{1} in \mathbf{C}.
There is a Möbius transformation A mapping the outside/inside of C_{1} into the inside/ouside of C_{2}. What does $a=A^{-1}$?
Correspondingly: two disjoint circles C_{2}, D_{2} in \mathbf{C}, disjoint with C_{1}, D_{1}. Möbius transformations B, b.
The subgroup $<A, B>$ generated by A, B consists of all "words" in the alphabet $\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}$ (only relations:
$A a=a A=e=B b=b B)$.
Examples:
$A, a, B, b, A^{2}, A B, A b, a^{2}, a B, a b, B A, B a, B^{2}, b A, b a, b^{2}, A^{3}, A^{2} B, A B a,$.

How do the transformations in this (Schottky)-subgroup act on $\overline{\mathbf{C}}$?

Friedrich
Schottky 1851 - 1935

From Schottky group to fractal

- One step: Apply (one of) the operations A, a, B, b.
- Result: Three outer disks are "copied" into an inner disk.
- These "new" circles are then copied again in the next step.
- "Babushka" principle: Copy within copy within copy... \rightsquigarrow a point in the limit set \rightsquigarrow fractal
- What is the shape of this limit set?

From Schottky group to fractal

- One step: Apply (one of) the operations A, a, B, b.
- Result: Three outer disks are "copied" into an inner disk.
- These "new" circles are then copied again in the next step.
- "Babushka" principle: Copy within copy within copy... $\rightsquigarrow \mathrm{a}$ point in the limit set \rightsquigarrow fractal.
- What is the shape of this limit set?

Kleinian groups, Fuchsian groups and limit sets Background and terminology

Definition

Kleinian group: a discrete subgroup of Möbius transformations
Fuchsian group: a Kleinian group of Möbius transformations that preserve the upper half plane H (hyperbolic isometries, real coefficients)

Limit set: $\Lambda(G)$: consists of all limit points of alle orbits

Kleinian groups, Fuchsian groups and limit sets Background and terminology

Definition

Kleinian group: a discrete subgroup of Möbius transformations
Fuchsian group: a Kleinian group of Möbius transformations that preserve the upper half plane H (hyperbolic isometries, real coefficients)
Orbit: of a point $z_{0} \in \mathbf{C}$ under the action of a group G :

$$
\left\{g \cdot z_{0} \mid g \in G\right\}
$$

Limit set: $\Lambda(G)$: consists of all limit points of alle orbits.
Regular set: $\Omega(G):=\overline{\mathbf{C}} \backslash \Lambda(G)$.

Limit sets for Schottky grpups Properties

starting with disjoint circles:
The limit set $\Lambda(G)$ for a Schottky group G is a fractal set. It

- is totally disconnected;
- has positive Hausdorff dimension;
- has area 0 (fractal "dust")

Limit sets for Schottky grpups Properties

starting with disjoint circles:
The limit set $\Lambda(G)$ for a Schottky group G is a fractal set. It

- is totally disconnected;
- has positive Hausdorff dimension;
- has area 0 (fractal "dust")

Limit sets for Schottky grpups
 Properties

starting with disjoint circles:
The limit set $\Lambda(G)$ for a Schottky group G is a fractal set. It

- is totally disconnected;
- has positive Hausdorff dimension;
- has area 0 (fractal "dust").

Cayley graph and limit fractal

Convergence of "boundaries" in the Cayley graph
Every limit point in $\Lambda(G)$ corresponds to an infinite word in the four symbols A, a, B, b ("fractal mail addresses").

```
The limit fractal }\Lambda(G)\mathrm{ corresponds also to the boundary of the
Cayley graph for the group G - the metric space that is the limit
of the boundaries of words of limited length (Abelprize
recipient M. Gromov)
```


Cayley graph and limit fractal

Convergence of "boundaries" in the Cayley graph

Every limit point in $\Lambda(G)$ corresponds to an infinite word in the four symbols A, a, B, b ("fractal mail addresses").
The limit fractal $\Lambda(G)$ corresponds also to the boundary of the
Cayley graph for the group G - the metric space that is the limit of the boundaries of words of limited length (Abel prize recipient M. Gromov).

"Kissing Schottky groups" and fractal curves
 For tangent circles

The dust connects up and gives rise to a fractal curve:

F. Klein and R. Fricke knew that already back in 1897 without access to a computer!

"Kissing Schottky groups" and fractal curves
 For tangent circles

The dust connects up and gives rise to a fractal curve:

F. Klein and R. Fricke knew that already back in 1897 without access to a computer!

Have a try!

Outlook to modern research: 3D hyperbolic geometry

 following Poincaré's tracesModel: 3D ball with boundary sphere S^{2} (at distance ∞ from interior points).
"Planes" in this model:
Spherical caps perpendicular to the boundary.

Outlook to modern research: 3D hyperbolic geometry

 following Poincaré's tracesModel: 3D ball with boundary sphere S^{2} (at distance ∞ from interior points).
"Planes" in this model:
Spherical caps perpendicular to the boundary.
Result: a 3D tesselation by hyperbolic polyhedra.
To be analyzed at $S^{2}=\overline{\mathbf{C}}$ on which the full Möbius group $\operatorname{PGL}(2, \mathbf{C})$ acts.

[^0]

Outlook to modern research: 3D hyperbolic geometry

 following Poincaré's tracesModel: 3D ball with boundary sphere S^{2} (at distance ∞ from interior points).
"Planes" in this model:
Spherical caps perpendicular to the boundary.
Result: a 3D tesselation by hyperbolic polyhedra.
To be analyzed at $S^{2}=\overline{\mathbf{C}}$ on which the full Möbius group $\operatorname{PGL}(2, \mathbf{C})$ acts.
Most 3D-manifolds can be given
 a hyperbolic structure (Thurston, Perelman).

Möbius transformations and number theory
 Modular forms

Modular group consists of Möbius transformations with integer coefficients: $P S L(2, \mathbf{Z})$.
Acts on the upper half plane \mathbf{H}.
Fundamental domains boundaries composed of circular arcs.

Modular form Meromorphic function satisfying

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

Important tool in
Analytic number theory Moonshine. Fermat-Wiles-Taylor.

References

partially web based

- D. Mumford, C. Series, D. Wright, Indra's Pearls: The Vision of Felix Klein, Cambridge University Press, New York, 2002
- Indra's Pearls - associated web portal
- A. Marden, Review of Indra's Pearls, Notices of the AMS 50, no. 1 (2003), 38 - 44
- C. Series, D. Wright, Non-Euclidean geometry and Indra's pearls, Plus 43, 2007
- R. Fricke, F. Klein, Vorlesungen über die Theorie der Automorphen Functionen, Teubner, 1897
- D. Joyce, Hyperbolic Tesselations
- Not Knot, Geometry Center, A.K. Peters
- R. van der Veen, Project Indra's Pearls

Thanks!

Thanks for your attention!

Questions???

Thanks!

Thanks for your attention!

Questions???

[^0]: Most 3D-manifolds can be given a hyperbolic structure (Thurston, Perelman)

