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Intro: State space, directed paths and trace space
Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA

State space:
a 3D cube~I3 \ F
minus 4 box obstructions
pairwise connected

Path space model contained
in torus (∂∆2)2 –
homotopy equivalent to a
wedge of two circles and a
point: (S1 ∨ S1) t ∗

Analogy in standard algebraic topology
Relation between space X and loop space ΩX .
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Intro: State space and trace space
Pre-cubical set as state space

Example 2: State space and trace space for a non-looping
pre-cubical complex

State space: Boundaries of
two cubes glued together at
common square AB′C ′•

Path space model:
Prodsimplicial complex
contained in (∂∆2)2 ∪ ∂∆2–
homotopy equivalent to
S1 ∨ S1
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Intro: State space and trace space
with loops

Example 3: Torus with a hole

• • • •

• •
X

• •

• N • •

• • • •

State space with hole X :
2D torus ∂∆2 × ∂∆2 with a
rectangle ∆1 × ∆1 removed

Path space model:
Discrete infinite space of
dimension 0 corresponding
to {r ,u}∗.

Question: Path space for a
torus with hole in higher
dimensions?

Martin Raussen Simplicial models for trace spaces



Motivation: Concurrency
Semaphores: A simple model for mutual exclusion

Mutual exclusion
occurs, when n processes Pi compete for m resources Rj .

Only k processes can be served at any given time.

Semaphores
Semantics: A processor has to lock a resource and to
relinquish the lock later on!
Description/abstraction: Pi : . . . PRj . . . VRj . . . (E.W. Dijkstra)
P: probeer; V : verhoog
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A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example
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Unsafe

Un−

reachable

T1

T2

Pa Pb Vb Va

Pb

Pa

Va

Vb

(0,0)

(1,1)

PV-diagram from
P1 : PaPbVbVa
P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).
Dipaths that are dihomotopic
(through a 1-parameter
deformation consisting of
dipaths) correspond to
equivalent executions.
Deadlocks, unsafe and
unreachable regions may
occur.
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Simple Higher Dimensional Automata
Semaphore models

The state space
A linear PV-program is modeled as the complement of a
forbidden region F consisting of a number of holes in an
n-cube:
Hole = isothetic hyperrectangle
R i =]ai

1,b
i
1[× · · · ×]ai

n,bi
n[⊂ In,1 ≤ i ≤ l :

with minimal vertex ai and maximal vertex bi .
State space X =~In \ F , F =

⋃l
i=1 R i

X inherits a partial order from~In. d-paths are order preserving.

More general (PV)-programs:

Replace~In by a product Γ1 × · · · × Γn of digraphs.
Holes have then the form pi

1((0,1))× · · · × pi
n((0,1)) with

pi
j :~I → Γj a directed injective (d-)path.

Pre-cubical complexes: like pre-simplicial complexes,
with (partially ordered) hypercubes instead of simplices as
building blocks.
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Spaces of d-paths/traces – up to dihomotopy
Schedules

Definition
X a d-space, a,b ∈ X .
p :~I → X a d-path in X (continuous and
“order-preserving”) from a to b.
~P(X )(a,b) = {p :~I → X | p(0) = a,p(b) = 1,p a d-path}.
Trace space ~T (X )(a,b) = ~P(X )(a,b) modulo
increasing reparametrizations.
In most cases: ~P(X )(a,b) ' ~T (X )(a,b).
A dihomotopy in ~P(X )(a,b) is a map H :~I × I → X such
that Ht ∈ ~P(X )(a,b), t ∈ I; ie a path in ~P(X )(a,b).

Aim:

Description of the homotopy type of ~P(X )(a,b) as explicit finite
dimensional prodsimplicial complex.
In particular: its path components, ie the dihomotopy classes of
d-paths (executions).
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Tool: Subspaces of X and of ~P(X )(0,1)

X =~In \ F ,F =
⋃l

i=1 R i ;R i = [ai ,bi ];0,1 the two corners in In.

Definition
1 Xij = {x ∈ X | x ≤ bi ⇒ xj ≤ ai

j} – direction j restricted at
hole i

2 M a binary l × n-matrix: XM =
⋂

mij=1 Xij –
Which directions are restricted at which hole?

Examples: 2 holes in 2D/ 1hole in 3D
M =[
1 0
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 1
0 1

]
M =
[100] [010] [001]
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Covers by contractible (or empty) subspaces
Bookkeeping with binary matrices

Binary matrices
Ml,n poset (≤) of binary l × n-matrices

MR,∗
l,n no row vector is the zero vector

MR,u
l,n every row vector is a unit vector

MC,u
l,n every column vector is a unit vector

A cover:

~P(X )(0,1) =
⋃

M∈MR,∗
l,n

~P(XM)(0,1).

Theorem

Every path space ~P(XM)(0,1),M ∈ MR,∗
l,n , is empty or

contractible. Which is which?

Proof.

Subspaces XM ,M ∈ MR,∗
l,n are closed under ∨ = l.u.b.
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A combinatorial model and its geometric realization
First examples

Combinatorics
poset category
C(X )(0,1) ⊆ MR,∗

l,n ⊆ Ml,n
M ∈ C(X )(0,1) “alive”

Topology:
prodsimplicial complex
T(X )(0,1) ⊆ (∆n−1)l

∆M = ∆m1 × · · · × ∆ml ⊆
T(X )(0,1) – one simplex ∆mi

for every hole
⇔ ~P(XM)(0,1) 6= ∅.

Examples of path spaces

[
1 0
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 1
0 1

]
T(X1)(0,1) = (∂∆1)2

= 4∗
T(X2)(0,1) = 3∗

⊃ C(X )(0,1)
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Further examples

State spaces, “alive” matrices and path spaces

1 X =~In \~Jn

2

1 C(X )(0,1) = MR,∗
1,n \ {[1, . . . 1]}.

T(X )(0,1) = ∂∆n−1 ' Sn−2.
2 Cmax (X )(0,1) =

{
[
0 1 1
0 1 1

]
,

[
1 0 1
1 0 1

]
,

[
1 1 0
1 1 0

]
}.

C(X )(0,1) = {M ∈ MR,∗
l,n | ∃N ∈

Cmax (X )(0,1) : M ≤ N}
T(X )(0,1) = 3 diagonal
squares ⊂ (∂∆2)2 = T 2

' S1.
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Homotopy equivalence between trace space
~T (X )(0,1) and the prodsimplicial complex T(X )(0,1)

Theorem (A variant of the nerve lemma)

~P(X )(0,1) ' T(X )(0,1) ' ∆C(X )(0,1).

Proof.

Functors D, E , T : C(X )(0,1)(op) → Top:
D(M) = ~P(XM)(0,1),
E(M) = ∆M ,
T (M) = ∗
colim D = ~P(X )(0,1), colim E = T(X )(0,1),
hocolim T = ∆C(X )(0,1).
The trivial natural transformations D ⇒ T , E ⇒ T yield:
hocolim D ∼= hocolim T ∗ ∼= hocolim T ∼= hocolim E .
Projection lemma:
hocolim D ' colim D, hocolim E ' colim E .
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Why prodsimplicial?
rather than simplicial

We distinguish, for every obstruction, sets Ji ⊂ [1 : n] of
restrictions. A joint restriction is of product type
J1 × · · · × Jl ⊂ [1 : n]l , and not an arbitrary subset of
[1 : n]l .

Simplicial model: a subcomplex of ∆nl
– 2(nl ) subsimplices.

Prodsimplicial model: a subcomplex of (∆n)l – 2(nl)

subsimplices.
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From C(X )(0,1) to properties of path space
Questions answered by homology calculations using T(X )(0,1)

Questions

Is ~P(X )(0,1) path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?
Determination of path-components?
Are components simply connected?
Other topological properties?

Strategies – Attempts

Implementation of T(X )(0,1) in ALCOOL:
Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram
The prodsimplicial structure on C(X )(0,1)↔ T(X )(0,1)
leads to an associated chain complex of vector spaces
over a field.
Use fast algorithms (eg Mrozek’s CrHom etc) to calculate
the homology groups of these chain complexes even for
very big complexes: M. Juda (Krakow).
Number of path-components: rkH0(T(X )(0,1)).
For path-components alone, there are faster “discrete”
methods, that also yield representatives in each path
component.
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Detection of dead and alive subcomplexes
An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!
Remove extended hyperrectangles
R i

j := [0,bi
1[× · · · ×

[0,bi
j−1[×]ai

j ,b
i
j [×[0,bi

j+1[× · · · ×
[0,bi

n[⊃ R i .
XM = X \⋃mij=1 R i

j .

Theorem
The following are equivalent:

1 ~P(XM)(0,1) = ∅⇔ M 6∈C(X )(0,1).
2 There is a “dead” matrix N ≤ M,N ∈ MC,u

l,n , such that⋂
nij=1 R i

j 6= ∅ – giving rise to a deadlock unavoidable from
0, i.e., T (XN)(0,1) = ∅.
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Dead matrices in D(X )(0,1)
Inequalities decide

Decisions: Inequalities
Deadlock algorithm (Fajstrup, Goubault, Raussen) :

Theorem

N ∈ MC,u
l,n dead⇔

For all 1 ≤ j ≤ n, for all 1 ≤ k ≤ n such that ∃j ′ : nkj ′ = 1:

nij = 1⇒ ai
j < bk

j .

M ∈ MR,∗
l,n dead⇔ ∃N ∈ MC,u

l,n dead, N ≤ M.

Definition

D(X )(0,1) := {P ∈ Ml,n|∃N ∈ MC,u
l,n ,N dead : N ≤ P}.

A cube with a cube hole

X =~In \~Jn

D(X )(0,1) = {[1, . . . ,1]} = MC,u
1,n .

Martin Raussen Simplicial models for trace spaces



Maximal alive↔ minimal dead

Still alive – not yet dead

Cmax(X )(0,1) ⊂ C(X )(0,1) maximal alive matrices.
Matrices in Cmax(X )(0,1) correspond to maximal simplex
products in T(X )(0,1).
Connection: M ∈ Cmax(X )(0,1),M ≤ N a succesor (a
single 0 replaced by a 1)⇒ N ∈ D(X )(0,1).

A cube removed from a cube

X =~In \~Jn,D(X )(0,1) = {[1, . . . ,1]};
Cmax(X )(0,1): vectors with a single 0;
C(X )(0,1) = MR

l,n \ {[1, . . . ,1]};
T(X )(0,1) = ∂∆n−1.
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Open problem: Huge complexes – complexity

l obstructions, n processors:
T(X )(0,1) is a subcomplex of (∂∆n−1)l :
potentially a huge high-dimensional complex.
Smaller models? Make use of partial order among the
obstructions R i , and in particular the inherited partial order
among their extensions R i

j with respect to ⊆.
Consider only saturated matrices in the sense:
R i1

j ⊂ R i2
j ,mi2j = 1⇒ mi1j = 1.

Work in progress: yields simplicial complex of far smaller
dimension!
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Open problem: Variation of end points
Conncection to MD persistence?

So far: ~T (X )(0,1) - fixed end points.
Now: Variation of ~T (X )(a,b) of start and end point, giving
rise to filtrations.
At which thresholds do homotopy types change?
Can one cut up X × X into components so that the
homotopy type of trace spaces with end point pair in a
component is invariant?
Birth and death of homology classes?
Compare with multidimensional persistence (Carlsson,
Zomorodian): even more complex because of double
multi-filtration.
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Extensions
1. Obstruction hyperrectangles intersecting the boundary of In - Components

More general linear semaphore state spaces

More general semaphores (intersection with the boundary
∂In ⊂ In allowed)
n dining philosophers: Trace space has 2n − 2 contractible
components!
Different end points: ~P(X )(c,d) and iterative calculations
End complexes rather than end points (allowing processes
not to respond..., Herlihy & Cie)

State space components
New light on definition and determination of components of
model space X .
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Extensions
2a. Semaphores corresponding to non-linear programs:

Path spaces in product of digraphs

Products of digraphs instead of~In:
Γ = ∏n

j=1 Γj , state space X = Γ \ F ,
F a product of generalized hyperrectangles R i .

~P(Γ)(x,y) = ∏~P(Γj)(xj , yj) – homotopy discrete!

Pullback to linear situation

Represent a path component C ∈ ~P(Γ)(x,y) by (regular)
d-paths pj ∈ ~P(Γj)(xj , yj) – an interleaving.
The map c :~In → Γ, c(t1, . . . , tn) = (c1(t1), . . . , cn(tn)) induces
a homeomorphism ◦c : ~P(~In)(0,1)→ C ⊂ ~P(Γ)(x,y).
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Extensions
2b. Semaphores: Topology of components of interleavings

Homotopy types of interleaving components
Pull back F via c:
X̄ =~In \ F̄ , F̄ =

⋃
R̄ i , R̄ i = c−1(R i) – honest hyperrectangles!

iX : ~P(X ) ↪→ ~P(Γ).
Given a component C ⊂ ~P(Γ)(x,y).
The d-map c : X̄ → X induces a homeomorphism
c◦ : ~P(X̄ )(0,1)→ i−1

X (C) ⊂ ~P(Γ)(x,y).

C “lifts to X ”⇔ ~P(X̄ )(0,1) 6= ∅; if so:
Analyse i−1

X (C) via ~P(X̄ )(0,1).
Exploit relations between various components.

Special case: Γ = (S1)n – a torus

State space: A torus with rectangular holes in F :
Investigated by Fajstrup, Goubault, Mimram etal.:
Analyse by language on the alphabet C(X )(0,1) of alive
matrices for a delooping of Γ \ F .
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Extensions
3a. D-paths in pre-cubical complexes

HDA: Directed pre-cubical complex
Higher Dimensional Automaton: Pre-cubical complex – like
simplicial complex but with cubes as building blocks – with
preferred diretions.
Geometric realization X with d-space structure.

Branch points and branch cubes
These complexes have branch points and branch cells – more
than one maximal cell with same lower corner vertex.
At branch points, one can cut up a cubical complex into simpler
pieces.
Trouble: Simpler pieces may have higher order branch points.
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Extensions
3b. Path spaces for HDAs without d-loops

Non-branching complexes

Start with complex without directed loops: After finally many
iterations: Subcomplex Y without branch points.

Theorem
~P(Y )(x0,x1) is empty or contractible.

Proof.
Such a subcomplex has a preferred diagonal flow and a
contraction from path space to the flow line from start to
end.

Branch category

Results in a (complicated) finite branch categoryM(X )(x0,x1)
on subsets of set of (iterated) branch cells.

Theorem
~P(X )(x0,x1) is homotopy equivalent to the nerve
N (M(X )(x0,x1)) of that category.
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Extensions
3c. Path spaces for HDAs with d-loops

Delooping HDAs

A pre-cubical complex comes with an L1-length 1-form ω
reducing to ω = dx1 + · · ·+ dxn on every n-cube.
Integration: L1-length on rectifiable paths, homotopy invariant.
Defines l : P(X )(x0, x1)→ R and l] : π1(X )→ R with kernel K .
The (usual) covering X̃ ↓ X with π1(X̃ ) = K is a directed
pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points x0,x1 ∈ X, path space ~P(X )(x0,x1) is
homeomorphic to the disjoint union

⊔
n∈Z

~P(X̃ )(x0
0,x

n
1)

a.

ain the fibres over x0,x1
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To conclude

From a (rather compact) state space model to a finite
dimensional trace space model.
Calculations of invariants (Betti numbers) of path space
possible for state spaces of a moderate size.
Dimension of trace space model reflects not the size but
the complexity of state space (number of obstructions,
number of processors) – linearly.
Challenge: General properties of path spaces for
algorithms solving types of problems in a distributed
manner?
Connections to the work of Herlihy and Rajsbaum: protocol
complex etc
Challenge: Morphisms between HDA d-maps between
pre-cubical state spaces functorial maps between trace
spaces. Properties? Equivalences?
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Want to know more?
Thank you!
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Thank you for your attention!
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