Simplicial models for trace spaces

Martin Raussen

Department of Mathematical Sciences Aalborg University Denmark

Applications of Combinatorial Topology to Computer Science

Schloss Dagstuhl

March 2012

Simplicial models for trace spaces

SCHLOSS DAGSTUHL

Examples: State spaces and associated path spaces in Higher Dimensional Automata (HDA) Motivation: Concurrency Simplest case: State spaces and path spaces related to linear **PV-programs** Tool: Cutting up path spaces into contractible subspaces Homotopy type of path space described by a matrix poset category and realized by a prodsimplicial complex Algorithmics: Detecting dead and alive subcomplexes/matrices Outlook: How to handle general HDA

Intro: State space, directed paths and trace space Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA

State space: a 3D cube $\vec{1}^3 \setminus F$ minus 4 box obstructions pairwise connected Path space model contained in torus $(\partial \Delta^2)^2$ – homotopy equivalent to a wedge of two circles and a point: $(S^1 \lor S^1) \sqcup *$

Analogy in standard algebraic topology

Relation between space X and loop space ΩX .

Martin Raussen

Simplicial models for trace spaces

Pre-cubical set as state space

Example 2: State space and trace space for a non-looping pre-cubical complex

State space: Boundaries of two cubes glued together at common square $AB'C' \bullet$

Path space model: Prodsimplicial complex contained in $(\partial \Delta^2)^2 \cup \partial \Delta^2$ homotopy equivalent to $S^1 \vee S^1$

Intro: State space and trace space with loops

Example 3: Torus with a hole

State space with hole X: 2D torus $\partial \Delta^2 \times \partial \Delta^2$ with a rectangle $\Delta^1 \times \Delta^1$ removed Path space model: Discrete infinite space of dimension 0 corresponding to $\{r, u\}^*$.

Question: Path space for a torus with hole in higher dimensions?

Motivation: Concurrency Semaphores: A simple model for mutual exclusion

Mutual exclusion

occurs, when *n* processes P_i compete for *m* resources R_j .

Only k processes can be served at any given time.

Semaphores

Semantics: A processor has to lock a resource and to relinquish the lock later on! **Description/abstraction:** $P_i : ... PR_j ... VR_j ...$ (E.W. Dijkstra) *P*: probeer; *V*: verhoog

A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example

Executions are directed paths – since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are **dihomotopic** (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions. Deadlocks, unsafe and unreachable regions may occur.

Simple Higher Dimensional Automata

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube: Hole = isothetic hyperrectangle $R^i =]a_1^i, b_1^i [\times \cdots \times]a_n^i, b_n^i [\subset I^n, 1 \le i \le l$: with minimal vertex a^i and maximal vertex b^i . State space $X = \overline{I}^n \setminus F, \ F = \bigcup_{i=1}^l R^i$ *X* inherits a partial order from \overline{I}^n . d-paths are order preserving.

More general (PV)-programs:

- Replace \vec{l}^n by a product $\Gamma_1 \times \cdots \times \Gamma_n$ of digraphs.
- Holes have then the form $p_1^i((0, 1)) \times \cdots \times p_n^i((0, 1))$ with $p_j^i : \vec{l} \to \Gamma_j$ a directed injective (d-)path.
- Pre-cubical complexes: like pre-simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.

Spaces of d-paths/traces – up to dihomotopy Schedules

Definition

X a d-space, a, b ∈ X. p: i→ X a d-path in X (continuous and "order-preserving") from a to b.
P(X)(a, b) = {p: i→ X | p(0) = a, p(b) = 1, p a d-path}. Trace space T(X)(a, b) = P(X)(a, b) modulo increasing reparametrizations. In most cases: P(X)(a, b) ≃ T(X)(a, b).
A diparatery in P(X)(a, b) ≃ mon H i i × I → X such

• A dihomotopy in $\vec{P}(X)(a, b)$ is a map $H: \vec{l} \times I \to X$ such that $H_t \in \vec{P}(X)(a, b)$, $t \in I$; ie a path in $\vec{P}(X)(a, b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a, b)$ as explicit finite dimensional prodsimplicial complex. In particular: its path components, ie the dihomotopy classes of d-paths (executions). Tool: Subspaces of X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

 $X = \vec{l}^n \setminus F$, $F = \bigcup_{i=1}^l R^i$; $R^i = [\mathbf{a}^i, \mathbf{b}^i]$; **0**, **1** the two corners in I^n .

Definition

- $X_{ij} = \{x \in X | x \le b^i \Rightarrow x_j \le a_j^i\}$ direction *j* restricted at hole *i*
- 2 *M* a binary $l \times n$ -matrix: $X_M = \bigcap_{m_{ij}=1} X_{ij}$ Which directions are restricted at which hole?

Examples: 2 holes in 2D/ 1 hole in 3D

Martin Raussen Simplicial models for trace spaces

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector $M_{l,n}^{R,u}$ every row vector is a unit vector $M_{l,n}^{R,u}$ every column vector is a unit vector

A cover:

 $\vec{P}(X)(\mathbf{0},\mathbf{1}) = \bigcup_{M \in M^{R,*}_{l,n}} \vec{P}(X_M)(\mathbf{0},\mathbf{1}).$

Theorem

Every path space $\vec{P}(X_M)(\mathbf{0}, \mathbf{1}), M \in M_{l,n}^{\mathbf{R},*}$, is empty or contractible. Which is which?

Proof.

Subspaces X_M , $M \in M_{l,n}^{\mathbf{R},*}$ are closed under $\vee = l.u.b.$

A combinatorial model and its geometric realization

Combinatorics poset category $C(X)(\mathbf{0},\mathbf{1}) \subseteq M_{l,n}^{R,*} \subseteq M_{l,n}$ $M \in C(X)(\mathbf{0},\mathbf{1})$ "alive" Topology:

prodsimplicial complex $T(X)(0, 1) \subseteq (\Delta^{n-1})^{I}$ $\Delta_{M} = \Delta_{m_{1}} \times \cdots \times \Delta_{m_{l}} \subseteq$ T(X)(0, 1) – one simplex $\Delta_{m_{l}}$ for every hole

 $\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$

Examples of path spaces

• $\mathbf{T}(X_1)(\mathbf{0},\mathbf{1}) = (\partial \Delta^1)^2$ = 4*

•
$$T(X_2)(0, 1) = 3*$$

 $\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$

Further examples

State spaces, "alive" matrices and path spaces

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ and the prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

 $\vec{P}(X)(\mathbf{0},\mathbf{1})\simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1})\simeq \Delta \mathcal{C}(X)(\mathbf{0},\mathbf{1}).$

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T} : \mathcal{C}(X)(\mathbf{0}, \mathbf{1})^{(\mathsf{O}\mathsf{p})} \to \mathsf{Top}:$ $\mathcal{D}(M) = \vec{P}(X_M)(\mathbf{0}, \mathbf{1}),$ $\mathcal{E}(M) = \Delta_M,$ $\mathcal{T}(M) = *$
- colim $\mathcal{D} = \vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations D ⇒ T, E ⇒ T yield: hocolim D ≃ hocolim T* ≃ hocolim T ≃ hocolim E.
- Projection lemma: hocolim D ≃ colim D, hocolim E ≃ colim E.

- We distinguish, for every obstruction, sets J_i ⊂ [1 : n] of restrictions. A joint restriction is of product type J₁ × · · · × J_l ⊂ [1 : n]^l, and not an arbitrary subset of [1 : n]^l.
- Simplicial model: a subcomplex of $\Delta^{n'} 2^{(n')}$ subsimplices.
- Prodsimplicial model: a subcomplex of (Δⁿ)^l 2^(nl) subsimplices.

From $C(X)(\mathbf{0}, \mathbf{1})$ to properties of path space Questions answered by homology calculations using $T(X)(\mathbf{0}, \mathbf{1})$

Questions

- Is P(X)(0, 1) path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected? Other topological properties?

Strategies – Attempts

- Implementation of T(X)(0, 1) in ALCOOL:
 Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0, 1) ↔ T(X)(0, 1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek's CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are faster "discrete" methods, that also yield representatives in each path component.

Detection of dead and alive subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles $R_j^i := [0, b_1^i [\times \cdots \times [0, b_{j-1}^i [\times] a_j^i, b_j^i [\times [0, b_{j+1}^i [\times \cdots \times [0, b_n^i [\supset R^i], X_M = X \setminus \bigcup_{m_{ii}=1} R_j^i]$

Theorem

The following are equivalent:

 $\vec{P}(X_M)(\mathbf{0},\mathbf{1}) = \oslash \Leftrightarrow M \not\in \mathcal{C}(X)(\mathbf{0},\mathbf{1}).$

• There is a "dead" matrix $N \leq M$, $N \in M_{l,n}^{C,u}$, such that

 $\bigcap_{\substack{n_{ij}=1 \\ 0, i.e., T(X_N)(0, 1) = \emptyset}} R_j^i \neq \emptyset - giving rise to a$ *deadlock*unavoidable from 0.

Dead matrices in $D(X)(\mathbf{0}, \mathbf{1})$ Inequalities decide

Decisions: Inequalities

Deadlock algorithm (Fajstrup, Goubault, Raussen) ~>:

Theorem

$$n_{ij} = 1 \Rightarrow a_j^i < b_j^k.$$

•
$$M \in M_{l,n}^{R,*}$$
 dead $\Leftrightarrow \exists N \in M_{l,n}^{C,u}$ dead, $N \leq M$.

Definition

$$D(X)(\mathbf{0},\mathbf{1}) := \{ P \in M_{l,n} | \exists N \in M_{l,n}^{C,u}, N \textit{ dead} : N \leq P \}$$

A cube with a cube hole

•
$$X = \vec{l}^n \setminus \vec{J}^n$$

• $D(X)(0, 1) = \{[1, ..., 1]\} = M_{1,n}^{C,u}$

Maximal alive \leftrightarrow minimal dead

Still alive - not yet dead

- $C_{\max}(X)(\mathbf{0},\mathbf{1}) \subset C(X)(\mathbf{0},\mathbf{1})$ maximal alive matrices.
- Matrices in C_{max}(X)(0, 1) correspond to maximal simplex products in T(X)(0, 1).
- Connection: M ∈ C_{max}(X)(0, 1), M ≤ N a succesor (a single 0 replaced by a 1) ⇒ N ∈ D(X)(0, 1).

A cube removed from a cube

- $X = \vec{l}^n \setminus \vec{J}^n$, $D(X)(0, 1) = \{[1, ..., 1]\};$
- $C_{\max}(X)(0, 1)$: vectors with a single 0;
- $C(X)(0, 1) = M_{l,n}^R \setminus \{[1, ..., 1]\};$
- $\mathbf{T}(X)(\mathbf{0},\mathbf{1}) = \partial \Delta^{n-1}$.

Open problem: Huge complexes – complexity

- *I* obstructions, *n* processors:
 T(X)(0, 1) is a subcomplex of (∂Δⁿ⁻¹)^{*I*}:
 potentially a huge high-dimensional complex.
- Smaller models? Make use of partial order among the obstructions Rⁱ, and in particular the inherited partial order among their extensions Rⁱ_i with respect to ⊆.
- Consider only saturated matrices in the sense: $R_j^{i_1} \subset R_j^{i_2}, m_{i_2j} = 1 \Rightarrow m_{i_1j} = 1.$
- Work in progress: yields simplicial complex of far smaller dimension!

Open problem: Variation of end points Conncection to MD persistence?

- So far: $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ fixed end points.
- Now: Variation of $\vec{T}(X)(\mathbf{a}, \mathbf{b})$ of start and end point, giving rise to filtrations.
- At which thresholds do homotopy types change?
- Can one cut up X × X into components so that the homotopy type of trace spaces with end point pair in a component is invariant?
- Birth and death of homology classes?
- Compare with multidimensional persistence (Carlsson, Zomorodian): even more complex because of double multi-filtration.

More general linear semaphore state spaces

- More general semaphores (intersection with the boundary $\partial I^n \subset I^n$ allowed)
- n dining philosophers: Trace space has 2ⁿ 2 contractible components!
- Different end points: $\vec{P}(X)(\mathbf{c}, \mathbf{d})$ and iterative calculations
- End **complexes** rather than end points (allowing processes not to respond..., Herlihy & Cie)

State space components

New light on definition and determination of **components** of model space *X*.

Path spaces in product of digraphs

Products of digraphs instead of \vec{l}^n : $\Gamma = \prod_{j=1}^n \Gamma_j$, state space $X = \Gamma \setminus F$, *F* a product of generalized hyperrectangles R^i . • $\vec{P}(\Gamma)(\mathbf{x}, \mathbf{y}) = \prod \vec{P}(\Gamma_i)(x_i, y_i)$ – homotopy discrete!

Pullback to linear situation

Represent a path component $C \in \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$ by (regular) d-paths $p_j \in \vec{P}(\Gamma_j)(x_j, y_j)$ – an interleaving. The map $c : \vec{l}^n \to \Gamma, c(t_1, \dots, t_n) = (c_1(t_1), \dots, c_n(t_n))$ induces a homeomorphism $\circ c : \vec{P}(\vec{l}^n)(\mathbf{0}, \mathbf{1}) \to C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y}).$

Homotopy types of interleaving components

Pull back F via c: $\bar{X} = \bar{l}^n \setminus \bar{F}, \bar{F} = \bigcup \bar{R}^i, \bar{R}^i = c^{-1}(R^i)$ – honest hyperrectangles! $i_X : \vec{P}(X) \hookrightarrow \vec{P}(\Gamma)$. Given a component $C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$. The d-map $c : \bar{X} \to X$ induces a homeomorphism $c_\circ : \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \to i_X^{-1}(C) \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

- *C* "lifts to X" $\Leftrightarrow \vec{P}(\bar{X})(\mathbf{0},\mathbf{1}) \neq \emptyset$; if so:
- Analyse $i_{\chi}^{-1}(C)$ via $\vec{P}(\bar{X})(\mathbf{0},\mathbf{1})$.
- Exploit relations between various components.

Special case: $\Gamma = (S^1)^n - a$ torus

State space: A torus with rectangular holes in *F*: Investigated by Fajstrup, Goubault, Mimram etal.: Analyse by **language** on the alphabet $C(X)(\mathbf{0}, \mathbf{1})$ of **alive** matrices for a delooping of $\Gamma \setminus F$.

HDA: Directed pre-cubical complex

Higher Dimensional Automaton: **Pre-cubical complex** – like simplicial complex but with **cubes** as building blocks – with preferred diretions.

Geometric realization *X* with d-space structure.

Branch points and branch cubes

These complexes have **branch points** and **branch cells** – more than one maximal cell with same lower corner vertex. At branch points, one can cut up a cubical complex into simpler pieces.

Trouble: Simpler pieces may have higher order branch points.

Extensions 3b. Path spaces for HDAs without d-loops

Non-branching complexes

Start with complex **without directed loops**: After finally many iterations: Subcomplex *Y* **without branch points**.

Theorem

 $\vec{P}(Y)(\mathbf{x}_0, \mathbf{x}_1)$ is empty or contractible.

Proof.

Such a subcomplex has a preferred **diagonal flow** and a contraction from path space to the flow line from start to end.

Branch category

Results in a (complicated) finite branch category $\mathcal{M}(X)(\mathbf{x}_0, \mathbf{x}_1)$ on subsets of set of (iterated) branch cells.

Theorem

 $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homotopy equivalent to the nerve $\mathcal{N}(\mathcal{M}(X)(\mathbf{x}_0, \mathbf{x}_1))$ of that category.

Delooping HDAs

A pre-cubical complex comes with an L_1 -length 1-form ω reducing to $\omega = dx_1 + \cdots + dx_n$ on every *n*-cube. Integration: L_1 -length on rectifiable paths, homotopy invariant. Defines $I : P(X)(x_0, x_1) \to \mathbf{R}$ and $I_{\sharp} : \pi_1(X) \to \mathbf{R}$ with kernel *K*. The (usual) covering $\tilde{X} \downarrow X$ with $\pi_1(\tilde{X}) = K$ is a directed pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points $\mathbf{x}_0, \mathbf{x}_1 \in X$, path space $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homeomorphic to the disjoint union $\bigcup_{n \in \mathbf{Z}} \vec{P}(\tilde{X})(\mathbf{x}_0^0, \mathbf{x}_1^n)^a$.

^{*a*} in the fibres over \mathbf{x}_0 , \mathbf{x}_1

To conclude

- From a (rather compact) state space model to a finite dimensional trace space model.
- Calculations of invariants (Betti numbers) of path space possible for state spaces of a moderate size.
- Dimension of trace space model reflects not the size but the complexity of state space (number of obstructions, number of processors) – linearly.
- Challenge: General properties of path spaces for algorithms solving types of problems in a distributed manner?
 Connections to the work of Herlihy and Rajsbaum: protocol complex etc

Want to know more?

References

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683 1714.
- MR, Execution spaces for simple higher dimensional automata, to appear in Appl. Alg. Eng. Comm. Comp.
- MR, Simplicial models for trace spaces II: General HDA, Aalborg University Research Report R-2011-11; submitted.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup etal., Trace Spaces: an efficient new technique for State-Space Reduction, to appear in Proceedings ESOP, 2012.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. **12** (2010), 231 244.

Thank you for your attention!