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Mutual exclusion

Mutual exclusion occurs, when n processes Pi compete for m
resources Sj .
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Only k processes can be served at any given time.
Semaphores!
Semantics: A processor has to lock a resource and relinquish
the lock later on!
Description/abstraction Pi : . . . PRj . . . VRj . . . (Dijkstra)
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Schedules in ”progress graphs”
The Swiss flag example
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Executions are directed paths avoiding a forbidden region F .
Deadlocks: no directed path with that source.
Unsafe regions: Every inextendible dipath ends in a deadlock.
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Deadlocks in higher dimensions
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C=Pc.Pa.Vc.Va

Higher di-
mensional
complex with
a forbidden
region consist-
ing of isothetic
hypercubes
and an unsafe
region.
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Geometric deadlock detection 1

Deadlocks may occur at the
lower corners of intersections of n hypercubes –
unless contained in the interior of the forbidden region.
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Dimension 3: The front right upper corner of a room is the
intersection of 3 (forbidden) walls.
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Geometric deadlock detection 2
published in CONCUR’98 proceedings

Theorem
A (non-final) point x ∈ X = In\int(F ) is a deadlock if and only if
• there is an n-element index set J = {i1, . . . , in} with

RJ = Ri1 ∩ · · · ∩ Rin �= ∅

• x = aJ = (aJ
1, . . . , aJ

n) = min RJ �∈ int(F ).

Remark The coordinate aJ
j is then maximum of the j-th

coordinates of the lower corners of the participating hypercubes
Ri – easy to find algorithmically.
(Mininal) unreachable points can be found analogously.
Unsafe regions?
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An algorithm detecting unsafe regions
published in CONCUR’98 proceedings, illustrations courtesy Eric Goubault

From the PV-program
� Compute the forbidden region F ⊂ In,
� The intersections RJ of n forbidden hyperrectangles

Ri = [ai
1, bi

1] × · · · [ai
n, bi

n] create deadlocks.
� Forbid successively the hyperrectangles [x̃ , x ], where

x = minJ = (maxiai
1, · · ·maxiai

n) and
x̃ = (2nd maxi ai

1, · · · , 2nd maxiai
n)�

secondary deadlocks, unsafe regions.
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Dipaths and dihomotopy
combinatorial and geometric

Definition Two dipaths f0, f1 : I → X from a to b are
dihomotopic if there is a one-parameter family H : I × I → X
such that Ht = H(t ,−) is a dipath for every t , H0 = f0, H1 = f1,
H(0, s) = a, and H(1, s) = b.
Definition Combinatorial dipath: Concatenation of dipaths in
X ⊂ In parallel to one of the axes.
Elementary dihomotopy: · �� ·

·

��

�� ·

��

Combinatorial dihomotopy: Congruence relation generated by
elementary dihomotopies.

Theorem
(L. Fajstrup, 05): In a cubical complex, combinatorial
dipaths/combinatorial dihomotopy � dipaths/dihomotopy.
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Dihomotopy is finer than homotopy with fixed
endpoints
Example: Two wedges in the forbidden region

All dipaths from minimum to maximum are homotopic.
A dipath through the “hole” is not dihomotopic to a dipath on the
boundary.
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Why bother? Database management as an example
Serial and serializable executions

An execution is

serial if only one proces is accessing databases at a
given time;
Pi1 .Pi2 . · · · .Pin

serializable if the result of a schedule is always equivalent to a
serial exedution (safe).

Correctness is
� often easy to check for serial executions
� difficult or impossible to check for general executions

Serializable executions have advantages:
� Check correctness for serial executions only!
� Can be much faster than a serial execution!
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2-phase locking protocols

Which schedules (protocols) are known to be serializable?
Data engineers often use 2-phase locked protocols.

For those, every proces Pi should
� first do all the lock operations
� then the computations
� finally all the unlock operations

PPP . . . PVVV . . . V
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2-phase locking is safe

Theorem
Every diapth in a 2-phase locking protocol is serializable (thus
“safe” and correct).

Proofs using

graph theory came first, but were quite complicated

topological methods more transparent
� J. Gunawardena (1994)
� L. Fajstrup, E. Goubault, M.R. (1999, finally

published in TCS, 2006)

Idea For a 2-phase locked protocol, the forbidden region F has
a particular geometric structure (“blockwise starshaped”).
This property can be used to prove geometrically, that every
dipath in X is dihomotopic to a dipath on the edges of In –
modelling a serial execution.
Conclusion Every execution is equivalent to a serial execution!
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A single hypercube gives rise to nontrivial dihomotopy
but only between points in specified regions

In dim. n: n − 2 coordinates “forbidden”, 2 coordinates ”free”.
The two dipaths pass through forbidden intervals in reverse
orders.
Nontrivial dihomotopy only “persists” if source and target live in
the dotted boxes.
Conditions for persistent nontrivial dihomotopy?
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Projections and forbidden regions
A tool linking to the deadlock situation

Projections to the first (n − 1), resp. last coordinate:
πn : Rn → Rn−1, πn : Rn → R, A 	→ An = πn(A), An = πn(A)

A = (a1, b1) × · · · × (an−1, bn−1)× (an, bn)
An = (a1, b1) × · · · × (an−1, bn−1)
An = (an, bn)

What happens to the forbidden region under projection?
New forbidden region F n ⊂ In−1, new state space
X̄ ⊂ In−1, X̄ �= Xn!
X = In \ F ⊂ In X̄ = In−1 \ F n ⊂ In−1

x ∈ In−1 forbidden ⇔ x ∈ F n ⇔ ∃xn ∈ I with (x, xn) ∈ F .
X̄ can have deadlocks even if X is deadlockfree.
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Forbidden region and projection
from n − 1 intersecting hyperrectangles

J = (i1, . . . , in−1), RJ =
⋂n−1

1 Ri = (a1, b1) × · · · × ×(an, bn) the
intersection of n − 1 forbidden hyperrectangles.

RJ = (a1, b1) × · · · × (an−1, bn−1)× (an, bn)
Rn

J = (a1, b1) × · · · × (an−1, bn−1)
RJ,n = (an, bn)

Rn
J ⊂ I n − 1 gives rise to the deadlock (a1, . . . , an−1) ∈ X̄ and

(b1, . . . , bn−1) is unreachable.
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Nontrivial dihomotopy
from n − 1 intersecting hyperrectangles
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For a dipath α = (αn, αn) from x∈ Us(Rn
J ) either

� αn waits in Us(RJ
n) until αn(t) > bn (through D2) or

� αn passes RJ before αn(t) > an (through D1)
A dihomotopy respects this choice: D1, D2 disconnected!
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Nontrivial dihomotopy from source to target
The double wedge example
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The dipath through the hole is not dihomotopic to a dipath on
the boundary:
The projection to In−1 exhibits intersection of an unsafe and
unreachable region that is disconnected from source and
target.
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Nontrivial dihomotopy from source 0 to target 1

for two arrangements of n − 1 pairwise intersecting
hyperrectangles:
I = (i1, . . . , in−1) RI = (a1, b1) × · · · × (an, bn)
J = (j1, . . . , jn−1) RJ = (c1, d1) × · · · × (cn, dn); an < dn

(c1, . . . , cn−1) deadlock in X̄ , (b1, . . . , bn−1) unreachable in X̄ .

Theorem
Let C = Us(Rn

I ) ∩ Us(Rn
J ) be disconnected from 0 and 1.

If α ∈ �P1(X )(0, 1) has property

(P) an ≤ αn(t) ≤ dn ⇒ αn(t) ∈ C

then so has every β ∈ �P1(X )(0, 1) dihomotopic to α.

Proof uses directed van Kampen theorem (M. Grandis, ’03)
Corollary 1 A dipath α ∈ �P1(X )(0, 1) satisfying (P) is not
serializable (dihomotopic to a dipath on the 1-skeleton).
Corollary 2 �π1(X )(0, 1) is not trivial.
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Trivial dihomotopy for other intersection patterns 1

Theorem
Assume that the forbidden region F =

⋃
Ri satisfies:

RJ =
⋂

i∈J Ri = ∅ for all index sets J with |J| ≥ n − 1.
Then any two dipaths in the model space X = In \ F ⊂ In from
0 to 1 are dihomotopic: �π1(X )(0, 1) is trivial.

Tool: σi : one edge step along xi -axis. Every combinatorial
dipath can be written in the form σiL ∗ · · · ∗ σi2 ∗ σi1 .
For a vertex x ∈ X , let Out(x) = {σi1 , · · · , σik} ⊆ {σ1, · · · , σn}
denote the set of edges with source x .
Proposition. Assume that X has no deadlocks and that for
every vertex x ∈ X and all directed edges σi1 , σi2 ∈ Out(x):

1. σi1 , σi2 homotopy commute1 or

2. ∃j �= i1, i2 : σj homotopy commutes with both σi1 and σi2 .

Then �π1(X )(0, 1) is trivial.
1Exists a 2-cube filling σi1 ∗ σi2 , σi2 ∗ σi1
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Trivial dihomotopy for other intersection patterns 2

Proof by induction on the “length” of dipaths.
Why is the condition on homotopy commutativity satisfied for
forbidden regions in which at most n − 2 hyperrectangles
intersect nontrivially?
Look at the “local future” of a vertex x. It is always of the form
∂−�Ij1 × · · · × ∂−�Ijk ×�In−j , j := j1 + · · · + jk .
In our case k ≤ n − 2. Hence either

� j < n (factor�I) or
� at least one ji ≥ 3 (lower boundary of a 3 cube) or
� there exist i1 �= i2 with ji1 = ji2 = 2 (product of two Ls

containing enough rectangles).
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