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1. Motivations, mainly from Concurrency Theory

2. Directed topology: algebraic topology with a twist

3. A categorical framework (with examples)

4. “Compression” of ditopological categories:
generalized congruences via homotopy flows

Main Collaborators:
◮ Lisbeth Fajstrup (Aalborg), Éric Goubault, Emmanuel

Haucourt (CEA, France)
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Motivation: Concurrency
Mutual exclusion

Mutual exclusion occurs, when n processes Pi compete for m
resources Rj .

P P
1 2

R
1

P
3

R
2

Only k processes can be served at any given time.
Semaphores!
Semantics: A processor has to lock a resource and relinquish
the lock later on!
Description/abstraction Pi : . . .PRj . . .VRj . . . (Dijkstra)
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Schedules in ”progress graphs”
The Swiss flag example
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PV-diagram from
P1 : PaPbVbVa

P2 : PbPaVaVb

Executions are directed
paths – since time
flow is irreversible –
avoiding a forbidden
region (shaded).

Dipaths that are
dihomotopic (through
a 1-parameter defor-
mation consisting of
dipaths) correspond to
equivalent executions.
Deadlocks, unsafe and

unreachable regions
may occur.
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Higher dimensional automata 1
Example: Dining philosophers; dimension 3 and beyond

A B

C

a

b

c

A=Pa.Pb.Va.Vb
B=Pb.Pc.Vb.Vc
C=Pc.Pa.Vc.Va

Higher dimen-
sional complex
with a forbidden
region consist-
ing of isothetic
hypercubes
and an unsafe
region.
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Higher dimensional automata 2
seen as (geometric realizations of) cubical sets

Vaughan Pratt, Rob van Glabbeek, Eric Goubault...

a b

ab

2 processes, 1 processor

cubical complex

bicomplex

2 processes, 3 processors 3 processes, 3 processors

Squares/cubes/hypercubes are filled in iff actions on boundary
are independent.
Higher dimensional automata are cubical sets:

◮ like simplicial sets, but modelled on (hyper)cubes instead
of simplices; glueing by face maps (and degeneracies)

◮ additionally: preferred directions – not all paths allowable.
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Discrete versus continuous models
How to handle the state-space explosion problem?

Discrete models for concurrency (transition graph models)
suffer a severe problem if the number of processors and/or the
length of programs grows: The number of states (and the
number of possible schedules) grows exponentially: this is
known as the state space explosion problem.
You need clever ways to find out which of the schedules yield
equivalent results – e.g., to check for correctness – for general
reasons.
Alternative: Infinite continuous models allowing for well-known
equivalence relations on paths (homotopy = 1-parameter
deformations) – but with an important twist!
Analogy: Continuous physics as an approximation to (discrete)
quantum physics.
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A framework for directed topology
d-spaces, M. Grandis (03)

X a topological space. ~P(X ) ⊆ X I = {p : I = [0, 1] → X cont.}
a set of d-paths (”directed” paths ↔ executions) satisfying

◮ { constant paths } ⊆ ~P(X )

◮ ϕ ∈ ~P(X )(x , y), ψ ∈ ~P(X )(y , z) ⇒ ϕ ∗ ψ ∈ ~P(X )(x , z)

◮ ϕ ∈ ~P(X ), α ∈ I I a nondecreasing reparametrization
⇒ ϕ ◦ α ∈ ~P(X )

The pair (X , ~P(X )) is called a d-space.
Observe: ~P(X ) is in general not closed under reversal:

α(t) = 1 − t , ϕ ∈ ~P(X ) 6⇒ ϕ ◦ α ∈ ~P(X )!

Examples:
◮ An HDA with directed execution paths.
◮ A space-time(relativity) with time-like or causal curves.
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Concepts from algebraic topology 1
Homotopy, fundamental group

basic: the category Top of topological spaces and continuous
maps. I = [0, 1] the unit interval.

Definition

◮ A continuous map H : X × I → Y is called a homotopy.
◮ Continuous maps f , g : X → Y are called homotopic to

each other if there is a homotopy H with
H(x , 0) = f (x),H(x , 1) = g(x), x ∈ X .

◮ [X ,Y ] the set of homotopy classes of continuous maps
from X to Y .

◮ Variation: pointed continuous maps f : (X , ∗) → (Y , ∗) and
pointed homotopies H : (X × I, ∗ × I) → (Y , ∗).

◮ Loops in Y as the special case X = S1 (unit circle).
◮ Fundamental group π1(Y , y)= [(S1, ∗), (Y , y)] with product

arising from concatenation and inverse from reversal.
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d-maps, Dihomotopy, d-homotopy

A d-map f : X → Y is a continuous map satisfying
◮ f (~P(X )) ⊆ ~P(Y )

special case: ~P(I) = {σ ∈ I I |σ nondecreasing
reparametrization},~I = (I, ~P(I)).
Then ~P(X ) = set of d-maps from~I to X .

◮ Dihomotopy H : X × I → Y , every Ht a d-map
◮ elementary d-homotopy = d-map H : X ×~I → Y –

H0 = f H
−→g = H1

◮ d-homotopy: symmetric and transitive closure (”zig-zag”)

L. Fajstrup, 05: In cubical models (for concurrency, e.g., HDAs),
the two notions agree for d-paths (X =~I). In general, they do
not.
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Dihomotopy is finer than homotopy with fixed
endpoints
Example: Two wedges in the forbidden region

All dipaths from minimum to maximum are homotopic.
A dipath through the “hole” is not dihomotopic to a dipath on the
boundary.

Martin Raussen Directed topology. An introduction



The twist has a price
Neither homogeneity nor cancellation nor group structure

In ordinary topology, it suffices to study loops in a space X with
a given start=end point x (one per path component). Moreover:
“Loops up to homotopy” fundamental group π1(X , x) –
concatenation, inversion!

“Birth and death” of
dihomotopy classes

Directed topology:
Loops do not tell much;
concatenation ok, can-
cellation not!
Replace group struc-
ture by category
structures!

Martin Raussen Directed topology. An introduction



A first remedy: the fundamental category

~π1(X ) of a d-space X [Grandis:03, FGHR:04]:
◮ Objects: points in X
◮ Morphisms: d- or dihomotopy classes of d-paths in X
◮ Composition: from concatenation of d-paths

����
����
����
����
����

����
����
����
����
����

����������

����������

A
B

C D

Property: van Kampen theorem (M. Grandis)
Drawbacks: Infinitely many objects. Calculations?
Question: How much does ~π1(X )(x , y) depend on (x , y)?
Remedy: Localization, component category. [FGHR:04, GH:06]
Problem: “Compression” works only for loopfree categories
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Concepts from algebraic topology 2 (for calculations)
Homotopy groups, homology groups, homotopy equivalences

◮ πn(X , x)= [(Sn, ∗), (X , x)]; group structure: Sn → Sn ∨ Sn,
abelian for n > 1. Easy to define, difficult to calculate.

◮ Homology and cohomology groups Hn(X ) and Hn(X ):
abelian groups; definition more complicated, but
essentially calculable for reasonable topological spaces.
H0(X ) free abelian group on path components of X .
H1(X ) = π1(X )/[π1(X),π1(X)].

◮ A continuous map f : (X , x) → (Y , y) induces group
homomorphisms f# : πn(X , x) → πn(Y , y), and
f∗ : Hn(X ) → Hn(Y ), n ∈ N. Homotopic maps induce the
same homomorphism (homotopy invariance).
Functoriality: (g ◦ f )# = g# ◦ f#, (g ◦ f )∗ = g∗ ◦ f∗.

◮ A continuos map f : X → Y is a homotopy equivalence if
there exists a homotopy inverse g : Y → X satisfying
g ◦ f ≃ idX and f ◦ g ≃ idY . Homotopy equivalent spaces
have isomorphic homotopy and (co)homology groups.
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Getting started: Traces – and trace categories
Get rid of (increasing) reparametrizations!

X a (saturated) d-space.
ϕ, ψ ∈ ~P(X )(x , y) are called reparametrization equivalent if
there are α, β ∈ ~P(I) such that ϕ ◦ α = ψ ◦ β.
(Fahrenberg-R., JHRS2, 07): Reparametrization equivalence is
an equivalence relation (transitivity).
~T (X )(x , y) = ~P(X )(x , y)/≃ makes ~T (X ) into the (topologically
enriched) trace category – composition associative!
A d-map f : X → Y induces a functor ~T (f ) : ~T (X ) → ~T (Y ).
Variant: ~R(X )(x , y) consists of regular d-paths (not constant on
any non-trivial interval J ⊂ I). The contractible group
Homeo+(I) of increasing homeomorphisms acts on these –
freely if x 6= y .

Theorem (FR:JHRS2, 07)
~R(X )(x , y)/≃ → ~P(X )(x , y)/≃ is a homeomorphism.
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Preorder categories
Getting organised with indexing categories

A d-structure on X induces the preorder �:

x � y ⇔ ~T (X )(x , y) 6= ∅

and an indexing preorder category ~D(X ) with
◮ Objects: pairs (x , y), x � y
◮ Morphisms:
~D(X )((x , y), (x ′, y ′)) := ~T (X )(x ′, x) × ~T (X )(y , y ′):

x ′
))
55 x

� // y ))
55 y ′

◮ Composition: by pairwise contra-, resp. covariant
concatenation.

A d-map f : X → Y induces a functor ~D(f ) : ~D(X ) → ~D(Y ).
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The trace space functor
Preorder categories organise the trace spaces

The preorder category organises X via the
trace space functor ~T X : ~D(X ) → Top

◮ ~T X (x , y) := ~T (X )(x , y)

◮ ~T X (σx , σy ) : ~T (X )(x , y) // ~T (X )(x ′, y ′)

[σ] � / [σx ∗ σ ∗ σy ]

Homotopical variant ~Dπ(X ) with morphisms
~Dπ(X )((x , y), (x ′, y ′)) := ~π1(X )(x ′, x) × ~π1(X )(y , y ′)

and trace space functor ~T X
π

: ~Dπ(X ) → Ho − Top (with
homotopy classes as morphisms).
In less technical terms: Investigation of the d-path/trace spaces
~T (X )(x , y) on X with given endpoints x , y and the variation of
their topology under change of endpoints.
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Sensitivity with respect to variations of end points
A persistence point of view

◮ How much does (the homotopy type of) ~T X (x , y) depend
on (small) changes of x , y?

◮ Which concatenation maps
~T X (σx , σy ) : ~T X (x , y) → ~T X (x ′, y ′), [σ] 7→ [σx ∗ σ ∗ σy ]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?

◮ The persistence point of view: Homology classes etc. are
born (at certain branchings/mergings) and may die
(analogous to the framework of G. Carlsson etal.)

◮ Are there components with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls”) at which changes occur?

◮  need a lot of bookkeeping!
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Dihomology ~H∗

◮ For every d-space X , there are homology functors

~H∗+1(X ) = H∗◦~T X
π

: ~Dπ(X ) → Ab, (x , y) 7→ H∗(~T (X )(x , y))

capturing homology of all relevant d-path spaces in X and
the effects of the concatenation structure maps.

◮ A d-map f : X → Y induces a natural transformation
~H∗+1(f ) from ~H∗+1(X ) to ~H∗+1(Y ).

◮ Properties? Calculations? Not much known in general.
A master’s student has studied this topic for X a cubical
complex (its geometric realization) by constructing a
cubical model for d-path spaces.

◮ Higher dihomotopy functors ~π∗: in the same vain, a bit
more complicated to define, since they have to reflect
choices of base paths.
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Examples of component categories
Standard example
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Figure: Standard
example and
component
category
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Components A,B,C,D – or rather
AA,AB,AC,AD,BB,BD,CC,CD,DD.
#: diagram commutes.
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Examples of component categories
Oriented circle – with loops!

X = ~S1

6

oriented circle

C : ∆
a

**
∆̄

b
ll

∆ the diagonal, ∆̄ its complement.
C is the free category generated by
a, b.

◮ Remark that the components are no longer products!
◮ It is essential in order to get a discrete component

category to use an indexing category taking care of pairs
(source, target).
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Component categories
via generalized congruences and homotopy flows

◮ How to identify morphisms in a category between different
objects in an organised manner? Localization or
Generalized congruence (Bednarczyk, Borzyszkowski,
Pawlowski, TAC 1999) quotient category with
identifications on both objects and morphisms.

◮ Homotopy flows (MR, ACS 2007) identify both elements
and d-paths: Like flows in differential geometry.
Instead of diffeotopies: Self-homotopies inducing
homotopy equivalences on spaces of d-paths with given
end points (“automorphic”).

◮ Automorphic homotopy flows give rise to significant
generalized congruences. Corresponding component
category ~Dπ(X )/≃ identifies pairs of points on the same
“homotopy flow line” and (chains of) morphisms.
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The component category of a wedge of two oriented
circles

X = ~S1 ∨ ~S1
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The component category of an oriented cylinder with a
deleted rectangle

L
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U
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Concluding remarks

◮ Component categories contain the essential information
given by (algebraic topological invariants of) d-path spaces

◮ Compression via component categories is an antidote to
the state space explosion problem

◮ Some of the ideas (for the fundamental category) are
implemented and have been tested for huge industrial
software from EDF (Éric Goubault & Co., CEA)

◮ Dihomotopy equivalence: Definition uses automorphic
homotopy flows to ensure homotopy equivalences

~T (f )(x , y) : ~T (X )(x , y) → ~T (Y )(fx , fy) for all x � y .

◮ Much more theoretical and practical work remains to be
done!
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