Simplicial models for trace spaces

Martin Raussen
Department of Mathematical Sciences
Aalborg University
Denmark

Workshop on Computational Topology

Fields Institute, Toronto
8.11.2011

Martin Raussen
Simplicial models for trace spaces

Table of Contents

Examples: State spaces and associated path spaces in Higher Dimensional Automata (HDA)
Motivation: Concurrency
Simplest case: State spaces and path spaces related to linear PV-programs
Tool: Cutting up path spaces into contractible subspaces
Homotopy type of path space described by a matrix poset category and realized by a prodsimplicial complex
Algorithmics: Detecting dead and alive subcomplexes/matrices Outlook: How to handle general HDA

Intro: State space, directed paths and trace space

Problem: How are they related?
Example 1: State space and trace space for a semaphore HDA

Path space model contained
State space:
a 3D cube $\vec{\beta} \backslash F$
minus 4 box obstructions
in torus $\left(\partial \Delta^{2}\right)^{2}-$ homotopy equivalent to a wedge of two circles and a point: $\left(S^{1} \vee S^{1}\right) \sqcup *$

Analogy in standard algebraic topology
Relation between space X and loop space ΩX.

Intro: State space and trace space

Pre-cubical set as state space

Example 2: State space and trace space for a non-looping pre-cubical complex

State space: Boundaries of two cubes glued together at common square $A B^{\prime} C^{\prime} \bullet$

Path space model:
Prodsimplicial complex contained in $\left(\partial \Delta^{2}\right)^{2} \cup \partial \Delta^{2}-$ homotopy equivalent to $S^{1} \vee S^{1}$

Intro: State space and trace space

 with loops
Example 3: Torus with a hole

Path space model:
Discrete infinite space of dimension 0 corresponding
to $\{r, u\}^{*}$

State space with hole X :
2D torus $\partial \Delta^{2} \times \partial \Delta^{2}$ with a
rectangle $\Delta^{1} \times \Delta^{1}$ removed

Motivation: Concurrency

Semaphores: A simple model for mutual exclusion

Mutual exclusion

occurs, when n processes P_{i} compete for m resources R_{j}.

Only k processes can be served at any given time.

Semaphores

Semantics: A processor has to lock a resource and to
relinguish the lock later on!
Description/abstraction: P_{i} : ...PR $R_{j} . . V R_{j} \ldots$ (E.W. Dijkstra) P : probeer; V: verhoog

Motivation: Concurrency

Semaphores: A simple model for mutual exclusion

Mutual exclusion

occurs, when n processes P_{i} compete for m resources R_{j}.

Only k processes can be served at any given time.

Semaphores

Semantics: A processor has to lock a resource and to relinquish the lock later on!
Description/abstraction: $P_{i}: \ldots P R_{j} \ldots V R_{j} \ldots$ (E.W. Dijkstra) P : probeer; V: verhoog

A geometric model: Schedules in "progress graphs"

A geometric model: Schedules in "progress graphs"

A geometric model: Schedules in "progress graphs"

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region F consisting of a number of holes in an n-cube:
Hole $=$ isothetic hyperrectangle
$\left.R^{i}=\right] a_{1}^{i}, b_{1}^{i}[\times \cdots \times] a_{n}^{i}, b_{n}^{i}\left[\subset I^{n}, 1 \leq i \leq I\right.$:
with minimal vertex \mathbf{a}^{i} and maximal vertex \mathbf{b}^{i}.
State space $X=\vec{\jmath}^{n} \backslash F, F=\bigcup_{i=1}^{l} R^{i}$
X inherits a partial order from I^{n}.

More general (PV)-programs:

- Replace in n by a product $\Gamma_{1} \times \cdots \times \Gamma_{n}$ of digraphs
- Holes have then the form $p_{1}^{i}((0,1)) \times \cdots \times p_{n}^{i}((0,1))$ with
- Pre-cubical complexes: like pre-simplicial complexes,
with (partially ordered) hypercubes instead of simplices as building blocks.

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region F consisting of a number of holes in an n-cube:
Hole $=$ isothetic hyperrectangle
$\left.R^{i}=\right] a_{1}^{i}, b_{1}^{i}[\times \cdots \times] a_{n}^{i}, b_{n}^{i}\left[\subset I^{n}, 1 \leq i \leq 1:\right.$
with minimal vertex \mathbf{a}^{i} and maximal vertex \mathbf{b}^{i}.
State space $X=\vec{l}{ }^{n} \backslash F, F=\bigcup_{i=1}^{l} R^{i}$
X inherits a partial order from i^{n}.

More general (PV)-programs:

- Replace \vec{l}^{n} by a product $\Gamma_{1} \times \cdots \times \Gamma_{n}$ of digraphs.
- Holes have then the form $p_{1}^{i}((0,1)) \times \cdots \times p_{n}^{i}((0,1))$ with $p_{j}^{j}: \vec{l} \rightarrow \Gamma_{j}$ a directed injective (d -)path.
- Pre-cubical complexes: like pre-simplicial complexes,
with (partially ordered) hypercubes instead of simplices as building blocks

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region F consisting of a number of holes in an n-cube:
Hole $=$ isothetic hyperrectangle
$\left.R^{i}=\right] a_{1}^{i}, b_{1}^{i}[\times \cdots \times] a_{n}^{i}, b_{n}^{i}\left[\subset I^{n}, 1 \leq i \leq I:\right.$
with minimal vertex \mathbf{a}^{i} and maximal vertex \mathbf{b}^{i}.
State space $X=\vec{l}^{n} \backslash F, F=\bigcup_{i=1}^{l} R^{i}$
X inherits a partial order from i^{n}.

More general (PV)-programs:

- Replace \vec{l}^{n} by a product $\Gamma_{1} \times \cdots \times \Gamma_{n}$ of digraphs.
- Holes have then the form $p_{1}^{i}((0,1)) \times \cdots \times p_{n}^{\prime}((0,1))$ with $p_{j}^{i}: \vec{l} \rightarrow \Gamma_{j}$ a directed injective (d-)path.
- Pre-cubical complexes: like pre-simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.

Spaces of d-paths/traces - up to dihomotopy

 the interesting spaces
Definition

- X a d-space, $a, b \in X$.
$p: \vec{l} \rightarrow X$ a d-path in X (continuous and "order-preserving") from a to b.
- P(X) (a, b) Trace space $T(X)(a, b)=P(X)(a, b)$ modulo increasing reparametrizations In most cases: $P(X)(a, b) \simeq T(X)(a, b)$
- A dihomotopy on $P(X)(a, b)$ is a map $H: I \times I \rightarrow X$ such that $H_{t} \in \vec{P}(X)(a, b), t \in I$; ie a path in $\vec{P}(X)(a, b)$

Aim:

Description of the homotopy type of $P(X)(a, b)$ as explicit finite dimensional prodsimplicial complex
In particular: its path components, ie the dihomotopy classes of d-paths (executions)

Spaces of d-paths/traces - up to dihomotopy

 the interesting spaces
Definition

- X a d-space, $a, b \in X$. $p: \vec{I} \rightarrow X$ a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a, b)=\{p: \vec{l} \rightarrow X \mid p(0)=a, p(b)=1, p$ a d-path $\}$. Trace space $\vec{T}(X)(a, b)=\vec{P}(X)(a, b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a, b) \simeq \vec{T}(X)(a, b)$.

Aim:

Description of the homotopy type of $P(X)(a, b)$ as explicit finite dimensional prodsimplicial complex
In particular: its path components, ie the dihomotopy classes of d-paths (executions)

Spaces of d-paths/traces - up to dihomotopy the interesting spaces

Definition

- X a d-space, $a, b \in X$. $p: \vec{I} \rightarrow X$ a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a, b)=\{p: \vec{l} \rightarrow X \mid p(0)=a, p(b)=1, p$ a d-path $\}$. Trace space $\vec{T}(X)(a, b)=\vec{P}(X)(a, b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a, b) \simeq \vec{T}(X)(a, b)$.
- A dihomotopy on $\vec{P}(X)(a, b)$ is a map $H: \vec{I} \times I \rightarrow X$ such that $H_{t} \in \vec{P}(X)(a, b), t \in I$; ie a path in $\vec{P}(X)(a, b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a, b)$ as explicit finite dimensional prodsimplicial complex.
In particular: its path components, ie the dihomotopy classes of d-paths (executions)

Spaces of d-paths/traces - up to dihomotopy
 the interesting spaces

Definition

- X a d-space, $a, b \in X$. $p: \vec{I} \rightarrow X$ a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a, b)=\{p: \vec{l} \rightarrow X \mid p(0)=a, p(b)=1, p$ a d-path $\}$. Trace space $\vec{T}(X)(a, b)=\vec{P}(X)(a, b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a, b) \simeq \vec{T}(X)(a, b)$.
- A dihomotopy on $\vec{P}(X)(a, b)$ is a map $H: \vec{I} \times I \rightarrow X$ such that $H_{t} \in \vec{P}(X)(a, b), t \in I$; ie a path in $\vec{P}(X)(a, b)$.

> Aim:
> Description of the homotopy type of $\vec{P}(X)(a, b)$ as explicit finite dimensional prodsimplicial complex.
> In particular: its path components, ie the dihomotopy classes of d-paths (executions).

Tool: Subspaces of X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

$X=\vec{I}^{n} \backslash F, F=\bigcup_{i=1}^{l} R^{i} ; R^{i}=\left[\mathbf{a}^{i}, \mathbf{b}^{i}\right] ; \mathbf{0}, \mathbf{1}$ the two corners in I^{n}.

Definition

(1) $X_{i j}=\left\{x \in X \mid x \leq \mathbf{b}^{i} \Rightarrow x_{j} \leq a_{j}^{i}\right\}$ - direction j restricted at hole i
(2) M a binary $I \times n$-matrix: $X_{M}=\cap_{m_{j}=1} X_{i j}$

First Examples:

Tool: Subspaces of X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

$X=\vec{l}^{n} \backslash F, F=\bigcup_{i=1}^{l} R^{i} ; R^{i}=\left[\mathbf{a}^{i}, \mathbf{b}^{i}\right] ; \mathbf{0}, \mathbf{1}$ the two corners in I^{n}.

Definition

(1) $X_{i j}=\left\{x \in X \mid x \leq \mathbf{b}^{i} \Rightarrow x_{j} \leq a_{j}^{i}\right\}$ - direction j restricted at hole i
(2) M a binary $I \times n$-matrix: $X_{M}=\bigcap_{m i j=1} X_{i j}$

First Examples:

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

$M_{l, n}$ poset (\leq) of binary $I \times n$-matrices
$M_{l, n}^{R, *}$ no row vector is the zero vector
$M_{l, n}^{R, u}$ every row vector is a unit vector
$M_{l, n}^{C, u}$ every column vector is a unit vector

A cover:

Theorem

Fvery nath space $P\left(X_{M}\right)(0,1), M \in M^{R}$, is empty or
contractible. Which is which?

Proof.

Suhenanes $X_{M}, M \in M^{R}$, are closed under $V=$ l.u.b

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

$M_{l, n}$ poset (\leq) of binary $I \times n$-matrices
$M_{l, n}^{R, *}$ no row vector is the zero vector
$M_{l, n}^{R, u}$ every row vector is a unit vector
$M_{l, n}^{C, u}$ every column vector is a unit vector

A cover:

$$
\vec{P}(X)(\mathbf{0}, \mathbf{1})=\bigcup_{M \in M_{l, n}^{\mathrm{R}, u}} \vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1})
$$

Theorem

Every path space $\vec{P}\left(X_{M}\right)(0,1), M \in M_{l, n}^{R, *}$, is empty or
contractible.

Which is which?

Proof.

Subsnaces $X_{M}, M \in M^{R, *}$ are closed under $V=$ l.u.b.

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

$M_{l, n}$ poset (\leq) of binary I $\times n$-matrices
$M_{l, n}^{R, *}$ no row vector is the zero vector
$M_{l, n}^{R, u}$ every row vector is a unit vector
$M_{l, n}^{C, u}$ every column vector is a unit vector

A cover:

$$
\vec{P}(X)(\mathbf{0}, \mathbf{1})=\bigcup_{M \in M_{l, n}^{\text {R,u }}} \vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1})
$$

Theorem

Every path space $\vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1}), M \in M_{l, n}^{R, *}$, is empty or contractible.

Which is which?

Proof.

Subspaces $X_{M}, M \in M_{l, n}^{R, *}$ are closed under $V=$ l.u.b.

A combinatorial model and its geometric realization

First examples

Combinatorics poset category $\mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \subseteq M_{l, n}^{R, *} \subseteq M_{l, n}$ $M \in \mathcal{C}(X)(0,1)$ "alive"

Topology:
prodsimplicial complex
$\mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \subseteq\left(\Delta^{n-1}\right)^{\prime}$

Examples of path spaces

A combinatorial model and its geometric realization

First examples

Combinatorics poset category

$$
\begin{aligned}
& \mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \subseteq M_{l, n}^{R, *} \subseteq M_{l, n} \\
& M \in \mathcal{C}(X)(\mathbf{0}, \mathbf{1})^{\text {:calive" }}
\end{aligned}
$$

Topology:
prodsimplicial complex
$\mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \subseteq\left(\Delta^{n-1}\right)^{\prime}$
$\Delta_{M}=\Delta_{m_{1}} \times \cdots \times \Delta_{m_{l}} \subseteq$
$\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

$$
\Leftrightarrow \vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1}) \neq \varnothing .
$$

Examples of path spaces

A combinatorial model and its geometric realization

First examples

Combinatorics poset category

$$
\mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \subseteq M_{l, n}^{R, *} \subseteq M_{l, n}
$$

$$
M \in \mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \text { "alive" }
$$

Topology:
prodsimplicial complex
$\mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \subseteq\left(\Delta^{n-1}\right)^{\prime}$
$\Delta_{M}=\Delta_{m_{1}} \times \cdots \times \Delta_{m_{l}} \subseteq$
$\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

$$
\Leftrightarrow \vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1}) \neq \varnothing .
$$

Examples of path spaces

		\square	\square	- $\mathbf{T}\left(X_{1}\right)(\mathbf{0}, \mathbf{1})=\left(\partial \Delta^{1}\right)^{2}$
- \square		-	\square	$\begin{aligned} & =4 * \\ & -\mathrm{T}\left(X_{2}\right)(\mathbf{0}, \mathbf{1})=3 * \end{aligned}$
$\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$	$\supset \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$

Further examples

State spaces, "alive" matrices and path spaces

(1)

- $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})=M_{1, n}^{R, *} \backslash\{[1, \ldots 1]\}$.
- $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})=\partial \Delta^{n-1} \simeq S^{n-2}$.
(2)

Further examples

State spaces, "alive" matrices and path spaces

(1) $-\mathcal{C}(X)(\mathbf{0}, \mathbf{1})=M_{1, n}^{R, *} \backslash\{[1, \ldots 1]\}$.

- $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})=\partial \Delta^{n-1} \simeq S^{n-2}$.
(2) $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})=$
$\left\{\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right.\right.$
- $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})=\left\{M \in M_{l, n}^{R, *} \mid \exists N \in\right.$ $\left.\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1}): M \leq N\right\}$
- $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})=3$ diagonal
squares $\subset\left(\partial \Delta^{2}\right)^{2}=T^{2}$
$\simeq S^{1}$.

Further examples

State spaces, "alive" matrices and path spaces

(1) $-\mathcal{C}(X)(\mathbf{0}, \mathbf{1})=M_{1, n}^{R, *} \backslash\{[1, \ldots 1]\}$.

- $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})=\partial \Delta^{n-1} \simeq S^{n-2}$.
(2) $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})=$
$\left\{\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right.\right.$
- $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})=\left\{M \in M_{l, n}^{R, *} \mid \exists N \in\right.$ $\left.\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1}): M \leq N\right\}$
- $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})=3$ diagonal
squares $\subset\left(\partial \Delta^{2}\right)^{2}=T^{2}$
$\simeq S^{1}$.
More examples in Mimram's talk!

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ and the prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

> Theorem (A variant of the nerve lemma)
> $\vec{P}(X)(\mathbf{0}, \mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \simeq \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T}: \mathcal{C}(X)(0,1)^{(0 p)} \rightarrow$ Top
- colim $\mathcal{D}=\vec{P}(X)(0,1)$, colim $\mathcal{E}=\mathbf{T}(X)(0,1)$ hocolim $\mathcal{T}=\Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$
- The trivial natural transformations $\mathcal{D} \Rightarrow \mathcal{T}, \mathcal{E} \Rightarrow \mathcal{T}$ yield:
hocolim $\mathcal{D} \cong$ hocolim $\mathcal{T}^{*} \cong$ hocolim $\mathcal{T} \cong$ hocolim \mathcal{E}
- Proiection lemma:
hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ and the prodsimplicial complex $\mathrm{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)
$\vec{P}(X)(\mathbf{0}, \mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \simeq \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T}: \mathcal{C}(X)(\mathbf{0}, \mathbf{1})^{(\mathrm{OP})} \rightarrow$ Top:
$\mathcal{D}(M)=\vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1})$,
$\mathcal{E}(M)=\Delta_{M}$,
$\mathcal{T}(M)=*$
- colim $\mathcal{D}=\vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E}=\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T}=\Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D} \Rightarrow \mathcal{T}, \mathcal{E} \Rightarrow \mathcal{T}$ yield: hocolim $\mathcal{D} \cong$ hocolim $\mathcal{T}^{*} \cong$ hocolim $\mathcal{T} \cong$ hocolim \mathcal{E}.
- Projection lemma:
hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ and the prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

$$
\vec{P}(X)(\mathbf{0}, \mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \simeq \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1}) .
$$

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T}: \mathcal{C}(X)(\mathbf{0}, \mathbf{1})^{(\mathrm{OP})} \rightarrow$ Top:
$\mathcal{D}(M)=\vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1})$,
$\mathcal{E}(M)=\Delta_{M}$,
$\mathcal{T}(M)=*$
- colim $\mathcal{D}=\vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E}=\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T}=\Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D} \Rightarrow \mathcal{T}, \mathcal{E} \Rightarrow \mathcal{T}$ yield: hocolim $\mathcal{D} \cong$ hocolim $\mathcal{T}^{*} \cong$ hocolim $\mathcal{T} \cong$ hocolim \mathcal{E}.
- Projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

Why prodsimplicial?

rather than simplicial

- We distinguish, for every obstruction, sets $J_{i} \subset[1: n]$ of restrictions. A joint restriction is of product type $J_{1} \times \cdots \times J_{I} \subset[1: n]^{\prime}$, and not an arbitrary subset of $[1: n]^{\prime}$.
- Simplicial model: a subcomplex of $\Delta^{n}-2^{\left(n^{n}\right)}$ subsimp
- Prodsimplicial model: a subcomplex of $\left(\Delta^{n}\right)^{n} 2^{(n l)}$ subsimplices.

Why prodsimplicial?

rather than simplicial

- We distinguish, for every obstruction, sets $J_{i} \subset[1: n]$ of restrictions. A joint restriction is of product type $J_{1} \times \cdots \times J_{I} \subset[1: n]^{\prime}$, and not an arbitrary subset of $[1: n]^{l}$.
- Simplicial model: a subcomplex of $\Delta^{n^{\prime}}-2^{\left(n^{\prime}\right)}$ subsimplices.
- Prodsimplicial model: a subcomplex of $\left(\Delta^{n}\right)^{\prime}-2^{(n l)}$ subsimplices.

From $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $\mathrm{T}(X)(0,1)$

Questions

- Is $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?

Other topological properties?

Strategies - Attempts

- Implementation of $T(X)(0,1)$ in ALCOOL

Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram

- The prodsimplicial structure on $\mathcal{C}(X)(0.1) \leftrightarrow T(X)(0.1)$
leads to an associated chain complex of vector spaces
over a field
- Use fast alaorithms (eg Mrozek CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow)
- Number of path-components: rkH$(T(X)(0,1$

For path-components alone, there are faster "discrete"
methods, that also yield representatives in each path
component: Mimram's talk!

From $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $\mathrm{T}(X)(0,1)$

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?

Other topological properties?

Strategies - Attempts

- Implementation of $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$ in ALCOOL:

Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram

From $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Questions

- Is $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?

Other topological properties?

Strategies - Attempts

- Implementation of $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$ in ALCOOL:

Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram

- The prodsimplicial structure on $\mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \leftrightarrow \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$ leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow).

From $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Questions

- Is $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?

Other topological properties?

Strategies - Attempts

- Implementation of $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$ in ALCOOL:

Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram

- The prodsimplicial structure on $\mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \leftrightarrow \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$ leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow).
- Number of path-components: $\mathrm{rkH}_{0}(\mathbf{T}(X)(\mathbf{0}, \mathbf{1}))$.

For path-components alone, there are faster "discrete" methods, that also yield representatives in each path component: Mimram's talk!

Detection of dead and alive subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R_{j}^{i}

$$
\begin{gathered}
:=\left[0, b_{1}^{i}\left[\times \cdots \times\left[0, b_{j-1}^{i}[\times] a_{j}^{i}, b_{j}^{i}\left[\times\left[0, b_{j+1}^{i}\left[\times \cdots \times\left[0, b_{n}^{i}\left[\supset R^{i} .\right.\right.\right.\right.\right.\right.\right.\right. \\
X_{M}=X \backslash \bigcup_{m_{j j}=1} R_{j}^{i} .
\end{gathered}
$$

Theorem

The following are equivalent.

Detection of dead and alive subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R_{j}^{i}

$$
\begin{gathered}
:=\left[0, b_{1}^{i}\left[\times \cdots \times\left[0, b_{j-1}^{i}[\times] a_{j}^{i}, b_{j}^{i}\left[\times\left[0, b_{j+1}^{i}\left[\times \cdots \times\left[0, b_{n}^{i}\left[\supset R^{i} .\right.\right.\right.\right.\right.\right.\right.\right. \\
X_{M}=X \backslash \bigcup_{m_{j j}=1} R_{j}^{i} .
\end{gathered}
$$

Theorem

The following are equivalent:
(1) $\vec{P}\left(X_{M}\right)(0,1)=\varnothing \Leftrightarrow M \notin \mathcal{C}(X)(0,1)$.
(2) There is a "dead" matrix $N \leq M, N \in M_{l, n}^{C, u}$ such that $\bigcap_{n_{i j}=1} R_{j}^{i} \neq \varnothing$-giving rise to a deadlock unavoidable from $\mathbf{0}$, i.e., $T\left(X_{N}\right)(\mathbf{0}, \mathbf{1})=\varnothing$.

Dead matrices in $D(X)(\mathbf{0}, \mathbf{1})$

Inequalities decide

Decisions: Inequalities

Deadlock algorithm (Fajstrup, Goubault, Raussen) \rightsquigarrow :

Theorem

- $N \in M_{l, n}^{C, u}$ dead \Leftrightarrow

For all $1 \leq j \leq n$, for all $1 \leq k \leq n$ such that $\exists j^{\prime}: n_{k j^{\prime}}=1$:

$$
n_{i j}=1 \Rightarrow a_{j}^{i}<b_{j}^{k} .
$$

- $M \in M_{l, n}^{R, *}$ dead $\Leftrightarrow \exists N \in M_{l, n}^{C, u}$ dead, $N \leq M$.

Definition

\square

A cube with a cube hole

Dead matrices in $D(X)(\mathbf{0}, \mathbf{1})$

Inequalities decide

Decisions: Inequalities

Deadlock algorithm (Fajstrup, Goubault, Raussen) \rightsquigarrow :

Theorem

- $N \in M_{l, n}^{C, u}$ dead \Leftrightarrow

For all $1 \leq j \leq n$, for all $1 \leq k \leq n$ such that $\exists j^{\prime}: n_{k j^{\prime}}=1$:

$$
n_{i j}=1 \Rightarrow a_{j}^{i}<b_{j}^{k} .
$$

- $M \in M_{l, n}^{R, *}$ dead $\Leftrightarrow \exists N \in M_{l, n}^{C, u}$ dead, $N \leq M$.

Definition

$$
D(X)(\mathbf{0}, \mathbf{1}):=\left\{P \in M_{l, n} \mid \exists N \in M_{l, n}^{C, u}, N \text { dead }: N \leq P\right\} .
$$

A cube with a cube hole

- $X=\vec{l}^{n} \backslash \vec{\jmath}^{n}$
- $D(X)(\mathbf{0}, \mathbf{1})=\{[1, \ldots, 1]\}=M_{1, n}^{C, u}$.

Maximal alive \leftrightarrow minimal dead

Still alive - not yet dead

- $\mathcal{C}_{\text {max }}(X)(\mathbf{0}, \mathbf{1}) \subset \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$ maximal alive matrices.
- Matrices in $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})$ correspond to maximal simplex products in $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$.
- Connection: $M \in \mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1}), M \leq N$ a succesor (a single 0 replaced by a 1$) \Rightarrow N \in D(X)(\mathbf{0}, \mathbf{1})$.

A cube removed from a cube

Maximal alive \leftrightarrow minimal dead

Still alive - not yet dead

- $\mathcal{C}_{\text {max }}(X)(\mathbf{0}, \mathbf{1}) \subset \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$ maximal alive matrices.
- Matrices in $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})$ correspond to maximal simplex products in $\mathrm{T}(X)(\mathbf{0}, \mathbf{1})$.
- Connection: $M \in \mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1}), M \leq N$ a succesor (a single 0 replaced by a 1$) \Rightarrow N \in D(X)(\mathbf{0}, \mathbf{1})$.

A cube removed from a cube

- $X=\vec{\eta}^{n} \backslash \vec{\jmath}^{n}, D(X)(\mathbf{0}, \mathbf{1})=\{[1, \ldots, 1]\}$;
- $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})$: vectors with a single 0 ;
- $\mathcal{C}(X)(\mathbf{0}, 1)=M_{l, n}^{R} \backslash\{[1, \ldots, 1]\}$;
- $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})=\partial \Delta^{n-1}$.

Extensions

1. Obstruction hyperrectangles intersecting the boundary of I^{n}

More general linear semaphore state spaces

- More general semaphores (intersection with the boundary $\partial I^{n} \subset I^{n}$ allowed)
- n dining philosophers: Trace space has $2^{n}-2$ contractible components!
- Different end points: $\vec{P}(X)(\mathbf{c}, \mathbf{d})$ and iterative calculations
- End complexes rather than end points (allowing processes not to respond..., Herlihy \& Cie)

State space components

New light on definition and determination of components of model space X

Extensions

1. Obstruction hyperrectangles intersecting the boundary of I^{n}

More general linear semaphore state spaces

- More general semaphores (intersection with the boundary $\partial l^{n} \subset l^{n}$ allowed)
- n dining philosophers: Trace space has $2^{n}-2$ contractible components!
- Different end points: $\vec{P}(X)(\mathbf{c}, \mathbf{d})$ and iterative calculations
- End complexes rather than end points (allowing processes not to respond..., Herlihy \& Cie)

State space components

New light on definition and determination of components of model space X.

Extensions

2a. Semaphores corresponding to non-linear programs:

Path spaces in product of digraphs

Products of digraphs instead of $\overrightarrow{\eta^{n}}$:
$\Gamma=\prod_{j=1}^{n} \Gamma_{j}$, state space $X=\Gamma \backslash F$,
F a product of generalized hyperrectangles R^{i}.

- $\vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})=\Pi \vec{P}\left(\Gamma_{j}\right)\left(x_{j}, y_{j}\right)$ - homotopy discrete!

Pullback to linear situation

Represent a path component $C \in \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$ by (regular) d-paths $p_{j} \in \vec{P}\left(\Gamma_{j}\right)\left(x_{j}, y_{j}\right)$ - an interleaving.
The map c

Extensions

2a. Semaphores corresponding to non-linear programs:

Path spaces in product of digraphs

Products of digraphs instead of $\overrightarrow{\eta^{n}}$:
$\Gamma=\prod_{j=1}^{n} \Gamma_{j}$, state space $X=\Gamma \backslash F$,
F a product of generalized hyperrectangles R^{i}.

- $\vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})=\Pi \vec{P}\left(\Gamma_{j}\right)\left(x_{j}, y_{j}\right)$ - homotopy discrete!

Pullback to linear situation

Represent a path component $C \in \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$ by (regular) d-paths $p_{j} \in \vec{P}\left(\Gamma_{j}\right)\left(x_{j}, y_{j}\right)$ - an interleaving.
The map $c: \vec{I}^{n} \rightarrow \Gamma, c\left(t_{1}, \ldots, t_{n}\right)=\left(c_{1}\left(t_{1}\right), \ldots, c_{n}\left(t_{n}\right)\right)$ induces a homeomorphism $\circ c: \vec{P}\left(\vec{I}^{n}\right)(\mathbf{0}, \mathbf{1}) \rightarrow C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

Extensions

2b. Semaphores: Topology of components of interleavings

Homotopy types of interleaving components

Pull back F via c :
$\bar{X}=\vec{l}^{n} \backslash \bar{F}, \bar{F}=\cup \bar{R}^{i}, \bar{R}^{i}=c^{-1}\left(R^{i}\right)$ - honest hyperrectangles! $i_{X}: \vec{P}(X) \hookrightarrow \vec{P}(\Gamma)$.
Given a component $C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.
The d-map c: $\bar{X} \rightarrow X$ induces a homeomorphism $c \circ: \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \rightarrow i_{X}^{-1}(C) \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

- C "lifts to X " $\Leftrightarrow \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \neq \varnothing$; if so:
- Analyse $i_{X}^{-1}(C)$ via $\vec{P}(\bar{X})(\mathbf{0}, \mathbf{1})$.
- Exploit relations between various components.

Special case: $\Gamma=\left(S^{1}\right)^{n}-$ a torus

State space: A torus with rectangular holes in F:
Investigated by Fajstrup, Goubault, Mimram etal.
Analyse by language on the alphabet $\mathcal{C}(X)(0,1)$ of alive matrices for a one-fold delooping of $\Gamma \backslash F$.

Extensions

2b. Semaphores: Topology of components of interleavings

Homotopy types of interleaving components

Pull back F via c :
$\bar{X}=\vec{l}^{n} \backslash \bar{F}, \bar{F}=\cup \bar{R}^{i}, \bar{R}^{i}=c^{-1}\left(R^{i}\right)$ - honest hyperrectangles!
$i_{X}: \vec{P}(X) \hookrightarrow \vec{P}(\Gamma)$.
Given a component $C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.
The d-map $c: \bar{X} \rightarrow X$ induces a homeomorphism
$c \circ: \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \rightarrow i_{X}^{-1}(C) \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

- C "lifts to X " $\Leftrightarrow \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \neq \varnothing$; if so:
- Analyse $i_{X}^{-1}(C)$ via $\vec{P}(\bar{X})(\mathbf{0}, \mathbf{1})$.
- Exploit relations between various components.

Special case: $\Gamma=\left(S^{1}\right)^{n}-$ a torus
State space: A torus with rectangular holes in F:
Investigated by Fajstrup, Goubault, Mimram etal.:
Analyse by language on the alphabet $\mathcal{C}(X)(0,1)$ of alive matrices for a one-fold delooping of $\Gamma \backslash F$.

Extensions

3a. D-paths in pre-cubical complexes

HDA: Directed pre-cubical complex
Higher Dimensional Automaton: Pre-cubical complex - like simplicial complex but with cubes as building blocks - with preferred diretions.
Geometric realization X with d-space structure.

Branch points and branch cubes

These complexes have branch points and branch cells - more than one maximal cell with same lower corner vertex.
At branch points, one can cut up a cubical complex into simpler
pieces.
Trouble: Simpler pieces may have higher order branch points.

Extensions

3a. D-paths in pre-cubical complexes

HDA: Directed pre-cubical complex
Higher Dimensional Automaton: Pre-cubical complex - like simplicial complex but with cubes as building blocks - with preferred diretions.
Geometric realization X with d-space structure.

Branch points and branch cubes

These complexes have branch points and branch cells - more than one maximal cell with same lower corner vertex.
At branch points, one can cut up a cubical complex into simpler pieces.
Trouble: Simpler pieces may have higher order branch points.

Extensions

3b. Path spaces for HDAs without d-loops

Non-branching complexes

Start with complex without directed loops: After finally many iterations: Subcomplex Y without branch points.

Theorem

$\vec{P}(Y)\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)$ is empty or contractible.

Proof.

Such a subcomplex has a preferred diagonal flow and a contraction from path space to the flow line from start to end.

Branch category

Theorem

Extensions

3b. Path spaces for HDAs without d-loops

Non-branching complexes

Start with complex without directed loops: After finally many iterations: Subcomplex Y without branch points.

Theorem

$\vec{P}(Y)\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)$ is empty or contractible.

Proof.

Such a subcomplex has a preferred diagonal flow and a contraction from path space to the flow line from start to end.

Branch category

Results in a (complicated) finite branch category $\mathcal{M}(X)\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)$ on subsets of set of (iterated) branch cells.

Theorem

$\vec{P}(X)\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)$ is homotopy equivalent to the nerve
$\mathcal{N}\left(\mathcal{M}(X)\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)\right)$ of that category.

Extensions

3c. Path spaces for HDAs with d-loops

Delooping HDAs

A pre-cubical complex comes with an L_{1}-length 1-form ω reducing to $\omega=d x_{1}+\cdots+d x_{n}$ on every n-cube.
Integration: L_{1}-length on rectifiable paths, homotopy invariant. Defines I: $P(X)\left(x_{0}, x_{1}\right) \rightarrow \mathbf{R}$ and $I_{\sharp}: \pi_{1}(X) \rightarrow \mathbf{R}$ with kernel K. The (usual) covering $\tilde{X} \downarrow X$ with $\pi_{1}(\tilde{X})=K$ is a directed pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points $\mathbf{x}_{0}, \mathbf{x}_{1} \in X$, path space $\vec{P}(X)\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)$ is homeomorphic to the disjoint union $\bigsqcup_{n \in \mathbf{Z}} \vec{P}(\tilde{X})\left(\mathbf{x}_{0}^{0}, \mathbf{x}_{1}^{n}\right)^{\text {a }}$

Extensions

3c. Path spaces for HDAs with d-loops

Delooping HDAs

A pre-cubical complex comes with an L_{1}-length 1-form ω reducing to $\omega=d x_{1}+\cdots+d x_{n}$ on every n-cube.
Integration: L_{1}-length on rectifiable paths, homotopy invariant. Defines $I: P(X)\left(x_{0}, x_{1}\right) \rightarrow \mathbf{R}$ and $I_{\sharp}: \pi_{1}(X) \rightarrow \mathbf{R}$ with kernel K. The (usual) covering $\tilde{X} \downarrow X$ with $\pi_{1}(\tilde{X})=K$ is a directed pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points $\mathbf{x}_{0}, \mathbf{x}_{1} \in X$, path space $\vec{P}(X)\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)$ is homeomorphic to the disjoint union $\bigsqcup_{n \in \mathbf{Z}} \vec{P}(\tilde{X})\left(\mathbf{x}_{0}^{0}, \mathbf{x}_{1}^{n}\right)^{a}$.

[^0]
To conclude

- From a (rather compact) state space model to a finite dimensional trace space model.
- Calculations of invariants (Betti numbers) of path space possible even for quite large state spaces.
- Dimension of trace space model reflects not the size but the complexity of state space (number of obstructions, number of processors) - linearly.
- Challenge: General properties of path spacesfor
algorithms solving types of problems in a distributed manner? (Connection to the work of Herlihy and Rajsbaum)

To conclude

- From a (rather compact) state space model to a finite dimensional trace space model.
- Calculations of invariants (Betti numbers) of path space possible even for quite large state spaces.
- Dimension of trace space model reflects not the size but the complexity of state space (number of obstructions, number of processors) - linearly.
- Challenge: General properties of path spaces for algorithms solving types of problems in a distributed manner?
(Connection to the work of Herlihy and Rajsbaum)

Want to know more?

Thank you!

- Samuel Mimram's subsequent talk!

References

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683-1714.
- MR, Execution spaces for simple higher dimensional automata, to appear in Appl. Alg. Eng. Comm. Comp.
- MR, Simplicial models for trace spaces II: General HDA, Aalborg University Research Report R-2011-11; submitted.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup etal., Trace Spaces: an efficient new technique for State-Space Reduction, submitted.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. 12 (2010), 231 - 244.

Want to know more?

Thank you!

- Samuel Mimram's subsequent talk!

References

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683-1714.
- MR, Execution spaces for simple higher dimensional automata, to appear in Appl. Alg. Eng. Comm. Comp.
- MR, Simplicial models for trace spaces II: General HDA, Aalborg University Research Report R-2011-11; submitted.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup etal., Trace Spaces: an efficient new technique for State-Space Reduction, submitted.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. 12 (2010), 231 - 244.

Thank you for your attention!

[^0]: $a_{\text {in }}$ the fibres over $\mathbf{x}_{0}, \mathbf{x}_{1}$

