Simplicial models for trace spaces

Martin Raussen

Department of Mathematical Sciences
Aalborg University
Depmark

Workshop on Computational Topology
Fields Institute, Toronto 8.11.2011

Table of Contents

Examples: State spaces and associated path spaces in

Higher Dimensional Automata (HDA)

Motivation: Concurrency

Simplest case: State spaces and path spaces related to linear

PV-programs

Tool: Cutting up path spaces into contractible

subspaces

Homotopy type of path space described by a matrix poset

category and realized by a prodsimplicial complex

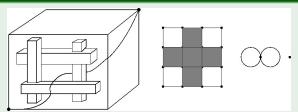
Algorithmics: Detecting dead and alive subcomplexes/matrices

Outlook: How to handle general HDA

Intro: State space, directed paths and trace space

Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA



State space:

a 3D cube $\overline{I}^3 \setminus F$ minus 4 box obstructions

Path space model contained in torus $(\partial \Delta^2)^2$ – homotopy equivalent to a wedge of two circles and a point: $(S^1 \vee S^1) \sqcup *$

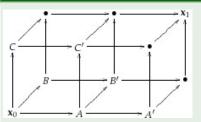
Analogy in standard algebraic topology

Relation between space X and loop space ΩX .

Intro: State space and trace space

Pre-cubical set as state space

Example 2: State space and trace space for a non-looping pre-cubical complex



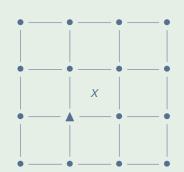
State space: Boundaries of two cubes glued together at common square AB' C' ●

Path space model: Prodsimplicial complex contained in $(\partial \Delta^2)^2 \cup \partial \Delta^2$ homotopy equivalent to $S^1 \vee S^1$

Intro: State space and trace space

with loops

Example 3: Torus with a hole



State space with hole X: 2D torus $\partial \Delta^2 \times \partial \Delta^2$ with a rectangle $\Delta^1 \times \Delta^1$ removed Path space model:

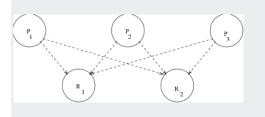
Discrete infinite space of dimension 0 corresponding to $\{r, u\}^*$

Motivation: Concurrency

Semaphores: A simple model for mutual exclusion

Mutual exclusion

occurs, when n processes P_i compete for m resources R_j .



Only *k* processes can be served at any given time.

Semaphores

Semantics: A processor has to lock a resource and to

Description/abstraction: $P_i : \dots PR_j \dots VR_j \dots$ (E.W. Dijkstra)

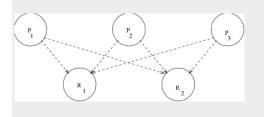
P: probeer: V: verhood

Motivation: Concurrency

Semaphores: A simple model for mutual exclusion

Mutual exclusion

occurs, when n processes P_i compete for m resources R_j .



Only *k* processes can be served at any given time.

Semaphores

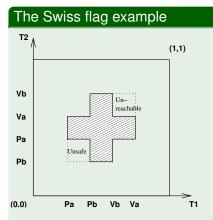
Semantics: A processor has to lock a resource and to

relinquish the lock later on!

Description/abstraction: $P_i : \dots PR_j \dots VR_j \dots$ (E.W. Dijkstra)

P: probeer; V: verhoog

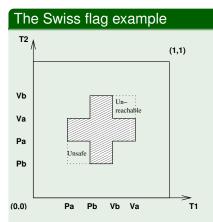
A geometric model: Schedules in "progress graphs"



PV-diagram from

 $P_1: P_a P_b V_b V_a$ $P_2: P_b P_a V_a V_b$

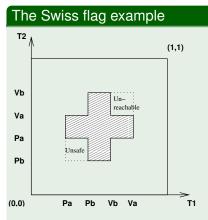
A geometric model: Schedules in "progress graphs"



PV-diagram from

 $P_1: P_a P_b V_b V_a$ $P_2: P_b P_a V_a V_b$ Executions are directed paths – since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions.

A geometric model: Schedules in "progress graphs"



PV-diagram from

 $P_1: P_a P_b V_b V_a$ $P_2: P_b P_a V_a V_b$ Executions are directed paths – since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions. Deadlocks, unsafe and unreachable regions may occur.

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube:

Hole = isothetic hyperrectangle

$$R^i =]a_1^i, b_1^i[\times \cdots \times]a_n^i, b_n^i[\subset I^n, 1 \le i \le I$$
:

with minimal vertex \mathbf{a}^i and maximal vertex \mathbf{b}^i .

State space
$$X = \vec{I}^n \setminus F$$
, $F = \bigcup_{i=1}^l R^i$

X inherits a partial order from \vec{I}^n .

More general (PV)-programs:

- Replace \tilde{I}^n by a product $\Gamma_1 \times \cdots \times \Gamma_n$ of digraphs.
- Holes have then the form $p'_1((0,1)) \times \cdots \times p'_n((0,1))$ with $p'_i: \vec{1} \to \Gamma_i$ a directed injective (d-)path.
- Pre-cubical complexes: like pre-simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube:

Hole = isothetic hyperrectangle

$$R^i =]a_1^i, b_1^i[\times \cdots \times]a_n^i, b_n^i[\subset I^n, 1 \le i \le I$$
:

with minimal vertex \mathbf{a}^i and maximal vertex \mathbf{b}^i .

State space
$$X = \vec{I}^n \setminus F$$
, $F = \bigcup_{i=1}^l R^i$

X inherits a partial order from \vec{I}^n .

More general (PV)-programs:

- Replace \vec{l}^n by a product $\Gamma_1 \times \cdots \times \Gamma_n$ of digraphs.
- Holes have then the form $p_1^i((0,1)) \times \cdots \times p_n^i((0,1))$ with $p_j^i: \vec{l} \to \Gamma_j$ a directed injective (d-)path.
- Pre-cubical complexes: like pre-simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.

Simple Higher Dimensional Automata

Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube:

Hole = isothetic hyperrectangle

$$R^{i} =]a_{1}^{i}, b_{1}^{i}[\times \cdots \times]a_{n}^{i}, b_{n}^{i}[\subset I^{n}, 1 \le i \le I]$$

with minimal vertex \mathbf{a}^{i} and maximal vertex \mathbf{b}^{i} .

State space $X = \vec{I}^n \setminus F$, $F = \bigcup_{i=1}^J R^i$

State space $X = I'' \setminus F$, $F = \bigcup_{i=1}^r R^r$ X inherits a partial order from \overline{I}^n .

More general (PV)-programs:

- Replace \vec{l}^n by a product $\Gamma_1 \times \cdots \times \Gamma_n$ of digraphs.
- Holes have then the form $p_1^i((0,1)) \times \cdots \times p_n^i((0,1))$ with $p_j^i: \vec{l} \to \Gamma_j$ a directed injective (d-)path.
- Pre-cubical complexes: like pre-simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.

the interesting spaces

Definition

- X a d-space, a, b ∈ X.
 p: I→ X a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{p: \vec{I} \to X | p(0) = a, p(b) = 1, p \text{ a d-path} \}$. Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a,b) \simeq \vec{T}(X)(a,b)$.
- A dihomotopy on $\vec{P}(X)(a,b)$ is a map $H: \vec{I} \times I \to X$ such that $H_t \in \vec{P}(X)(a,b), t \in I$; ie a path in $\vec{P}(X)(a,b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a,b)$ as explicit finite dimensional prodsimplicial complex.

the interesting spaces

Definition

- X a d-space, a, b ∈ X.
 p: I → X a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{p: \vec{I} \to X | p(0) = a, p(b) = 1, p \text{ a d-path}\}.$ Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a,b) \simeq \vec{T}(X)(a,b).$
- A dihomotopy on $\vec{P}(X)(a,b)$ is a map $H: \vec{l} \times l \to X$ such that $H_t \in \vec{P}(X)(a,b), t \in I$; ie a path in $\vec{P}(X)(a,b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a,b)$ as explicit finite dimensional prodsimplicial complex.

the interesting spaces

Definition

- X a d-space, a, b ∈ X.
 p: I → X a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{p: \vec{I} \to X | p(0) = a, p(b) = 1, p \text{ a d-path}\}.$ Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a,b) \simeq \vec{T}(X)(a,b).$
- A dihomotopy on $\vec{P}(X)(a,b)$ is a map $H: \vec{I} \times I \to X$ such that $H_t \in \vec{P}(X)(a,b), t \in I$; ie a path in $\vec{P}(X)(a,b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a,b)$ as explicit finite dimensional prodsimplicial complex.

the interesting spaces

Definition

- X a d-space, a, b ∈ X.
 p: I → X a d-path in X (continuous and "order-preserving") from a to b.
- $\vec{P}(X)(a,b) = \{p: \vec{I} \to X | p(0) = a, p(b) = 1, p \text{ a d-path}\}.$ Trace space $\vec{T}(X)(a,b) = \vec{P}(X)(a,b)$ modulo increasing reparametrizations. In most cases: $\vec{P}(X)(a,b) \simeq \vec{T}(X)(a,b).$
- A dihomotopy on $\vec{P}(X)(a,b)$ is a map $H: \vec{l} \times l \to X$ such that $H_t \in \vec{P}(X)(a,b), t \in I$; ie a path in $\vec{P}(X)(a,b)$.

Aim:

Description of the homotopy type of $\vec{P}(X)(a,b)$ as explicit finite dimensional prodsimplicial complex.

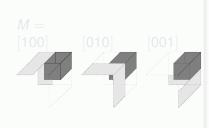
Tool: Subspaces of X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

$$X = \vec{I}^n \setminus F$$
, $F = \bigcup_{i=1}^l R^i$; $R^i = [\mathbf{a}^i, \mathbf{b}^i]$; **0**, **1** the two corners in I^n .

Definition

- **1** $X_{ij} = \{x \in X | x \leq \mathbf{b}^i \Rightarrow x_j \leq a_j^i\}$ direction j restricted at hole i
- **2** *M* a binary $I \times n$ -matrix: $X_M = \bigcap_{m_{ij}=1} X_{ij}$

First Examples:



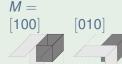
Tool: Subspaces of X and of $\vec{P}(X)(\mathbf{0},\mathbf{1})$

$$X = \vec{I}^n \setminus F$$
, $F = \bigcup_{i=1}^l R^i$; $R^i = [\mathbf{a}^i, \mathbf{b}^i]$; **0**, **1** the two corners in I^n .

Definition

- **1** $X_{ij} = \{x \in X | x \leq \mathbf{b}^i \Rightarrow x_i \leq a_i^i\}$ direction j restricted at hole i
- **2** *M* a binary $I \times n$ -matrix: $X_M = \bigcap_{m_i=1} X_{ij}$

First Examples:



Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector $M_{l,n}^{R,u}$ every row vector is a unit vector $M_{l,n}^{C,u}$ every column vector is a unit vector

A cover

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) = \bigcup_{M \in M_{l,n}^{R,u}} \vec{P}(X_M)(\mathbf{0},\mathbf{1}).$$

Theorem

Every path space $\tilde{P}(X_M)(\mathbf{0},\mathbf{1}), M \in M_{l,n}^{\mathbf{R},*}$, is empty or contractible. Which is which?

Proof

Subspaces X_M , $M \in M_{l,p}^{R,*}$ are closed under $\vee = l.u.b.$

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector $M_{l,n}^{R,u}$ every row vector is a unit vector $M_{l,n}^{C,u}$ every column vector is a unit vector

A cover:

$$\vec{P}(X)(\boldsymbol{0},\boldsymbol{1}) = \bigcup_{M \in M_{l,n}^{P,u}} \vec{P}(X_M)(\boldsymbol{0},\boldsymbol{1}).$$

Theorem

Every path space $\tilde{P}(X_M)(\mathbf{0},\mathbf{1}), M \in M_{l,n}^{\mathbf{H},*}$, is empty or contractible. Which is which?

Proof

Subspaces X_M , $M \in M_{l,p}^{R,*}$ are closed under $\vee = 1.u.b.$

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector $M_{l,n}^{R,u}$ every row vector is a unit vector $M_{l,n}^{C,u}$ every column vector is a unit vector

A cover:

$$\vec{P}(X)(\boldsymbol{0},\boldsymbol{1}) = \bigcup_{M \in M_{l,n}^{R,u}} \vec{P}(X_M)(\boldsymbol{0},\boldsymbol{1}).$$

Theorem

Every path space $\vec{P}(X_M)(\mathbf{0},\mathbf{1}), M \in M_{I,n}^{\mathbf{R},*}$, is empty or contractible. Which is which?

Proof.

Subspaces X_M , $M \in M_{l,p}^{R,*}$ are closed under $\vee = l.u.b.$

A combinatorial model and its geometric realization

First examples

Combinatorics poset category $\mathcal{C}(X)(\mathbf{0},\mathbf{1})\subseteq M_{l,n}^{R,*}\subseteq M_{l,n}$

Topology: prodsimplicial complex $T(X)(\mathbf{0}, \mathbf{1}) \subseteq (\Delta^{n-1})^l$

 $\Delta_M = \Delta_{m_1} \times \cdots \times \Delta_{m_l} \subseteq \mathbf{T}(X)(\mathbf{0},\mathbf{1})$

 $\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset$

Examples of path spaces

$$\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$$

•
$$T(X_1)(0,1) = (\partial \Delta^1)^2$$

•
$$T(X_2)(0,1) = 3*$$

A combinatorial model and its geometric realization

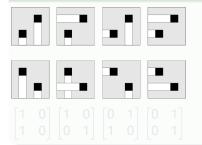
First examples

Combinatorics poset category

 $C(X)(\mathbf{0},\mathbf{1}) \subseteq M_{l,n}^{R,*} \subseteq M_{l,n}$ $M \in C(X)(\mathbf{0},\mathbf{1})$ "alive" Topology: prodsimplicial complex $T(X)(\mathbf{0},\mathbf{1}) \subseteq (\Delta^{n-1})^l$ $\Delta_M = \Delta_{m_1} \times \cdots \times \Delta_{m_l} \subseteq T(X)(\mathbf{0},\mathbf{1})$

 $\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$

Examples of path spaces



- $T(X_1)(0,1) = (\partial \Delta^1)^2$
- $T(X_2)(0,1) = 3*$
- $\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$

A combinatorial model and its geometric realization

First examples

Combinatorics poset category

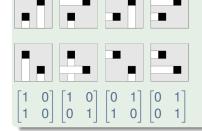
$$\mathcal{C}(X)(\mathbf{0},\mathbf{1}) \subseteq M_{l,n}^{R,*} \subseteq M_{l,n}$$

 $M \in \mathcal{C}(X)(\mathbf{0},\mathbf{1})$ "alive"

Topology: prodsimplicial complex $T(X)(\mathbf{0},\mathbf{1}) \subseteq (\Delta^{n-1})^I$ $\Delta_M = \Delta_{m_1} \times \cdots \times \Delta_{m_l} \subseteq T(X)(\mathbf{0},\mathbf{1})$

$$\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$$

Examples of path spaces



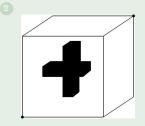
$$\bullet \ \mathbf{T}(X_1)(\mathbf{0},\mathbf{1}) = (\partial \Delta^1)^2$$

•
$$T(X_2)(0,1) = 3*$$

$$\supset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$$

Further examples

State spaces, "alive" matrices and path spaces



- $C(X)(\mathbf{0},\mathbf{1}) = M_{1,n}^{R,*} \setminus \{[1,\ldots 1]\}.$
- $T(X)(0,1) = \partial \Delta^{n-1} \simeq S^{n-2}$.

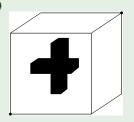
•
$$C_{max}(X)(\mathbf{0},\mathbf{1}) = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$$

- $\left\{ \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \right\}$
- $C(X)(\mathbf{0}, \mathbf{1}) = \{ M \in M_{l,n}^{R,*} | \exists N \in C_{max}(X)(\mathbf{0}, \mathbf{1}) : M \le N \}$
- T(X)(0,1) = 3 diagonal squares $\subset (\partial \Delta^2)^2 = T^2$ $\simeq S^1$.

More examples in Mimram's talk!

Further examples

State spaces, "alive" matrices and path spaces



- $C(X)(\mathbf{0},\mathbf{1}) = M_{1,n}^{R,*} \setminus \{[1,\ldots 1]\}.$
- $T(X)(0,1) = \partial \Delta^{n-1} \simeq S^{n-2}$.

•
$$C_{max}(X)(\mathbf{0},\mathbf{1}) =$$

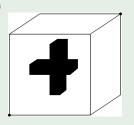
$$\left\{ \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \right\}$$

- $C(X)(\mathbf{0},\mathbf{1}) = \{M \in M_{l,n}^{R,*} | \exists N \in C_{max}(X)(\mathbf{0},\mathbf{1}) : M \leq N\}$
- T(X)(0, 1) = 3 diagonal squares $\subset (\partial \Delta^2)^2 = T^2$ $\simeq S^1$.

More examples in Mimram's talk!

Further examples

State spaces, "alive" matrices and path spaces



- •
- $C(X)(\mathbf{0},\mathbf{1}) = M_{1,n}^{R,*} \setminus \{[1,\ldots 1]\}.$
- $T(X)(0,1) = \partial \Delta^{n-1} \simeq S^{n-2}$.
- $\bullet \ \mathcal{C}_{max}(X)(\mathbf{0},\mathbf{1}) = \{ \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \}$
- $C(X)(\mathbf{0},\mathbf{1}) = \{M \in M_{l,n}^{R,*} | \exists N \in C_{max}(X)(\mathbf{0},\mathbf{1}) : M \leq N\}$
- T(X)(0,1) = 3 diagonal squares $\subset (\partial \Delta^2)^2 = T^2$ $\simeq S^1$.

More examples in Mimram's talk!

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ and the prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1}) \simeq \Delta C(X)(\mathbf{0},\mathbf{1}).$$

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T}: \mathcal{C}(X)(\mathbf{0},\mathbf{1})^{(\mathsf{op})} \to \mathsf{Top}:$ $\mathcal{D}(M) = \vec{P}(X_M)(\mathbf{0},\mathbf{1}),$ $\mathcal{E}(M) = \Delta_M,$ $\mathcal{T}(M) = *$
- colim $\mathcal{D} = \tilde{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D} \Rightarrow \mathcal{T}$, $\mathcal{E} \Rightarrow \mathcal{T}$ yield: hocolim $\mathcal{D} \cong \text{hocolim } \mathcal{T}^* \cong \text{hocolim } \mathcal{E}$.
- Projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ and the prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1}) \simeq \Delta C(X)(\mathbf{0},\mathbf{1}).$$

Proof.

- $$\begin{split} \bullet \ \, & \text{Functors} \ \, \mathcal{D}, \mathcal{E}, \mathcal{T} : \mathcal{C}(X)(\textbf{0},\textbf{1})^{(\text{op})} \to \textbf{Top} \text{:} \\ \mathcal{D}(M) &= \vec{P}(X_M)(\textbf{0},\textbf{1}), \\ \mathcal{E}(M) &= \Delta_M, \\ \mathcal{T}(M) &= * \end{split}$$
- colim $\mathcal{D} = \vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D} \Rightarrow \mathcal{T}, \mathcal{E} \Rightarrow \mathcal{T}$ yield: hocolim $\mathcal{D} \cong \text{hocolim } \mathcal{T}^* \cong \text{hocolim } \mathcal{E}$.
- Projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0},\mathbf{1})$ and the prodsimplicial complex $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$

Theorem (A variant of the nerve lemma)

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1}) \simeq \Delta C(X)(\mathbf{0},\mathbf{1}).$$

Proof.

- $$\begin{split} & \bullet \text{ Functors } \mathcal{D}, \mathcal{E}, \mathcal{T} : \mathcal{C}(X)(\textbf{0},\textbf{1})^{(\text{op})} \to \textbf{Top} \text{:} \\ & \mathcal{D}(M) = \vec{P}(X_M)(\textbf{0},\textbf{1}), \\ & \mathcal{E}(M) = \Delta_M, \\ & \mathcal{T}(M) = * \end{split}$$
- colim $\mathcal{D} = \vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D}\Rightarrow\mathcal{T},\mathcal{E}\Rightarrow\mathcal{T}$ yield: hocolim $\mathcal{D}\cong \operatorname{hocolim}\mathcal{T}^*\cong \operatorname{hocolim}\mathcal{T}\cong \operatorname{hocolim}\mathcal{E}$.
- Projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

- We distinguish, for every obstruction, sets $J_i \subset [1:n]$ of restrictions. A joint restriction is of product type $J_1 \times \cdots \times J_l \subset [1:n]^l$, and not an arbitrary subset of $[1:n]^l$.
- Simplicial model: a subcomplex of $\Delta^{n'} 2^{(n')}$ subsimplices.
- Prodsimplicial model: a subcomplex of (Δ^n) 2^(nl) subsimplices.

- We distinguish, for every obstruction, sets $J_i \subset [1:n]$ of restrictions. A joint restriction is of product type $J_1 \times \cdots \times J_l \subset [1:n]^l$, and not an arbitrary subset of $[1:n]^l$.
- Simplicial model: a subcomplex of $\Delta^{n'} 2^{(n')}$ subsimplices.
- Prodsimplicial model: a subcomplex of $(\Delta^n)^l 2^{(nl)}$ subsimplices.

From $C(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

Strategies - Attempts

- Implementation of T(X)(0, 1) in ALCOOL:
 Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on $C(X)(0,1) \leftrightarrow T(X)(0,1)$ leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are faster "discrete" methods, that also yield representatives in each path component: Mimram's talk!

From $C(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

Strategies - Attempts

- Implementation of T(X)(0,1) in ALCOOL:
 Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0,1) ↔ T(X)(0,1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are faster "discrete" methods, that also yield representatives in each path component: Mimram's talk!

From $C(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using T(X)(0,1)

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

Strategies - Attempts

- Implementation of T(X)(0,1) in ALCOOL:
 Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on $\mathcal{C}(X)(\mathbf{0},\mathbf{1}) \leftrightarrow \mathbf{T}(X)(\mathbf{0},\mathbf{1})$ leads to an associated **chain complex** of vector spaces over a field.
- Use fast algorithms (eg Mrozek CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are faster "discrete" methods, that also yield representatives in each path component: Mimram's talk!

From $C(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $T(X)(\mathbf{0}, \mathbf{1})$

Questions

- Is $\vec{P}(X)(0,1)$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected?
 Other topological properties?

Strategies - Attempts

- Implementation of T(X)(0,1) in ALCOOL:
 Progress at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on $\mathcal{C}(X)(\mathbf{0},\mathbf{1}) \leftrightarrow \mathbf{T}(X)(\mathbf{0},\mathbf{1})$ leads to an associated **chain complex** of vector spaces over a field.
- Use fast algorithms (eg Mrozek CrHom etc) to calculate the homology groups of these chain complexes even for very big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are faster "discrete" methods, that also yield representatives in each path component: Mimram's talk!

Detection of dead and alive subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R^i_j := $[0, b^i_1[\times \cdots \times [0, b^i_{j-1}[\times]a^i_j, b^i_j[\times [0, b^i_{j+1}[\times \cdots \times [0, b^i_n[\supset R^i]])])$

$$X_M = X \setminus \bigcup_{m_{ij}=1} R_j^i$$

Theorem

The following are equivalent:

- There is a "dead" matrix $N \leq M$, $N \in M_{l,n}^{C,u}$ such that $\bigcap_{n_{ij}=1} R_i^i \neq \emptyset \text{giving rise to a deadlock unavoidable from}$

Detection of dead and alive subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R; $:=[0,b_1^i[\times\cdots\times[0,b_{i-1}^i[\times]a_i^i,b_i^i[\times[0,b_{i+1}^i[\times\cdots\times[0,b_n^i[\supset R^i]]])]$

$$X_M = X \setminus \bigcup_{m_{ij}=1} R_j^i$$
.

Theorem

The following are equivalent:

- 2 There is a "dead" matrix $N \leq M$, $N \in M_{l,n}^{C,u}$ such that

 $\bigcap_{n_{i}=1} R_{i}^{i} \neq \emptyset$ – giving rise to a deadlock unavoidable from

0, *i.e.*,
$$T(X_N)(\mathbf{0},\mathbf{1}) = \emptyset$$
.

Dead matrices in $D(X)(\mathbf{0}, \mathbf{1})$

Inequalities decide

Decisions: Inequalities

Deadlock algorithm (Fajstrup, Goubault, Raussen) <>>:

Theorem

• $N \in M_{l,n}^{C,u}$ dead \Leftrightarrow For all $1 \le j \le n$, for all $1 \le k \le n$ such that $\exists j' : n_{kj'} = 1$:

$$n_{ij} = 1 \Rightarrow a^i_j < b^k_j.$$

 $\bullet \ \ M \in M^{R,*}_{l,n} \ \textit{dead} \Leftrightarrow \exists N \in M^{C,u}_{l,n} \ \textit{dead}, \ N \leq M.$

Definition

$$D(X)(\mathbf{0},\mathbf{1}) := \{ P \in M_{l,n} | \exists N \in M_{l,n}^{C,u}, N \text{ dead} : N \le P \}$$

A cube with a cube hole

- $X = \vec{I}^n \setminus \vec{J}^n$
- $D(X)(\mathbf{0},\mathbf{1}) = \{[1,\ldots,1]\} = M_{1,n}^{C,u}$

Dead matrices in $D(X)(\mathbf{0}, \mathbf{1})$

Inequalities decide

Decisions: Inequalities

Deadlock algorithm (Fajstrup, Goubault, Raussen) →:

Theorem

• $N \in M_{l,n}^{C,u}$ dead \Leftrightarrow For all $1 \le j \le n$, for all $1 \le k \le n$ such that $\exists j' : n_{kj'} = 1$:

$$n_{ij}=1 \Rightarrow a_j^i < b_j^k$$
.

 $\bullet \ \ M \in M^{R,*}_{l,n} \ \textit{dead} \Leftrightarrow \exists N \in M^{C,u}_{l,n} \ \textit{dead}, \ N \leq M.$

Definition

$$D(X)(\textbf{0},\textbf{1}) := \{P \in M_{l,n} | \exists N \in M_{l,n}^{C,u}, N \ \textit{dead} : N \leq P\}.$$

A cube with a cube hole

- $\bullet \ \ X = \vec{I}^n \setminus \vec{J}^n$
- $D(X)(\mathbf{0},\mathbf{1}) = \{[1,\ldots,1]\} = M_{1,n}^{C,u}$

Maximal alive ↔ minimal dead

Still alive - not yet dead

- $C_{max}(X)(\mathbf{0},\mathbf{1}) \subset C(X)(\mathbf{0},\mathbf{1})$ maximal alive matrices.
- Matrices in $C_{\max}(X)(\mathbf{0},\mathbf{1})$ correspond to maximal simplex products in $\mathbf{T}(X)(\mathbf{0},\mathbf{1})$.
- Connection: $M \in \mathcal{C}_{\max}(X)(\mathbf{0},\mathbf{1}), M \leq N$ a succesor (a single 0 replaced by a 1) $\Rightarrow N \in D(X)(\mathbf{0},\mathbf{1}).$

A cube removed from a cube

- $X = \vec{I}^n \setminus \vec{J}^n, D(X)(\mathbf{0}, \mathbf{1}) = \{[1, ..., 1]\};$
- $C_{\max}(X)(\mathbf{0}, \mathbf{1})$: vectors with a single 0;
- $C(X)(\mathbf{0},\mathbf{1}) = M_{l,n}^R \setminus \{[1,\ldots,1]\};$
- $T(X)(0,1) = \partial \Delta^{n-1}$

Maximal alive ↔ minimal dead

Still alive - not yet dead

- $C_{\text{max}}(X)(\mathbf{0},\mathbf{1}) \subset C(X)(\mathbf{0},\mathbf{1})$ maximal alive matrices.
- Matrices in $C_{\text{max}}(X)(\mathbf{0}, \mathbf{1})$ correspond to maximal simplex products in $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$.
- Connection: $M \in \mathcal{C}_{\max}(X)(\mathbf{0},\mathbf{1}), M \leq N$ a succesor (a single 0 replaced by a 1) $\Rightarrow N \in D(X)(\mathbf{0},\mathbf{1}).$

A cube removed from a cube

- $X = \vec{I}^n \setminus \vec{J}^n$, $D(X)(\mathbf{0}, \mathbf{1}) = \{[1, ..., 1]\}$;
- $C_{\max}(X)(\mathbf{0}, \mathbf{1})$: vectors with a single 0;
- $C(X)(\mathbf{0},\mathbf{1}) = M_{l,n}^R \setminus \{[1,\ldots,1]\};$
- $T(X)(0,1) = \partial \Delta^{n-1}$.

More general linear semaphore state spaces

- More general semaphores (intersection with the boundary $\partial I^n \subset I^n$ allowed)
- n dining philosophers: Trace space has 2ⁿ 2 contractible components!
- Different end points: $\vec{P}(X)(\mathbf{c}, \mathbf{d})$ and iterative calculations
- End complexes rather than end points (allowing processes not to respond..., Herlihy & Cie)

State space components

New light on definition and determination of components of model space X.

More general linear semaphore state spaces

- More general semaphores (intersection with the boundary $\partial I^n \subset I^n$ allowed)
- n dining philosophers: Trace space has 2ⁿ 2 contractible components!
- Different end points: $\vec{P}(X)(\mathbf{c}, \mathbf{d})$ and iterative calculations
- End complexes rather than end points (allowing processes not to respond..., Herlihy & Cie)

State space components

New light on definition and determination of components of model space X.

2a. Semaphores corresponding to non-linear programs:

Path spaces in product of digraphs

Products of digraphs instead of \vec{l}^n :

$$\Gamma = \prod_{j=1}^n \Gamma_j$$
, state space $X = \Gamma \setminus F$,

F a product of generalized hyperrectangles R^i .

• $\vec{P}(\Gamma)(\mathbf{x}, \mathbf{y}) = \prod \vec{P}(\Gamma_j)(x_j, y_j)$ – homotopy discrete!

Pullback to linear situation

Represent a path component $C \in \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$ by (regular) d-paths $p_i \in \vec{P}(\Gamma_i)(x_i, y_i)$ – an interleaving.

The map $c: \vec{I}^n \to \Gamma$, $c(t_1, \ldots, t_n) = (c_1(t_1), \ldots, c_n(t_n))$ induces a homeomorphism $\circ c: \vec{P}(\vec{I}^n)(\mathbf{0}, \mathbf{1}) \to C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

2a. Semaphores corresponding to non-linear programs:

Path spaces in product of digraphs

Products of digraphs instead of \vec{l}^n :

 $\Gamma = \prod_{j=1}^{n} \Gamma_j$, state space $X = \Gamma \setminus F$,

F a product of generalized hyperrectangles R^i .

• $\vec{P}(\Gamma)(\mathbf{x}, \mathbf{y}) = \prod \vec{P}(\Gamma_j)(x_j, y_j)$ – homotopy discrete!

Pullback to linear situation

Represent a path component $C \in \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$ by (regular) d-paths $p_i \in \vec{P}(\Gamma_i)(x_i, y_i)$ – an interleaving.

The map $c: \vec{I}^n \to \Gamma$, $c(t_1, \ldots, t_n) = (c_1(t_1), \ldots, c_n(t_n))$ induces a homeomorphism $\circ c: \vec{P}(\vec{I}^n)(\mathbf{0}, \mathbf{1}) \to C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

2b. Semaphores: Topology of components of interleavings

Homotopy types of interleaving components

Pull back F via c:

$$\bar{X} = \vec{I}^n \setminus \bar{F}, \bar{F} = \bigcup \bar{R}^i, \bar{R}^i = c^{-1}(R^i)$$
 – honest hyperrectangles! $i_X : \vec{P}(X) \hookrightarrow \vec{P}(\Gamma)$.

Given a component $C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

The d-map $c: \bar{X} \to X$ induces a homeomorphism

$$c\circ:\vec{P}(\bar{X})(\mathbf{0},\mathbf{1})\to i_X^{-1}(C)\subset\vec{P}(\Gamma)(\mathbf{x},\mathbf{y}).$$

- *C* "lifts to X" $\Leftrightarrow \vec{P}(\bar{X})(\mathbf{0},\mathbf{1}) \neq \emptyset$; if so:
- Analyse $i_X^{-1}(C)$ via $\vec{P}(\bar{X})(\mathbf{0},\mathbf{1})$.
- Exploit relations between various components.

Special case: $\Gamma = (S^1)^n$ – a torus

State space: A torus with rectangular holes in F: Investigated by Fajstrup, Goubault, Mimram etal.: Analyse by language on the alphabet $\mathcal{C}(X)(\mathbf{0},\mathbf{1})$ of alive matrices for a one-fold delooping of $\Gamma \setminus F$.

2b. Semaphores: Topology of components of interleavings

Homotopy types of interleaving components

Pull back F via c:

$$\bar{X} = \vec{I}^n \setminus \bar{F}, \bar{F} = \bigcup \bar{R}^i, \bar{R}^i = c^{-1}(R^i)$$
 – honest hyperrectangles! $i_X : \vec{P}(X) \hookrightarrow \vec{P}(\Gamma)$.

Given a component $C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

The d-map $c: \bar{X} \to X$ induces a homeomorphism

$$c\circ : \vec{P}(\bar{X})(\mathbf{0},\mathbf{1}) \to i_X^{-1}(C) \subset \vec{P}(\Gamma)(\mathbf{x},\mathbf{y}).$$

- *C* "lifts to X" $\Leftrightarrow \vec{P}(\bar{X})(\mathbf{0},\mathbf{1}) \neq \emptyset$; if so:
- Analyse $i_X^{-1}(C)$ via $\vec{P}(\bar{X})(\mathbf{0},\mathbf{1})$.
- Exploit relations between various components.

Special case: $\Gamma = (S^1)^n$ – a torus

State space: A torus with rectangular holes in *F*:

Investigated by Fajstrup, Goubault, Mimram etal.:

Analyse by language on the alphabet $C(X)(\mathbf{0}, \mathbf{1})$ of alive matrices for a one-fold delooping of $\Gamma \setminus F$.

3a. D-paths in pre-cubical complexes

HDA: Directed pre-cubical complex

Higher Dimensional Automaton: Pre-cubical complex – like simplicial complex but with cubes as building blocks – with preferred diretions.

Geometric realization *X* with d-space structure.

Branch points and branch cubes

These complexes have branch points and branch cells – more than one maximal cell with same lower corner vertex.

At branch points, one can cut up a cubical complex into simpler pieces.

Trouble: Simpler pieces may have higher order branch points

3a. D-paths in pre-cubical complexes

HDA: Directed pre-cubical complex

Higher Dimensional Automaton: Pre-cubical complex – like simplicial complex but with cubes as building blocks – with preferred diretions.

Geometric realization *X* with d-space structure.

Branch points and branch cubes

These complexes have branch points and branch cells – more than one maximal cell with same lower corner vertex.

At branch points, one can cut up a cubical complex into simpler pieces.

Trouble: Simpler pieces may have higher order branch points.

3b. Path spaces for HDAs without d-loops

Non-branching complexes

Start with complex **without directed loops**: After finally many iterations: Subcomplex *Y* **without branch points**.

Theorem

 $\vec{P}(Y)(\mathbf{x}_0, \mathbf{x}_1)$ is empty or contractible.

Proof.

Such a subcomplex has a preferred diagonal flow and a contraction from path space to the flow line from start to end.

Branch category

Results in a (complicated) finite branch category $\mathcal{M}(X)(\mathbf{x}_0, \mathbf{x}_1)$ on subsets of set of (iterated) branch cells.

Theorem

 $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homotopy equivalent to the nerve $\mathcal{N}(\mathcal{M}(X)(\mathbf{x}_0, \mathbf{x}_1))$ of that category.

3b. Path spaces for HDAs without d-loops

Non-branching complexes

Start with complex without directed loops: After finally many iterations: Subcomplex *Y* without branch points.

Theorem

 $\vec{P}(Y)(\mathbf{x}_0, \mathbf{x}_1)$ is empty or contractible.

Proof.

Such a subcomplex has a preferred diagonal flow and a contraction from path space to the flow line from start to end.

Branch category

Results in a (complicated) finite branch category $\mathcal{M}(X)(\mathbf{x}_0,\mathbf{x}_1)$ on subsets of set of (iterated) branch cells.

Theorem

 $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homotopy equivalent to the nerve $\mathcal{N}(\mathcal{M}(X)(\mathbf{x}_0, \mathbf{x}_1))$ of that category.

3c. Path spaces for HDAs with d-loops

Delooping HDAs

A pre-cubical complex comes with an L_1 -length 1-form ω reducing to $\omega = dx_1 + \cdots + dx_n$ on every n-cube. Integration: L_1 -length on rectifiable paths, homotopy invariant. Defines $I: P(X)(x_0, x_1) \to \mathbf{R}$ and $I_\sharp: \pi_1(X) \to \mathbf{R}$ with kernel K. The (usual) covering $\tilde{X} \downarrow X$ with $\pi_1(\tilde{X}) = K$ is a directed pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points $\mathbf{x}_0, \mathbf{x}_1 \in X$, path space $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homeomorphic to the disjoint union $\bigsqcup_{n \in \mathbf{Z}} \vec{P}(\tilde{X})(\mathbf{x}_0^0, \mathbf{x}_1^n)^a$.

^ain the fibres over x₀, x₁

3c. Path spaces for HDAs with d-loops

Delooping HDAs

A pre-cubical complex comes with an L_1 -length 1-form ω reducing to $\omega = dx_1 + \cdots + dx_n$ on every n-cube. Integration: L_1 -length on rectifiable paths, homotopy invariant. Defines $I: P(X)(x_0, x_1) \to \mathbf{R}$ and $I_\sharp: \pi_1(X) \to \mathbf{R}$ with kernel K. The (usual) covering $\tilde{X} \downarrow X$ with $\pi_1(\tilde{X}) = K$ is a directed pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points $\mathbf{x}_0, \mathbf{x}_1 \in X$, path space $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homeomorphic to the disjoint union $\bigsqcup_{n \in \mathbf{Z}} \vec{P}(\tilde{X})(\mathbf{x}_0^0, \mathbf{x}_1^n)^a$.

^ain the fibres over \mathbf{x}_0 , \mathbf{x}_1

To conclude

- From a (rather compact) state space model to a finite dimensional trace space model.
- Calculations of invariants (Betti numbers) of path space possible even for quite large state spaces.
- Dimension of trace space model reflects not the size but the complexity of state space (number of obstructions, number of processors) - linearly.
- Challenge: General properties of path spaces for

To conclude

- From a (rather compact) state space model to a finite dimensional trace space model.
- Calculations of invariants (Betti numbers) of path space possible even for quite large state spaces.
- Dimension of trace space model reflects not the size but the complexity of state space (number of obstructions, number of processors) - linearly.
- Challenge: General properties of path spaces for algorithms solving types of problems in a distributed manner? (Connection to the work of Herlihy and Rajsbaum)

Want to know more?

Thank you!

Samuel Mimram's subsequent talk!

References

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683 – 1714.
- MR, Execution spaces for simple higher dimensional automata, to appear in Appl. Alg. Eng. Comm. Comp.
- MR, Simplicial models for trace spaces II: General HDA,
 Aalborg University Research Report R-2011-11; submitted.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup etal., Trace Spaces: an efficient new technique for State-Space Reduction, submitted.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. 12 (2010), 231 – 244.

Thank you for your attention!

Want to know more?

Thank you!

Samuel Mimram's subsequent talk!

References

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683 – 1714.
- MR, Execution spaces for simple higher dimensional automata, to appear in Appl. Alg. Eng. Comm. Comp.
- MR, Simplicial models for trace spaces II: General HDA,
 Aalborg University Research Report R-2011-11; submitted.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup etal., Trace Spaces: an efficient new technique for State-Space Reduction, submitted.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. 12 (2010), 231 – 244.

Thank you for your attention!

