Spaces of directed paths as simplicial complexes

Martin Raussen

Department of Mathematical Sciences Aalborg University, Denmark

Seminar Algebraic Topology Faculty of Mathematics, Informatics and Mechanics University of Warsaw January 22, 2013

Martin Raussen

Spaces of directed paths as simplicial complexes

Table of Contents

Agenda

Examples: State spaces and associated path spaces in Higher Dimensional Automata (HDA)

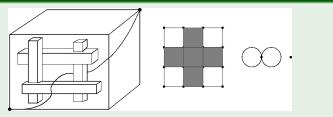
- Motivation: from Concurrency Theory
- Simplest case: State spaces and path spaces related to linear PV-programs – mutual exclusion
 - Tool: Cutting up path spaces into contractible subspaces

Homotopy type of path space described by a matrix poset category and realized by a prodsimplicial complex Algorithmics: Detecting dead and alive subcomplexes/matrices Outlook: How to handle general HDA – with directed loops Case: Directed loops on a punctured torus (joint with

K. Ziemiański)

Intro: State space, directed paths and trace space Problem: How are they related?

Example 1: State space and trace space for a semaphore HDA



State space: a 3D cube 7³ \ F minus 4 box obstructions pairwise connected Path space model contained in torus $(\partial \Delta^2)^2$ – homotopy equivalent to a wedge of two circles and a point: $(S^1 \lor S^1) \sqcup *$

Analogy in standard algebraic topology

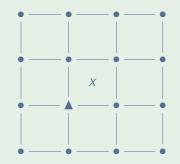
Relation between space *X* and loop space ΩX .

Martin Raussen

Spaces of directed paths as simplicial complexes

Intro: State space and trace space with loops

Example 2: Punctured torus



State space: Punctured torus *X* and branch point \blacktriangle : 2D torus $\partial \Delta^2 \times \partial \Delta^2$ with a rectangle $\Delta^1 \times \Delta^1$ removed Path space model: Discrete infinite space of dimension 0 corresponding to $\{r, u\}^*$.

Question: Path space for a punctured torus in higher dimensions? Joint work with K. Ziemiański.

Why bother? Concurrency Definition from Wikipedia

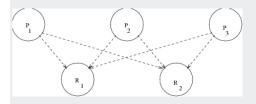
Concurrency

- In computer science, concurrency is a property of systems in which several computations are executing simultaneously, and potentially interacting with each other.
- The computations may be executing on multiple cores in the same chip, preemptively time-shared threads on the same processor, or executed on physically separated processors.
- A number of mathematical models have been developed for general concurrent computation including Petri nets, process calculi, the Parallel Random Access Machine model, the Actor model and the Reo Coordination Language.
- Specific applications to static program analysis design of automated tools to test correctness etc. of a concurrent program regardless of specific timed execution.

Mutual exclusion

Mutual exclusion

occurs, when *n* processes P_i compete for *m* resources R_j .



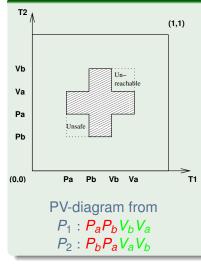
Only k processes can be served at any given time.

Semaphores

Semantics: A processor has to lock a resource and to relinquish the lock later on! **Description/abstraction:** $P_i : \ldots PR_j \ldots VR_j \ldots$ (E.W. Dijkstra) *P*: prolaag; *V*: verhogen

A geometric model: Schedules in "progress graphs"

Semaphores: The Swiss flag example



Executions are directed paths – since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are **di**homotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions. Deadlocks, unsafe and unreachable regions may occur.

Simple Higher Dimensional Automata Semaphore models

The state space

A linear PV-program is modeled as the complement of a forbidden region *F* consisting of a number of holes in an *n*-cube:

- Hole = isothetic hyperrectangle
 Rⁱ =]aⁱ₁, bⁱ₁[×···×]aⁱ_n, bⁱ_n[⊂ Iⁿ, 1 ≤ i ≤ I: with minimal vertex aⁱ and maximal vertex bⁱ.
- State space X = Iⁿ \ F, F = ∪^l_{i=1} Rⁱ X inherits a partial order from Iⁿ.
 d-paths are order preserving.

More general concurrent programs ~~ HDA

Higher Dimensional Automata (HDA, V. Pratt; 1990):

- Cubical complexes: like simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks^a
- d-paths are order preserving.

^aWe tacitly suppress labels

Spaces of d-paths/traces – up to dihomotopy

A general framework. Aims.

Definition

X a d-space, a, b ∈ X. p: 1→ X a d-path in X (continuous and "order-preserving") from a to b.
P(X)(a, b) = {p: 1→ X | p(0) = a, p(b) = 1, p a d-path}. Trace space T(X)(a, b) = P(X)(a, b) modulo increasing reparametrizations. In most cases: P(X)(a, b) ≃ T(X)(a, b).
A dihomotopy in P(X)(a, b) is a map H : 1×1→ X such

that $H_t \in \vec{P}(X)(a, b)$, $t \in I$; ie a path in $\vec{P}(X)(a, b)$.

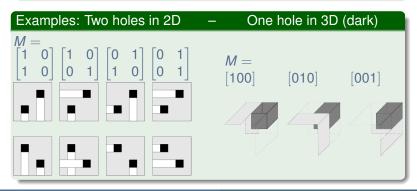
Aim:

Description of the homotopy type of $\vec{P}(X)(a, b)$ as explicit finite dimensional (prod-)simplicial complex. In particular: its path components, ie the dihomotopy classes of d-paths (executions). Tool: Subspaces of X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

 $X = \vec{l}^n \setminus F$, $F = \bigcup_{i=1}^l R^i$; $R^i =]\mathbf{a}^i$, \mathbf{b}^i [; **0**, **1** the two corners in l^n .

Definition

- $X_{ij} = \{x \in X | x \le \mathbf{b}^i \Rightarrow x_j \le a_j^i\} direction j restricted at hole i$
- *M* a binary $l \times n$ -matrix: $X_M = \bigcap_{m_{ij}=1} X_{ij} Which directions are restricted at which hole?$

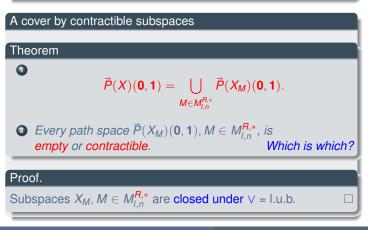


Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrices

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^{R,*}$ no row vector is the zero vector – every hole obstructed in at least one direction



A combinatorial model and its geometric realization

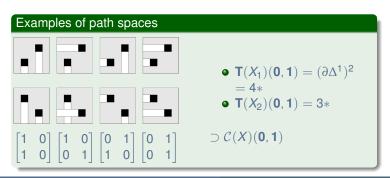
Combinatorics: poset category

 $\begin{array}{l} \mathcal{C}(X)(\mathbf{0},\mathbf{1})\subseteq M_{l,n}^{R,*}\subseteq M_{l,n}\\ M\in \mathcal{C}(X)(\mathbf{0},\mathbf{1}) \text{ "alive"} \end{array}$

Topology:

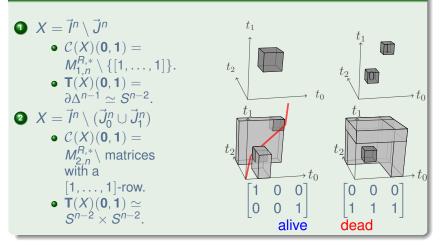
prodsimplicial complex $T(X)(0, 1) \subseteq (\Delta^{n-1})^{l}$ $\Delta_{M} = \Delta_{m_{1}} \times \cdots \times \Delta_{m_{l}} \subseteq$ T(X)(0, 1) – one simplex $\Delta_{m_{i}}$ for every hole

 $\Leftrightarrow \vec{P}(X_M)(\mathbf{0},\mathbf{1}) \neq \emptyset.$



Further examples

State spaces, "alive" matrices and path spaces



- We distinguish, for every obstruction, sets J_i ⊂ [1 : n] of restrictions. A joint restriction is of product type J₁ × · · · × J_l ⊂ [1 : n]^l, and not an arbitrary subset of [1 : n]^l.
- Simplicial model: a subcomplex of $\Delta^{n'} 2^{(n')}$ subsimplices.
- Prodsimplicial model: a subcomplex of (Δⁿ)^l 2^(nl) subsimplices.

Homotopy equivalence between path space $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ and prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem (A variant of the nerve lemma)

 $\vec{P}(X)(\mathbf{0},\mathbf{1})\simeq \mathbf{T}(X)(\mathbf{0},\mathbf{1})\simeq \Delta \mathcal{C}(X)(\mathbf{0},\mathbf{1}).$

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T} : \mathcal{C}(X)(\mathbf{0}, \mathbf{1})^{(\mathsf{OP})} \to \mathsf{Top}:$ $\mathcal{D}(M) = \vec{P}(X_M)(\mathbf{0}, \mathbf{1}),$ $\mathcal{E}(M) = \Delta_M,$ $\mathcal{T}(M) = *$
- colim $\mathcal{D} = \vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E} = \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations D ⇒ T, E ⇒ T yield: hocolim D ≃ hocolim T* ≃ hocolim T ≃ hocolim E.
- Projection lemma: hocolim D ≃ colim D, hocolim E ≃ colim E.

Detection of dead and alive matrices & subcomplexes

An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R_i^i

$$:= [0, b_1^j[\times \cdots \times [0, b_{j-1}^j[\times]a_j^j, 1] \times [0, b_{j+1}^j[\times \cdots \times [0, b_n^j[\supset R^i]$$

$$X_M = X \setminus \bigcup_{m_{ij}=1} R_j^i.$$

Theorem

The following are equivalent:

Dead matrices in $D(X)(\mathbf{0}, \mathbf{1})$

Inequalities decide

Decisions: Inequalities

Deadlock algorithm (Fajstrup, Goubault, Raussen) ~>:

Theorem

• $N \in M_{l,n}^{C,u}$ dead \Leftrightarrow For all $1 \le j \le n$, for all $1 \le k \le n$ such that $\exists j' : n_{kj'} = 1$:

$$n_{ij} = 1 \Rightarrow a_j^i < b_j^k.$$

•
$$M \in M_{l,n}^{R,*}$$
 dead $\Leftrightarrow \exists N \in M_{l,n}^{C,u}$ dead, $N \leq M$.

Definition

$$D(X)(\mathbf{0},\mathbf{1}):=\{P\in M_{l,n}|\exists N\in M_{l,n}^{C,u}, N \textit{ dead}:N\leq P\}.$$

A cube with a cubical hole

•
$$X = \vec{l}^n \setminus \vec{J}^n$$

• $D(X)(0, 1) = \{[1, ..., 1]\} = M_{1,n}^{C,l}$

Maximal alive \leftrightarrow minimal dead

Still alive – not yet dead

- $\mathcal{C}_{\max}(X)(\mathbf{0},\mathbf{1}) \subset \mathcal{C}(X)(\mathbf{0},\mathbf{1})$ maximal alive matrices.
- Matrices in C_{max}(X)(0, 1) correspond to maximal simplex products in T(X)(0, 1).
- Connection: *M* ∈ C_{max}(*X*)(0, 1), *M* ≤ *N* a succesor (a single 0 replaced by a 1) ⇒ *N* ∈ *D*(*X*)(0, 1).

A cube with a cubical hole

- $X = \vec{I}^n \setminus \vec{J}^n$, $D(X)(0, 1) = \{[1, ..., 1]\};$
- $C_{\max}(X)(0, 1)$: vectors with a single 0;
- $C(X)(0, 1) = M_{l,n}^R \setminus \{[1, ..., 1]\};$
- $\mathbf{T}(X)(\mathbf{0},\mathbf{1}) = \partial \Delta^{n-1}$.

From C(X)(0, 1) to properties of path space Questions answered by homology calculations using T(X)(0, 1)

Questions

- Is P(X)(0, 1) path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected? Other topological properties?

Strategies – Attempts

- Implementation of T(X)(0, 1) in ALCOOL at CEA/LIX-lab.: Goubault, Haucourt, Mimram
- The prodsimplicial structure on C(X)(0, 1) ↔ T(X)(0, 1) leads to an associated chain complex of vector spaces over a field.
- Use fast algorithms (eg Mrozek's CrHom etc) to calculate the homology groups of these chain complexes even for quite big complexes: M. Juda (Krakow).
- Number of path-components: rkH₀(T(X)(0,1)).
 For path-components alone, there are fast "discrete" methods, that also yield representatives in each path component (ALCOOL).

Huge prodsimplicial complexes

I obstructions, *n* processors: T(X)(0, 1) is a subcomplex of $(\partial \Delta^{n-1})^{I}$: potentially a huge high-dimensional complex.

Possible antidotes

- Smaller models? Make use of partial order among the obstructions Rⁱ, and in particular the inherited partial order among their extensions Rⁱ_i with respect to ⊆.
- Work in progress: yields often simplicial complex of far smaller dimension!

Open problems: Variation of end points

Conncection to MD persistence?

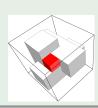
Components?!

- So far: $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ fixed end points.
- Now: Variation of $\vec{T}(X)(\mathbf{a}, \mathbf{b})$ of start and end point, giving rise to filtrations.
- At which thresholds do homotopy types change?
- How to cut up X × X into components so that the homotopy type of trace spaces with end point pair in a component is invariant?
- Birth and death of homology classes?
- Compare with **multidimensional persistence** (Carlsson, Zomorodian).

More general linear semaphore state spaces

- More general semaphores (intersection with the boundary $\partial I^n \subset I^n$ allowed)
- n dining philosophers: Trace space has 2ⁿ 2 contractible components!
- Different end points: $\vec{P}(X)(\mathbf{c}, \mathbf{d})$ and iterative calculations
- End complexes rather than end points (allowing processes not to respond..., Herlihy & Cie)

Dining philosophers



Path spaces in product of digraphs

Products of digraphs instead of \vec{l}^n : $\Gamma = \prod_{j=1}^n \Gamma_j$, state space $X = \Gamma \setminus F$, *F* a product of generalized hyperrectangles R^i . • $\vec{P}(\Gamma)(\mathbf{x}, \mathbf{y}) = \prod \vec{P}(\Gamma_i)(x_i, y_i)$ – homotopy discrete!

Pullback to linear situation

Represent a path component $C \in \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$ by (regular) d-paths $p_j \in \vec{P}(\Gamma_j)(x_j, y_j)$ – an interleaving. The map $c : \vec{l}^n \to \Gamma, c(t_1, \dots, t_n) = (c_1(t_1), \dots, c_n(t_n))$ induces a homeomorphism $\circ c : \vec{P}(\vec{l}^n)(\mathbf{0}, \mathbf{1}) \to C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y}).$

Homotopy types of interleaving components

Pull back F via c: $\bar{X} = \bar{I}^n \setminus \bar{F}, \bar{F} = \bigcup \bar{R}^i, \bar{R}^i = c^{-1}(R^i)$ – honest hyperrectangles! $i_X : \vec{P}(X) \hookrightarrow \vec{P}(\Gamma)$. Given a component $C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$. The d-map $c : \bar{X} \to X$ induces a homeomorphism $c \circ : \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \to i_{\bar{X}}^{-1}(C) \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

- C "lifts to X" $\Leftrightarrow \vec{P}(\bar{X})(\mathbf{0},\mathbf{1}) \neq \emptyset$; if so:
- Analyse $i_X^{-1}(C)$ via $\vec{P}(\bar{X})(\mathbf{0},\mathbf{1})$.
- Exploit relations between various components.

Special case: $\Gamma = (S^1)^n - a$ torus

State space: A torus with rectangular holes in *F*: Investigated by Fajstrup, Goubault, Mimram etal.: Analyse by **language** on the alphabet $C(X)(\mathbf{0}, \mathbf{1})$ of **alive** matrices for a one-fold delooping of $\Gamma \setminus F$.

HDA: Directed pre-cubical complex

Higher Dimensional Automaton: **Pre-cubical complex** – like simplicial complex but with **cubes** as building blocks – with preferred diretions.

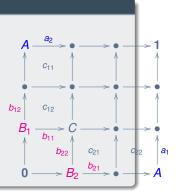
Geometric realization X with d-space structure.

Branch points and branch cubes

These complexes have branch points and branch cells – more than one maximal cell with same lower corner vertex.

At branch points, one can cut up a cubical complex into simpler pieces.

Trouble: Simpler pieces may have higher order branch points.



Non-branching complexes

Start with complex **without directed loops**: After finally many iterations: Subcomplex *Y* **without branch points**.

Theorem

 $\vec{P}(Y)(\mathbf{x}_0, \mathbf{x}_1)$ is empty or contractible.

Proof.

Such a subcomplex has a preferred **diagonal flow** and a contraction from path space to the flow line from start to end.

Branch category

Results in a (complicated) finite branch category $\mathcal{M}(X)(\mathbf{x}_0, \mathbf{x}_1)$ on subsets of set of (iterated) branch cells.

Theorem

 $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homotopy equivalent to the nerve $\mathcal{N}(\mathcal{M}(X)(\mathbf{x}_0, \mathbf{x}_1))$ of that category.

Delooping HDAs

A pre-cubical complex comes with an L_1 -length 1-form ω reducing to $\omega = dx_1 + \cdots + dx_n$ on every *n*-cube. Integration: L_1 -length on rectifiable paths, homotopy invariant. Defines $I : P(X)(x_0, x_1) \to \mathbf{R}$ and $I_{\sharp} : \pi_1(X) \to \mathbf{R}$ with kernel *K*. The (usual) covering $\tilde{X} \downarrow X$ with $\pi_1(\tilde{X}) = K$ is a directed pre-cubical complex without d- loops.

Theorem (Decomposition theorem)

For every pair of points $\mathbf{x}_0, \mathbf{x}_1 \in X$, path space $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ is homeomorphic to the disjoint union $\bigcup_{n \in \mathbf{Z}} \vec{P}(\tilde{X})(\mathbf{x}_0^0, \mathbf{x}_1^n)^a$.

^{*a*} in the fibres over \mathbf{x}_0 , \mathbf{x}_1

Punctured torus and *n*-space

n-torus $T^n = \mathbf{R}^n / \mathbf{z}^n$. forbidden region $F^n = ([\frac{1}{4}, \frac{3}{4}]^n + \mathbf{Z}^n) / \mathbf{z}^n \subset T^n$. punctured torus $Q^n = T^n \setminus F^n \simeq T^n_{(n-1)}$ punctured *n*-space $\tilde{Q}^n = \mathbf{R}^n \setminus ([\frac{1}{4}, \frac{3}{4}]^n + \mathbf{Z}^n) \simeq \mathbf{R}^n_{(n-1)}$ with d-paths from quotient map $\mathbf{R}^n \downarrow T^n$.

Aim: Describe the homotopy type of $\vec{P}(Q) = \vec{P}(Q)(\mathbf{0}, \mathbf{0})$

 $\vec{P}(Q) \hookrightarrow \Omega Q(\mathbf{0}, \mathbf{0}) \rightsquigarrow$ disjoint union $\vec{P}(Q) = \bigsqcup_{\mathbf{k} \ge \mathbf{0}} \vec{P}(\mathbf{k})(Q)$ with multiindex = multidegree $\mathbf{k} = (k_1, \dots, k_n) \in \mathbf{Z}_+^n, k_i \ge \mathbf{0}$. $\vec{P}(\mathbf{k})(Q) \cong \vec{P}(\tilde{Q}^n)(\mathbf{0}, \mathbf{k}) =: Z(\mathbf{k})$.

Path spaces as colimits

Category $\mathcal{J}(n)$

Poset category of proper non-empty subsets of [1 : n] with inclusions as morphisms.

Via characteristic functions isomorphic to the category of non-identical bit sequences of length *n*: $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in \mathcal{J}(n)$. $B\mathcal{J}(n) \cong \partial \Delta^{n-1} \cong S^{n-2}$.

Definition

$$U_{\varepsilon}(\mathbf{k}) := \{ \mathbf{x} \in \mathbf{R}^n | \varepsilon_j = 1 \Rightarrow x_j \le k_j - 1 \text{ or } \exists i : x_i \ge k_i \}$$

$$Z_{\varepsilon}(\mathbf{k}) := \vec{P}(U_{\varepsilon}(\mathbf{k}))(\mathbf{0}, \mathbf{k}).$$

Lemma

 $Z_{\varepsilon}(\mathbf{k}) \simeq Z(\mathbf{k} - \varepsilon).$

Theorem

$$\begin{split} \boldsymbol{Z}(\boldsymbol{k}) &= \operatorname{colim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\boldsymbol{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z_{\varepsilon}(\boldsymbol{k}) \simeq \\ \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} \boldsymbol{Z}(\boldsymbol{k} - \boldsymbol{\varepsilon}). \end{split}$$

Inductive homotopy colimites

Using the category $\mathcal{J}(n)$ construct for $\mathbf{k} \in \mathbf{Z}^n$, $\mathbf{k} \ge \mathbf{0}$:

•
$$X(\mathbf{k}) = *$$
 if $\prod_{i=1}^{n} k_i = 0;$

•
$$X(\mathbf{k}) = \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} X(\mathbf{k} - \varepsilon).$$

By construction $\mathbf{k} \leq \mathbf{I} \Rightarrow X(\mathbf{k}) \subseteq X(\mathbf{I}); X(\mathbf{1}) \cong \partial \Delta^{n-1}$.

Inductive homotopy equivalences

 $q(\mathbf{k}): Z(\mathbf{k}) \rightarrow X(\mathbf{k}):$

- $\prod_{i=1}^{n} k_i = 0 \Rightarrow Z(\mathbf{k})$ contractible, $X(\mathbf{k}) = *$
- $q(\mathbf{k}) = \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} q(\mathbf{k} \varepsilon) : Z(\mathbf{k}) \simeq$ $\operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z(\mathbf{k} - \varepsilon) \rightarrow \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} X(\mathbf{k} - \varepsilon) = X(\mathbf{k}).$

Homology and cohomology of space $Z(\mathbf{k})$ of d-paths

Definition

- $\mathbf{I} \ll \mathbf{m} \in \mathbf{Z}_+^n \Leftrightarrow I_j < m_j, 1 \le j \le n.$
- $\mathcal{O}^n = \{ (\mathbf{I}, \mathbf{m}) | \mathbf{I} \ll \mathbf{m} \text{ or } \mathbf{m} \ll \mathbf{I} \} \subset \mathbf{Z}_+^n \times \mathbf{Z}_+^n.$
- $\mathbf{B}(\mathbf{k}) := \mathbf{Z}_{+}^{n} (\leq \mathbf{k}) \times \mathbf{Z}_{+}^{n} (\leq \mathbf{k}) \setminus \mathcal{O}^{n}$ unordered pairs
- $\mathcal{I}(\mathbf{k}) := < \mathbf{Im}| \ (\mathbf{I}, \mathbf{m}) \in \mathbf{B}(\mathbf{k}) > \le \mathbf{Z} < \mathbf{Z}_{+}^{n} (\le \mathbf{k}) >.$

Theorem

For n > 2, $H^*(Z(\mathbf{k})) = \mathbf{Z} < \mathbf{Z}_+^n (\leq \mathbf{k}) > /_{\mathcal{I}(\mathbf{k})}$. All generators have degree n - 2. $H_*(Z(\mathbf{k})) \cong H^*(Z(\mathbf{k}))$ as abelian groups.

Proof

Spectral sequence argument, using projectivity of the functor $H_* : \mathcal{J}(n) \to \mathbf{Ab}_*, \ \mathbf{k} \mapsto H_*(Z(\mathbf{k})).$

Interpretation via cube sequences Betti numbers

Cube sequences

$$\begin{split} [\mathbf{a}^*] &:= [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}] \in A^n_{r(n-2)}(\mathbf{I}) \\ \text{of size } \mathbf{I} \in \mathbf{Z}^n_+, \text{ length } r \text{ and degree } r(n-2). \\ A^n_*(*) \text{ the free abelian group generated by all cube sequences.} \\ A^n_*(\leq \mathbf{k}) &:= \bigoplus_{\mathbf{I} \leq \mathbf{k}} A^n_*(\mathbf{I}). \\ H_{r(n-2)}(Z(\mathbf{k})) \cong A^n_{r(n-2)}(\leq \mathbf{k}) \\ \text{generated by cube sequences of length } r \text{ and size } \leq \mathbf{k}. \end{split}$$

Betti numbers of $Z(\mathbf{k})$

Theorem

$$n = 2: \ \beta_0 = \binom{k_1 + k_2}{k_1}; \beta_j = 0, \ j > 0;$$

$$n > 2: \ \beta_0 = 1, \ \beta_{i(n-2)} = \prod_1^n \binom{k_j}{i}, \ \beta_j = 0 \ else.$$

Corollary

Small homological dimension of Z(k): (min_j k_j)(n-2).
 For k = (k,...,k), β_i(Z(k)) = β_{k(n-2)-i}(Z(k)).

Generalization. "Explanation"

- The result can be stated and generalized for a complex $T^n_{(n-1)} \subset K \subset T^n$ with universal cover $\mathbf{R}^n_{(n-1)} \subset \tilde{K} \subset \mathbf{R}^n$. Homology is generated by cube sequences $[\mathbf{a}^*] := [\mathbf{0} \ll \mathbf{a}^1 \ll \mathbf{a}^2 \ll \cdots \ll \mathbf{a}^r = \mathbf{I}]$ such that the cells $[\mathbf{a}^i - \mathbf{1}, \mathbf{a}^i] \not\subset \tilde{K}$.
- A cube sequence **a*** is **maximal** if it is not properly contained in another cube sequence with same endpoints.
- A maximal cube sequence a^{*} gives rise to a subspace P(a^{*})(0, k) ⊂ P(K)(0, k) − concatenation of paths on boundary of cubes [aⁱ − 1, aⁱ] and contractible path spaces.
- $Y(\mathbf{k}) = \bigcup_{\mathbf{a}^*} \vec{P}(\mathbf{a}^*)(\mathbf{0}, \mathbf{k})$, \mathbf{a}^* maximal. Then also $Y(\mathbf{k}) \simeq \text{hocolim}_{\varepsilon \in \mathcal{J}(n)} Y(\mathbf{k} \varepsilon)$ and $Y(\mathbf{k})$ contractible if $\prod_i k_i = 0$.
- Hence $Y(\mathbf{k}) \simeq X(\mathbf{k}) \simeq Z(\mathbf{k})$.
- $\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k}) \subset \vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})$ induces an injection $H^*(\vec{P}(\mathbf{a}^*)(\mathbf{0},\mathbf{k})) \cong H^*((S^{n-2})^r) \to H^*(\vec{P}(\tilde{K})(\mathbf{0},\mathbf{k})).$

Martin Raussen

Spaces of directed paths as simplicial complexes

To conclude

Conclusions and challenges

- From a (rather compact) state space model (shape of data) to a finite dimensional trace space model (represent shape).
- Calculations of invariants (Betti numbers) of path space possible for state spaces of a moderate size (measuring shape).
- Dimension of trace space model reflects **not** the **size** but the **complexity** of state space (number of obstructions, number of processors); still: **curse of dimensionality**.
- Challenge: General properties of path spaces for algorithms solving types of problems in a distributed manner?

Connections to the work of Herlihy and Rajsbaum – protocol complex etc

● Challenge: Morphisms between HDA →→ d-maps between cubical state spaces →→ functorial maps between trace spaces. Properties? Equivalences?

Want to know more?

Books

- Kozlov, Combinatorial Algebraic Topology, Springer, 2008.
- Grandis, Directed Algebraic Topology, Cambridge UP, 2009.

Articles

- MR, Simplicial models for trace spaces, AGT 10 (2010), 1683 1714.
- MR, Execution spaces for simple HDA, Appl. Alg. Eng. Comm. Comp. 23 (2012), 59 – 84.
- MR, Simplicial models for trace spaces II: General Higher Dimensional Automata, AGT 12 (2012), 1741 1761.
- Fajstrup, Trace spaces of directed tori with rectangular holes, Aalborg University Research Report R-2011-08.
- Fajstrup et al., Trace Spaces: an efficient new technique for State-Space Reduction, Proceedings ESOP, Lect. Notes Comput. Sci. 7211 (2012), 274 – 294.
- Rick Jardine, Path categories and resolutions, Homology, Homotopy Appl. 12 (2010), 231 – 244.

Advertisement for ACAT Thank you!

ESF network ACAT

Applied and Computational Algebraic Topologyhttp:http://acat.lix.//www.esf.org/acatpolytechnique.fr/

Thank you for your attention!