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Content

Higher Dimensional Automata: Examples of state spaces
and associated path spaces
Motivation: Concurrency
A simple case: State spaces and path spaces related to
linear PV-programs
Tool: Cutting up path spaces into contractible subspaces
Homotopy type of path space described by a matrix poset
category and realized by a prodsimplicial complex
Algorithmics: Detecting dead and alive
subcomplexes/matrices
Outlook: How to handle general HDA.
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Intro: State space and trace space
Problem: How are they related?

Example 1: State space and trace space for a semaphore
space

State space =
a 3D cube~I3 \ F
minus 4 box obstructions

Path space model contained
in a torus (∂∆2)2 –
homotopy equivalent to a
wedge of two circles and a
point: (S1 ∨ S1) t ∗
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Intro: State space and trace space
Pre-cubical set as state space

Example 2: State space and trace space for a non-looping
semi-cubical complex

State space: Boundaries of
two cubes glued together at
common square AB′C ′•

Path space model:
Prodsimplicial complex
contained in torus (∂∆2)2–
homotopy equivalent to
S1 ∨ S1
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Intro: State space and trace space
with loops

Example 3: Torus with a hole

• • • •

• •
X

• •

• N • •

• • • •

State space with hole:
2D torus ∂∆2 × ∂∆2 with a
rectangle ∆1 × ∆1 removed

Path space model:
Discrete infinite space of
dimension 0 corresponding
to {r ,u}∗
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Motivation: Concurrency
Semaphores: A simple model for mutual exclusion

Mutual exclusion
occurs, when n processes Pi compete for m resources Rj .

Only k processes can be served at any given time.

Semaphores
Semantics: A processor has to lock a resource and to
relinquish the lock later on!
Description/abstraction Pi : . . . PRj . . . VRj . . . (E.W. Dijkstra)
P: pakken; V : vrijlaten
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A geometric model: Schedules in "progress graphs"

The Swiss flag example
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Unsafe

Un−

reachable

T1

T2

Pa Pb Vb Va

Pb

Pa

Va

Vb

(0,0)

(1,1)

PV-diagram from
P1 : PaPbVbVa
P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).
Dipaths that are dihomotopic
(through a 1-parameter
deformation consisting of
dipaths) correspond to
equivalent executions.
Deadlocks, unsafe and
unreachable regions may
occur.
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Simple Higher Dimensional Automata
Semaphore models

The state space
A linear PV-program is modeled as the complement of a
forbidden region F consisting of a number of holes in an n-cube
In:
Hole = isothetic hyperrectangle
R i =]ai

1,b
i
1[× · · · ×]ai

n,bi
n[,1 ≤ i ≤ l , in an n-cube:

with minimal vertex ai and maximal vertex bi .
State space X =~In \ F , F =

⋃l
i=1 R i

X inherits a partial order from~In.

More general (PV)-programs:

Replace~In by a product Γ1 × · · · × Γn of digraphs.
Holes have then the form pi

1((0,1))× · · · × pi
n((0,1)) with

pi
j :~I → Γj a directed injective (d-)path.

Pre-cubical complexes: like pre-simplicial complexes,
with (partially ordered) hypercubes instead of simplices as
building blocks.
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Spaces of d-paths/traces – up to dihomotopy
the interesting spaces

Definition
X a d-space, a,b ∈ X .
p :~I → X a d-path in X (continuous and
“order-preserving”) from a to b.
~P(X )(a,b) = {p :~I → X | p(0) = a,p(b) = 1,p a d-path}.
Trace space ~T (X )(a,b) = ~P(X )(a,b) modulo
increasing reparametrizations.
In most cases: ~P(X )(a,b) ' ~T (X )(a,b).
A dihomotopy on ~P(X )(a,b) is a map H :~I × I → X such
that Ht ∈ ~P(X )(a,b), t ∈ I; ie a path in ~P(X )(a,b).

Aim:

Description of the homotopy type of ~P(X )(a,b) as explicit finite
dimensional prodsimplicial complex.
In particular: its path components, ie the dihomotopy classes of
d-paths (executions).
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Tool: Covers of X and of ~P(X )(0,1)
by contractible or empty subspaces

X =~In \ F ,F =
⋃l

i=1 R i ;R i = [ai ,bi ];0,1 the two corners in In.

Definition

Xj1,...,jl = {x ∈ X | ∀i : xji ≤ ai
ji
∨ ∃k : xk ≥ bi

k}
= {x ∈ X | ∀i : x ≤ bi ⇒ xji ≤ ai

ji
}, 1 ≤ ji ≤ n.

Examples:

A cover:

~P(X )(0,1) =
⋃

1≤j1,...,jl≤n

~P(Xj1,...,jl )(0,1).
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More intricate subspaces as intersections
either empty or contractible

Definition
∅ 6=J1, . . . , Jl ⊆ [1 : n]:

XJ1,...,Jl =
⋂

ji∈Ji

Xj1,...,jl

= {x ∈ X | ∀i , ji ∈ Ji : x ≤ bi ⇒ xji ≤ ai
ji}

Theorem

Every path space ~P(XJ1,...,Jl )(0,1) is either empty or
contractible.

Proof.
relies on: Subspaces XJ1,...,Jl are closed under ∨ = l.u.b.

Question:

For which J1, . . . , Jl ⊆ [1 : n] is ~P(XJ1,...,Jl )(0,1) 6= ∅?
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Combinatorics: Bookkeeping with binary matrices

Binary matrices
Ml,n poset (≤) of binary l × n-matrices
MR

l,n no row vector is the zero vector
MC

l,n every column vector is a unit vector

Correspondences

Index sets ↔ Matrix sets
(P([1 : n]))l ↔ Ml,n

J = (J1, . . . , Jl) 7→ MJ = (mij), mij = 1⇔ j ∈ Ji

JM ← M JM
i = {j | mij = 1}

l-tuples of subsets 6= ∅ ↔ MR
l,n

{(K1, . . . ,Kl)| [1 : n] =
⊔

Ki} ↔ MC
l,n

Question rephrased

XM := XJM ,
~P(XM)(0,1) = ~P(XJM )(0,1) 6= ∅?
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A combinatorial model and its geometric realization
First examples

Combinatorics: poset
category –
C(X )(0,1) ⊆ MR

l,n ⊆ Ml,n
J ↔ M ∈ C(X )(0,1)

Topology: prodsimplicial
complex
T(X )(0,1) ⊆ (∆n−1)l

∆|J1|−1
J1

× · · · × ∆|Jl |−1
Jl

⊆
T(X )(0,1)

⇔ ~P(XM)(0,1) 6= ∅.

First examples

[
1 0
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 1
0 1

]
T(X1)(0,1) = (∂∆1)2

= 4∗
T(X2)(0,1) = 3∗

⊃ C(X )(0,1)
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Further examples

State spaces and “alive” matrices

1 X =~In \~Jn

2

1 C(X )(0,1) = MR
1,n \ {[1, . . . 1]}.

T(X )(0,1) = ∂∆n−1 ' Sn−2.
2 Cmax (X )(0,1) =

{
[
0 1 1
0 1 1

]
,

[
1 0 1
1 0 1

]
,

[
1 1 0
1 1 0

]
}.

C(X )(0,1) = {M ∈ MR
l,n| ∃N ∈

Cmax (X )(0,1) : M ≤ N}
T(X )(0,1) = 3 diagonal
squares ⊂ (∂∆2)2 = T 2

' S1.

Many more examples in Goubault’s talk!
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Homotopy equivalence between trace space
~T (X )(0,1) and the prodsimplicial complex T(X )(0,1)

Theorem
~P(X )(0,1) ' T(X )(0,1) ' ∆C(X )(0,1).

Proof.

Functors D, E , T : C(X )(0,1)(op) → Top:
D(M) = ~P(XM)(0,1),
E(M) = ∆|J1|−1

J1
× · · · × ∆|Jl |−1

Jl
= ∆JM ,

T (M) = ∗
colim D = ~P(X )(0,1), colim E = T(X )(0,1),
hocolim T = ∆C(X )(0,1).
The trivial natural transformations D ⇒ T , E ⇒ T yield:
hocolim D ∼= hocolim T ∗ ∼= hocolim T ∼= hocolim E .
Projection lemma:
hocolim D ' colim D, hocolim E ' colim E .
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Why prodsimplicial?
rather than simplicial

We distinguish, for every obstruction, sets Ji of restrictions.
A joint restriction is of type J1 × · · · × Jl , and not an
arbitrary subset of [1 : n]l .
Prodsimplicial and simplicial model (nerve of category)
have the same number of vertices (≤ nl ) and dimension
(≤ (n− 1)(l − 1)− 1).
The number of cells is of different orders:
prodsimplicial 2nl

simplicial 2(nl )
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From C(X )(0,1) to properties of path space
Questions answered by homology calculations using T(X )(0,1)

Questions

Is ~P(X )(0,1) path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?
Determination of path-components?
Are components simply connected?
Other topological properties?

Strategies – Attempts

Implementation of T(X )(0,1) in ALCOOL:
Progress at CEA/LIX-lab.: Goubault etal
The prodsimplicial structure on C(X )(0,1)↔ T(X )(0,1)
leads to an associated chain complex of vector spaces
over a field.
Use fast algorithms (eg Mrozek CrHom etc) to calculate
the homology groups of these chain complexes even for
very big complexes.
Number of path-components: rkH0(T(X )(0,1)).
For path-components alone, there are faster “discrete”
methods, that also yield representatives in each path
component: Goubault etal.
Even when “exponential explosion” prevents precise
calculations, inductive determination (round by round) of
general properties ((simple) connectivity) may be possible.
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Detection of dead and alive subcomplexes
An algorithm starts with deadlocks and unsafe regions!

Allow less = forbid more!

Remove extended hyperrectangles R i
j

:= [0,bi
1[× · · · × [0,bi

j−1[×]ai
j ,b

i
j [×[0,bi

j+1[× · · · × [0,bi
n[⊃ R i .

XM = X \
⋃

mij=1

R i
j .

Theorem
The following are equivalent:

1 ~P(XM)(0,1) = ∅⇔ M 6∈C(X )(0,1).
2 There is a map i : [1 : n]→ [1 : l ] such that mi(j),j = 1a and

such that
⋂

1≤j≤n R i(j)
j 6= ∅ – giving rise to a deadlock

unavoidable from 0.
acorresponding to a matrix M(i) ∈ MC

l,n with M(i) ≤ M

Martin Raussen Simplicial models for trace spaces



Partial orders and order ideals on matrix spaces
and an order preserving decision map Ψ

Dead or alive?

Consider Ψ : Ml,n → Z/2, Ψ(M) = 1⇔ ~P(XM)(0,1) = ∅.
Ψ is order preserving, in particular:
Ψ−1(0),Ψ−1(1) are closed in opposite senses:
M ≤ N : Ψ(N) = 0⇒ Ψ(M) = 0;Ψ(M) = 1⇒ Ψ(N) = 1
(thus T(X )(0,1) prodsimplicial).
Ψ(M) = 1⇔∃N ∈ MC

l,n such that N ≤ M,Ψ(N) = 1

D(X )(0,1) = {N ∈ MC
l,n|Ψ(N) = 1} – dead

C(X )(0,1) = {M ∈ MR
l,n|Ψ(M) = 0} – alive
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Maximal alive – minimal dead

Still alive – not yet dead

Cmax(X )(0,1) ⊂ C(X )(0,1) maximal alive matrices.
Matrices in Cmax(X )(0,1) correspond to maximal simplex
products in T(X )(0,1).
Dmin(X )(0,1) = D(X )(0,1) ∩MC

l,n minimal dead matrices.
Connection: M ∈ Cmax(X )(0,1),M ≤ N a succesor (a
single 0 replaced by a 1)⇒ N ∈ Dmin(X )(0,1).

A cube removed from a cube

X =~In \~Jn,D(X )(0,1) = {[1, . . . ,1]};
Cmax(X )(0,1): vectors with a single 0;
C(X )(0,1) = MR

l,n \ {[1, . . . ,1]};
T(X )(0,1) = ∂∆n−1.
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Dead matrices in Dmin(X )(0,1)
Inequalities decide

Decisions: Inequalities

Enough to decide among the ln matrices in MC
l,n.

A matrix M ∈ MC
l,n is described by a (choice) map

i : [1 : n]→ [1 : l ],mi(j),j = 1.

Deadlock algorithm inequalities:

M ∈ D(X )(0,1)⇔ ai(j)
j < bi(k)

j for all 1 ≤ j , k ≤ n.

Algorithmic organisation: Choice maps with the same
image give rise to the same upper bounds b∗j .

Martin Raussen Simplicial models for trace spaces



From D(X ) to Cmax(X )
Minimal transversals in hypergraphs (simplicial complexes)

Incremental search: comparisons

Construct Cmax (X )(0,1) incrementally (checking for one matrix
N ∈ D(X )(0,1) at a time), starting with matrix 1:

1 Ni+1 6≤ M ∈ C i(X )⇒ M ∈ C i+1(X );

2 Ni+1 ≤ M ⇒ M is replaced by n matrices M j with one
additional 0. Example: X =~In \~Jn.

Minimal transversals in a hypergraph

A matrix in D(X )(0,1) describes a hyperedge on the vertex
set [1 : l ]× [1 : n]; D(X )(0,1) describes a hypergraph.
A transversal in a hypergraph is a vertex set that has
non-empty intersection with each hyperedge.
Complements of minimal transversals correpond to
matrices in Cmax(0,1) – algorithms well-developed.
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Extensions
1. Obstruction hyperrectangles intersecting the boundary of In - Components

More general linear semaphore state spaces

More general semaphores (intersection with the boundary
of In allowed)
n dining philosophers: Trace space has 2n − 2 components
Different end points: ~P(X )(c,d) and iterative calculations
End complexes rather than end points (allowing processes
not to respond..., Herlihy & Cie)
Same technique, modification of definition and calculation
of C(X )(−,−), D(X )(−,−) etc. ; cf preprint, submitted.

State space components
New light on definition and determination of components of
model space X .
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Extensions
2a. Semaphores corresponding to non-linear programs:

Path spaces in product of digraphs

Products of digraphs instead of~In:
Γ = ∏n

j=1 Γj , state space X = Γ \ F ,
F a product of generalized hyperrectangles R i .

~P(Γ)(x,y) = ∏~P(Γj)(xj , yj) – homotopy discrete!

Pullback to linear situation

Represent a path component C ∈ ~P(Γ)(x,y) by(regular)
d-paths pj ∈ ~P(Γj)(xj , yj) – an interleaving.
The map c :~In → Γ, c(t1, . . . , tn) = (c1(t1), . . . , cn(tn)) induces
a homeomorphism ◦c : ~P(~In)(0,1)→ C ⊂ ~P(Γ)(x,y).
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Extensions
2b. Semaphores: Topology of components of interleavings

Homotopy types of interleaving components
Pull back F via c:
X̄ =~In \ F̄ , F̄ =

⋃
R̄ i , R̄ i = c−1(R i) – honest hyperrectangles!

iX : ~P(X ) ↪→ ~P(Γ).
Given a component C ⊂ ~P(Γ)(x,y).
The d-map c : X̄ → X induces a homeomorphism
c◦ : ~P(X̄ )(0,1)→ i−1

X (C) ⊂ ~P(X )(x,y).

C “lifts to X ”⇔ ~P(X̄ )(0,1) 6= ∅; if so:
Analyse i−1

X (C) via ~P(X̄ )(0,1).
Exploit relations between various components.

Special case: Γ = (S1)n – a torus

State space: A torus with rectangular holes in F :
Investigated by Fajstrup, Goubault, Mimram etal.:
Analyse by language on the alphabet C(X )(0,1) of alive
matrices for a one-fold delooping of Γ \ F .
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Extensions
3a. D-paths in pre-cubical complexes

HDA: Directed pre-cubical complex
Higher Dimensional Automaton: Pre-cubical complex – like
simplicial complex but with cubes as building blocks – with
preferred diretions.
Geometric realization X with d-space structure.

Branch points and branch cubes
These complexes have branch points and branch cells – more
than one maximal cell with same lower corner vertex.
At branch points, one can cut up a cubical complex in simpler
pieces.
Trouble: Simpler pieces may have higher order branch points.
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Extensions
3b. Path spaces for HDAs without d-loops

Non-branching complexes

Start with complex without directed loops: After finally many
iterations: Subcomplex Y without branch points.

Theorem
~P(Y )(x0,x1) is empty or contractible.

Proof.
Such a subcomplex has a preferred diagonal flow and a
contraction from path space to the flow line from start to
end.

Results in a (complicated) finite categoryM(X )(x0,x1) on
subsets of (iterated) branch cells.

Theorem
~P(X )(x0,x1) is homotopy equivalent to the nerve
N (M(X )(x0,x1)) of that category.
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Extensions
3c. Path spaces for HDAs with d-loops

Delooping HDAs

A pre-cubical complex comes with an L1-length 1-form
ω = dx1 + · · ·+ dxn on every n-cube.
Integration: L1-length on rectifiable paths, homotopy invariant.
Defines l : P(X )(x0, x1)→ R and l] : π1(X )→ R with kernel K .
The (usual) covering X̃ ↓ X with π1(X̃ ) = K is a directed
pre-cubical complex without directed loops.

Theorem (Decomposition theorem)

For every pair of points x0,x1 ∈ X, path space ~P(X )(x0,x1) is
homeomorphic to the disjoint union

⊔
n∈Z

~P(X̃ )(x0
0,x

n
1)

a.

ain the fibres over x0,x1
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To conclude

From a (rather compact) state space model to a finite
dimensional trace space model.
Calculations of invariants (Betti numbers) possible even for
quite large state spaces.
Dimension of trace space model reflects not the size but
the complexity of state space (number of obstructions,
number of processors) – linearly.
Challenge: General properties of path spaces for
algorithms solving types of problems in a distributed
manner?
(Connection to the work of Herlihy and Rajsbaum)
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Want to know more?
Thank you!

Eric Goubault’s talk this afternoon!
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Thank you for your attention!
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