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State space and model of trace space
Problem: How are they related?

Example:

State space =
a cube~I3 \ F
minus 4 box obstructions

 

Trace space contained in a
torus (∂∆2)2 –
homotopy equivalent to a
wedge of two circles and a
point: (S1 ∨ S1) ⊔ ∗
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Motivation: Concurrency
A simple model for mutual exclusion

Mutual exclusion occurs, when n processes Pi compete for m
resources Rj .
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P
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Only k processes can be served at any given time.
Semaphores!
Semantics: A processor has to lock a resource and to
relinquish the lock later on!
Description/abstraction Pi : . . .PRj . . .VRj . . . (E.W. Dijkstra)
P: pakken; V : vrijlaten
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A geometric model: Schedules in "progress graphs"
The Swiss flag example

Unsafe

Un-
reachable

(0,0)
Pa Pb Vb Va
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(1,1)

-

6

PV-diagram from
P1 : PaPbVbVa

P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).

Dipaths that are
dihomotopic (through
a 1-parameter deforma-
tion consisting of dipaths)
correspond to equivalent
executions.

Deadlocks, unsafe and
unreachable regions may
occur.
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Simple Higher Dimensional Automata
Semaphore models

A linear PV-program can be modelled as the complement of a
forbidden region F consisting of a number of holes in an n-cube
In:
Hole = isothetic hyperrectangle R i

, 1 ≤ i ≤ l , in an n-cube.
State space
X =~In \ F , F =

⋃l
i=1 R i

, R i =]ai
1, bi

1[× · · · ×]ai
n, bi

n[.
with minimal vertex ai and maximal vertex bi .
X inherits a partial order from~In.
More general PV-programs:

Replace~In by a product Γ1× · · · × Γn of digraphs.

Holes have then the form pi
1((0, 1))× · · · × pi

n((0, 1)) with
pi

j :
~I → Γj a directed injective (d-)path.

Pre-cubical complexes: like pre-simplicial complexes,
with (partially ordered) hypercubes instead of simplices as
building blocks.
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Main interest: Spaces of d-paths/traces – up to
dihomotopy

X a d-space, a, b ∈ X .

p :~I → X a d-path in X (continuous and
“order-preserving”)
~P(X )(a, b) = {p :~I → X | p(0) = a, p(b) = 1, p a d-path}.
Trace space ~T (X )(a, b) = ~P(X )(a, b) modulo increasing
reparametrizations.
In most cases: ~P(X )(a, b) ≃ ~T (X )(a, b).

A dihomotopy on ~P(X )(a, b) is a map H :~I × I → X such
that Ht ∈ ~P(X )(a, b), t ∈ I; a path in ~P(X )(a, b).

Aim: Description of the homotopy type of ~P(X )(a, b);
in particular of its path components, ie the dihomotopy classes
of d-paths.
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Covers of X and of ~P(X )(0, 1)
by contractible or empty subspaces

X =~In \ F , F =
⋃l

i=1 R i
; R i = [ai

, bi ]; 0, 1 the two corners in In.

Definition

Xj1,...,jl = {x ∈ X | ∀i : xji ≤ ai
ji
∨ ∃k : xk ≥ bi

k}

= {x ∈ X | ∀i : x ≤ bi ⇒ xji ≤ ai
ji
}, 1 ≤ ji ≤ n.

Examples:

~P(X )(0, 1) =
⋃

1≤j1,...,jl≤n

~P(Xj1,...,jl )(0, 1).
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More intricate subspaces as intersections
either empty or contractible

Definition

∅ 6=J1, . . . , Jl ⊆ [1 : n]:

XJ1,...,Jl
=

⋂

ji∈Ji

Xj1,...,jl

= {x ∈ X | ∀i , ji ∈ Ji : x ≤ bi ⇒ xji ≤ ai
ji}

Theorem

~P(XJ1,...,Jl
)(0, 1) is either empty or contractible.

Proof.

relies on: Subspaces XJ1,...,Jl
are closed under ∨ = l.u.b.

Question: For which J1, . . . , Jl ⊆ [1 : n] is

~P(XJ1,...,Jl
)(0, 1) 6= ∅?
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Combinatorics: Bookkeeping with binary matrices

Ml ,n poset (≤) of binary l × n-matrices

MR
l ,n no row vector is the zero vector

MC
l ,n every column vector is a unit vector

Restriction to Index sets ↔ Matrix sets

(P([1 : n]))l ↔ Ml ,n

J = (J1, . . . , Jl ) 7→ MJ = (mij), mij = 1⇔ j ∈ Ji

JM ← M JM
i = {j | mij = 1}

l-tuples of subsets 6= ∅ ↔ MR
l ,n

{(K1, . . . , Kl )| [1 : n] =
⊔

Ki} ↔ MC
l ,n

XM := XJM
, ~P(XM)(0, 1) = ~P(XJM

)(0, 1) 6= ∅?
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A combinatorial model and its geometric realization
First examples

Poset category – Combinatorics Prodsimplicial complex – Topology
C(X )(0, 1) ⊆ MR

l ,n ⊆ Ml ,n T(X )(0, 1) ⊆ (∆n−1)l

J ↔ M ∈ C(X )(0, 1) ∆
|J1|−1
J1

× · · · × ∆
|Jl |−1
Jl

⊆

T(X )(0, 1)

⇔ ~P(XM)(0, 1) 6= ∅.

Examples:

[

1 0
1 0

] [

1 0
0 1

] [

0 1
1 0

] [

0 1
0 1

]

T(X1)(0, 1) = (∂∆1)2

= 4∗

T(X2)(0, 1) = 3∗

⊂ C(X )(0, 1)
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Further examples

(1) X =~In \~Jn

C(X )(0, 1) =
MR

1,n \ {[1, . . . 1]}.

T (X )(0, 1) = ∂∆n−1 ≃ Sn−2.

(2)

Cmax (X )(0, 1) =

{

[

0 1 1
0 1 1

]

,

[

1 0 1
1 0 1

]

,

[

1 1 0
1 1 0

]

}.

T(X )(0, 1) = 3 diagonal
squares ⊂ (∂∆2)2 = T 2

≃ S1.
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Homotopy equivalence between trace space
~T (X )(0, 1) and the prodsimplicial complex T(X )(0, 1)

Theorem

~P(X )(0, 1) ≃ T(X )(0, 1) ≃ ∆C(X )(0, 1).

Proof.

Functors D, E , T : C(X )(0, 1)(op) → Top:
D(J1, . . . , Jl ) = ~P(XJ1,...,Jl

)(0, 1),

E(J1, . . . , Jl ) = ∆
|J1 |−1
J1

× · · · × ∆
|Jl |−1
Jl

,

T (J1, . . . , Jl ) = ∗

colim D = ~P(X )(0, 1), colim E = T(X )(0, 1),
hocolim T = ∆C(X )(0, 1).

The trivial natural transformations D ⇒ T , E ⇒ T yield:
hocolim D ∼= hocolim T ∗ ∼= hocolim T ∼= hocolim E .

Projection lemma:
hocolim D ≃ colim D, hocolim E ≃ colim E .
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From C(X )(0, 1) to properties of path space
Questions answered by homology calculations using T(X )(0, 1)

Is ~P(X )(0, 1) path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?

Determination of path-components?

Are components simply connected?
Other topological properties?

The prodsimplicial structure on C(X )(0, 1)↔ T(X )(0, 1) leads
to an associated chain complex of vector spaces.
There are fast algorithms to calculate the homology groups of
these chain complexes even for very big complexes.
Number of path-components: rkH0(T(X )(0, 1)).
For path-components, there might be faster “discrete” methods.
Even if “exponential explosion” prevents precise calculations,
inductive determination (round by round) of general properties
((simple) connectivity) may be possible.
Implementation in ALCOOL: progress at CEA/LIX-lab.
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Deadlocks and unsafe regions determine C(X )(0, 1)

A dual view: extended hyperrectangles Ri
j

:= [0, bi
1[× · · · × [0, bi

j−1[×]ai
j , bi

j [×[0, bi
j+1[× · · · × [0, bi

n[⊃ Ri .

XM = X \
⋃

mij=1

Ri
j .

Theorem

The following are equivalent:

1 ~P(XM )(0, 1) = ∅⇔ M 6∈C(X )(0, 1).

2 There is a map i : [1 : n]→ [1 : l ] such that mi(j),j = 1 and such

that
⋂

1≤j≤n Ri(j)
j 6= ∅ – giving rise to a deadlock unavoidable

from 0.

3 Mere combinatorics: Checking a bunch of inequalities:
There is a map i : [1 : n]→ [1 : l ] such that

ai(j)
j < bi(k)

j for all 1 ≤ j, k ≤ n.

OBS: χ(graph(i)) = M(i) ∈ MC
l,n!
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Which of the ln matrices in MC
l,n belong to D(X )(0, 1)?

A matrix M ∈ MC
l ,n is described by a (choice) map

i : [1 : n]→ [1 : l ], mi(j),j = 1.

Deadlocks inequalities:

M ∈ D(X )(0, 1) ⊆ MC
l ,n ⇔ ai(j)

j < bi(k)
j for all 1 ≤ j , k ≤ n.

Algorithmic organisation: Choice maps with the same image
give rise to the same upper bounds b∗j .
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Partial orders and order ideals on matrix spaces
and an order preserving map Ψ

Consider Ψ : Ml ,n → Z/2, Ψ(M) = 1⇔ ~P(XM)(0, 1) = ∅.

Ψ is order preserving, in particular:
Ψ−1(0), Ψ−1(1) are closed in opposite senses:
M ≤ N : Ψ(N) = 0⇒ Ψ(M) = 0; Ψ(M) = 1⇒ Ψ(N) = 1
(thus T(X )(0, 1) prodsimplicial).

Ψ(M) = 1⇔∃N ∈ MC
l ,n such that N ≤ M, Ψ(N) = 1

D(X )(0, 1) = {N ∈ MC
l ,n|Ψ(N) = 1} – dead

C(X )(0, 1) = {M ∈ MR
l ,n|Ψ(M) = 0} – alive

Cmax(X )(0, 1) maximal such matrices
characterized by: mij = 1 apart from:
∀N ∈ D(X )(0, 1)∃!(i , j) : 0 = mij < nij = 1

Matrices in Cmax(X )(0, 1) correspond to maximal simplex
products in T(X )(0, 1).
Example: X =~In ⊂ ~Jn

, D(X )(0, 1) =
{[1, . . . , 1]}, Cmax(X )(0, 1) = MR

l ,n \ {[1, . . . , 1]}.
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From D(X ) to Cmax(X )
Minimal transversals in hypergraphs (simplicial complexes)

Algorithmics: Construct Cmax (X )(0, 1) incrementally (checking
for one matrix N ∈ D(X )(0, 1) at a time), starting with matrix 1:

1 Ni+1 6≤ M ∈ C i (X )⇒ M ∈ C i+1(X );

2 Ni+1 ≤ M ⇒ M is replaced by n matrices M j with one
additional 0. Example: X =~In \~Jn.

A matrix in D(X )(0, 1) describes a hyperedge on the vertex set
[1 : l ]× [1 : n]; D(X )(0, 1) describes a hypergraph.
A transversal in a hypergraph is a vertex set that has
non-empty intersection with each hyperedge
↔ a matrix L such that ∀N ∈ D(X )(0, 1) ∃(i , j) : lij = nij = 1.
M = 1− L: ∀N ∈ D(X )(0, 1)∃(i , j) : 0 = mij < nij = 1.
Conclusion: Search for matrices in Amax (0, 1) corresponds to
search for minmal transversals in D(X )(0, 1).
In our case: All hyperedges have same cardinality n, include
one element per column.
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Extensions
1. Obstructions intersecting the boundary of In - Components

More general semaphores (intersection with the boundary
of In allowed)

Different end points: ~P(X )(c, d) and iterative calculations

End complexes rather than end points (allowing processes
not to respond..., Herlihy & Cie)

Same technique, modification of definition and calculation of
C(X )(−,−), D(X )(−,−) etc.

New light on definition and determination of components of
model space X .
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Extensions
2a. Semaphores corresponding to non-linear programs:

Products of digraphs instead of~In:
Γ = ∏

n
j=1 Γj , state space X = Γ \ F ,

F a product of generalized hyperrectangles R i .
~P(Γ)(x, y) = ∏~P(Γj )(xj , yj ) – homotopy discrete!

Represent a path component C ∈ ~P(Γ)(x, y) by (regular)
d-paths pj ∈ ~P(Γj)(xj , yj ) – an interleaving.
The map c :~In → Γ, c(t1, . . . , tn) = (c1(t1), . . . , cn(tn)) induces
a homeomorphism ◦c : ~P(~In)(0, 1)→ C ⊂ ~P(Γ)(x, y).
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Extensions
2b. Semaphores: Topology of components of interleavings

Pull back F via c:
X̄ =~In \ F̄ , F̄ =

⋃

R̄ i
, R̄ i = c−1(R i) – honest hyperrectangles!

0

1

iX : ~P(X ) →֒ ~P(Γ).
Given a component C ⊂ ~P(Γ)(x, y).
The d-map c : X̄ → X induces a homeomorphism
c◦ : ~P(X̄ )(0, 1)→ i−1

X (C) ⊂ ~P(X )(x, y).

C “lifts to X ”⇔ ~P(X̄ )(0, 1) 6= ∅; if so:

Analyse i−1
X (C) via ~P(X̄ )(0, 1).

Exploit relations between various components.
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Extensions
3. D-paths in pre-cubical complexes

Higher Dimensional Automaton: Pre-cubical complex with
preferred diretions. Geometric realization X with d-space
structure.

P(X )(x, y) is ELCX (equi locally convex). D-paths within a
specified “cube path” form a contractible subspace.

P(X )(x, y) has the homotopy type of a simplicial complex:
the nerve of an explicit category of cube paths (with
inclusions as morphisms).
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Want to know more?
Thank you!

Rick Jardine, Path categories and resolutions

forthcoming AGT-paper Simplicial models of trace spaces

Thank you for your attention!
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