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State space and model of trace space

Problem: How are they related?

Example:

SOk

m o Trace space contained in a
torus (9A?)? —
homotopy equivalent to a

acube *\F wedge of two circles and a
minus 4 box obstructions point: (S*Vv St) L«

State space =
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Motivation: Concurrency

A simple model for mutual exclusion

Mutual exclusion occurs, when n processes P; compete for m
resources R;.

%

Only k processes can be served at any giveln time.
Semaphores!

Semantics: A processor has to lock a resource and to
relinquish the lock later on!

Description/abstraction P; : ... PR;...VR;... (E.W. Dijkstra)
P: pakken; V: vrijlaten
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A geometric model: Schedules in "progress graphs"

The Swiss flag example
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Ea Eb \/b \/a

(0,0)

PV-diagram from
P]_ . PanVbVa
P2 . PbPaVaVb

Y

T1

Executions are directed
paths — since time flow is
irreversible — avoiding a
forbidden region (shaded).
Dipaths that are
dihomotopic (through
a l-parameter deforma-
tion consisting of dipaths)
correspond to equivalent
executions.
Deadlocks, unsafe and
unreachable regions may
occur.
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Simple Higher Dimensional Automata
Semaphore models

A linear PV-program can be modelled as the complement of a
forbidden region F consisting of a number of holes in an n-cube
"

Hole = isothetic hyperrectangle R', 1 < i < |, in an n-cube.
State space

X =1"\F, F=U_;R, Rl =]ai,bi[x--- x]al,bj[.

with minimal vertex a' and maximal vertex b'.

X inherits a partial order from .

More general PV-programs:

@ Replace mn by a product I'y x --- x I'y of digraphs.

@ Holes have then the form pi ((0,1)) x - -- x p4((0, 1)) with
pj' : I — TIj a directed injective (d-)path.

@ Pre-cubical complexes: like pre-simplicial complexes,

with (partially ordered) hypercubes instead of simplices as
building blocks.
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Main interest: Spaces of d-paths/traces — up to

dihomotopy

o X aqd-space, a,beX.

p:l — X ad-pathin X (continuous and
“order-preserving”)

@ B(X)(a,b)={p:T—X|p(0) =ap(b) =1,pad-path}.
Trace space T (X )(a,b) = P(X)(a, b) modulo increasing
reparametrizaticlns. -

In most cases: P(X)(a,b) ~ T (X)(a,b).

o A dihomotopy on P(X)(a,b)isamap H : T x | — X such

that H; € P(X)(a,b), t € I; apathin P(X)(a,b).

Aim: Description of the homotopy type of P (X )(a, b);
in particular of its path components, ie the dihomotopy classes
of d-paths.
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Covers of X and of P(X)(0, 1)

by contractible or empty subspaces
X =1"\F,F ={!_;R;R = [a,b'];0,1 the two corners in I".

Definition

i ={x eX|Viix <a V3Ik:x >by}
={xeX|Vi:x<b =x <a} 1<j<n

Examples:

B
= U PX,.;)01).

1<y, 0i<n

!
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More intricate subspaces as intersections

either empty or contractible

relies on: Subspaces X;, _; are closed under Vv = L.u.b. O

Question: For which J;,...,J3, C [1:n]is
P(Xy,..2)(0,1) #@?



Combinatorics: Bookkeeping with binary matrices

M, n poset (<) of binary | x n-matrices
MR, no row vector is the zero vector

M, every column vector is a unit vector

Restriction to Index sets

(P([L:n])’

I-tuples of subsets# @

{(Ky ... KD [L:n] = |Ki}

XM = XJM,

r 111 11

Matrix sets

Ml,n

M) = (my), mj=1&je
M M= {i|mj =1}

MII,Qn

MS

N

P(Xm)(0,1) = P(X;,)(0,1)# @7
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A combinatorial model and its geometric realization

First examples

Poset category — Combinatorics  Prodsimplicial complex — Topology

C(X)(0,1) S MR C M, T(X)(0,1) C (AM 1Y)
J & M eC(X)(0,1) AT ATt ¢
T(X)(0,1)
& P(Xu)(0,1) # @.
Examples:
n H n T(X1)(0,1) = (9A%)?

= 4x

.
)

[ 1|
A
YRR Ry e

@ T(X,)(0,1) = 3«

Martin Raussen Simplicial models for trace spaces



Further examples

@ C(X)(0,1) =
1) X =10\ 3n ME A\ AL, 1]
® 7(X)(0,1) =09A"N"1 ~ sh=2,

® Crnax(X)(0,1) =
011 1 01 110
{[0 1 1}'[1 0 1]'[1 1 0]}
® T(X)(0,1) = 3 diagonal
squares C (0A?)2 =T?

(2) ~ St
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Homotopy equivalence between trace space
T (X)(0, 1) and the prodsimplicial complex T(X)(0,1)

P(X)(0,1) ~ T(X)(0,1) ~ AC(X)(0,1).

@ Functors D, &,7 : C(X)(0,1)OP) — Top:

@ colim D = P(X)(0,1), colim & = T(X)(0,1),
hocolim 7 = AC(X)(0, 1).

@ The trivial natural transformations D = 7, £ = 7 yield:
hocolim D = hocolim 7* = hocolim 7 = hocolim £.

@ Projection lemma:
hocolim D ~ colim D, hocolim £ ~ colim £.
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From C(X)(0, 1) to properties of path space

Questions answered by homology calculations using T(X)(0, 1)

@ Is P(X)(0,1) path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?

@ Determination of path-components?

@ Are components simply connected?
Other topological properties?

The prodsimplicial structure on C(X)(0,1) < T(X)(0,1) leads
to an associated chain complex of vector spaces.

There are fast algorithms to calculate the homology groups of
these chain complexes even for very big complexes.

Number of path-components: rkHo (T(X)(0,1)).

For path-components, there might be faster “discrete” methods.
Even if “exponential explosion” prevents precise calculations,
inductive determination (round by round) of general properties
((simple) connectivity) may be possible.

Implementation in ALCOOL: progress at CEA/LIX-lab.
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Deadlocks and unsafe regions determine C(X)(0, 1)

A dual view: extended hyperrectangles Rji
= [0,b[x -+ x [0,b]_,[x]aj, bi[x[0,b] 4[> x[0by[>R"

Xw=X\ J R

The following are equivalent:
© P(Xy)(0,1) =@ & M¢gC(X)(0,1).
@ Thereisamapi:[1:n] — [1:1] such that m;(j),j = 1 and such

that N1<j<n Rji 0 # @ — giving rise to a deadlock unavoidable
from 0.

© Mere combinatorics: Checking a bunch of inequalities:
Thereisamapi: [1:n] — [1:]] such that
aj!(” < bj'(k) forall1 <j,k <n.

OBS: x(graph(i)) = M(i) e M!
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Which of the I" matrices in M5, belong to D(X)(0, 1)?

A matrix M € Ml(fn is described by a (choice) map

io[l:on] — [1:01],my; =1

Deadlocks ~~ inequalities:
M e D(X)(0,1) CMS, = al <b® foralll <jk <n.

Algorithmic organisation: Choice maps with the same image
give rise to the same upper bounds bj*.
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Partial orders and order ideals on matrix spaces

and an order preserving map ¥

Consider ¥ : M|, — Z/2, ¥(M) =1 < P(Xy)(0,1) = @.
@ Y is order preserving, in particular:
¥Y-1(0),¥1(1) are closed in opposite senses:
M<N:¥(N)=0=¥M)=0¥M)=1=¥(N)=1
(thus T(X)(0, 1) prodsimplicial).
@ ¥(M)=1<3N e M, suchthatN <M, ¥(N) =1

n
D(X)(0,1) = {N € M |¥(N) = 1} — dead
C(X)(0,1) = {M € M} |¥(M) = 0} — alive
Cmax(X)(0,1) maximal such matrices
characterized by: m; = 1 apart from:
VN € D(X)(O, 1)3'(I,]) :0= mj < nj = 1
Matrices in Cmax(X)(0, 1) correspond to maximal simplex
products in T(X)(0,1).
Example: X = 1" ¢ J",D(X)(0,1) =
{[1.... 1]}, Cmax(X)(0, 1) :|\/I|'?n\{[1 ----- 1]}



From D(X) to Crmax (X)

Minimal transversals in hypergraphs (simplicial complexes)

Algorithmics: Construct Cmax (X)(0, 1) incrementally (checking
for one matrix N € D(X)(0, 1) at a time), starting with matrix 1:
O N1 LM el (X)=M e C*H(X);
Q@ N, <M = M is replaced by n matrices MI with one
additional 0. Example: X =17\ J".
A matrix in D(X)(0, 1) describes a hyperedge on the vertex set
[1:1] x [1:n]; D(X)(0,1) describes a hypergraph.
A transversal in a hypergraph is a vertex set that has
non-empty intersection with each hyperedge
— amatrix L such that VN € D(X)(0,1) 3(i,j) : lj = nj = 1.
M=1—-L:VN € D(X)(O, 1)3(I,j) :0= m; < nj = T,
Conclusion: Search for matrices in Amax (0, 1) corresponds to
search for minmal transversals in D(X ) (0, 1).
In our case: All hyperedges have same cardinality n, include
one element per column.
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Extensions

1. Obstructions intersecting the boundary of I" - Components

@ More general semaphores (intersection with the boundary
of I" allowed)

@ Different end points: P(X)(c,d) and iterative calculations
@ End complexes rather than end points (allowing processes
not to respond..., Herlihy & Cie)
Same technique, modification of definition and calculation of
C(X)(= =), D(X)(—, —) etc.
@ New light on definition and determination of components of
model space X.
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Extensions

2a. Semaphores corresponding to programs:

Products of digraphs instead of [
I' = [, Tj, state space X =T\ F,
F a product of generalized hyperrectangles R'.

@ P(I)(x,y) =IP(T;)(x.y;) — homotopy discrete!
Represent a path component C € |3(I“)(x,y) by (regular)
d-paths p; € P(Tj)(x;,yj) — an interleaving.

Themapc: 1" — T c(ty,... th) = (c1(t1), ..., cn(tn)) induces
a homeomorphismoc : P(I")(0,1) — C C P(T)(x,y).
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Extensions
2b. Semaphores: Topology of components of interleavings

Pullback F viac: _
X =I1"\ F,F = UR',R" = ¢1(R') — honest hyperrectangles!

i : P(X) — B(I). )
Given a componentC C P(T)(x,y).
The d-map ¢ : X — X induces a homeomorphism
co:P(X)(0,1) — ix1(C) C P(X)(x,y).
@ C “lifts to X" < P(X)(0,1) # @; if so:
@ Analyse i, 1(C) via P(X)(0,1).
@ Exploit relations between various components.
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Extensions
3. D-paths in pre-cubical complexes

@ Higher Dimensional Automaton: Pre-cubical complex with
preferred diretions. Geometric realization X with d-space
structure.

@ P(X)(x,y) is ELCX (equi locally convex). D-paths within a
specified “cube path” form a contractible subspace.

@ P(X)(x,y) has the homotopy type of a simplicial complex:
the nerve of an explicit category of cube paths (with
inclusions as morphisms).

Martin Raussen Simplicial models for trace spaces



Want to know more?

Thank you!

@ Rick Jardine, Path categories and resolutions
@ forthcoming AGT-paper Simplicial models of trace spaces

Thank you for your attention!
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