Simplicial models for trace spaces

Martin Raussen

Department of Mathematical Sciences
Aalborg University
Denmark

Westä̈lische Wilhelms-Universität MÜnster

State space and model of trace space

Problem: How are they related?

Example:

State space =
a cube ${ }^{\beta} 3 \backslash F$ minus 4 box obstructions

Trace space contained in a torus $\left(\partial \Delta^{2}\right)^{2}$ -
homotopy equivalent to a
wedge of two circles and a point: $\left(S^{1} \vee S^{1}\right) \sqcup *$

Motivation: Concurrency

A simple model for mutual exclusion

Mutual exclusion occurs, when n processes P_{i} compete for m resources R_{j}.

Only k processes can be served at any given time. Semaphores!
Semantics: A processor has to lock a resource and to relinquish the lock later on!
Description/abstraction $P_{i}: \ldots P R_{j} \ldots V R_{j} \ldots$ (E.W. Dijkstra)
P : pakken; V: vrijlaten

A geometric model: Schedules in "progress graphs"

The Swiss flag example

PV-diagram from
$P_{1}: P_{a} P_{b} V_{b} V_{a}$
$P_{2}: P_{b} P_{a} V_{a} V_{b}$

Executions are directed paths - since time flow is irreversible - avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions.

Deadlocks, unsafe and unreachable regions may occur.

Simple Higher Dimensional Automata

Semaphore models

A linear PV-program can be modelled as the complement of a forbidden region F consisting of a number of holes in an n-cube ${ }^{1}$:
Hole $=$ isothetic hyperrectangle $R^{i}, 1 \leq i \leq I$, in an n-cube.
State space
$\left.X=\vec{l}^{n} \backslash F, F=\bigcup_{i=1}^{l} R^{i}, R^{i}=\right] a_{1}^{i}, b_{1}^{i}[\times \cdots \times] a_{n}^{i}, b_{n}^{i}[$.
with minimal vertex \mathbf{a}^{i} and maximal vertex \mathbf{b}^{i}.
X inherits a partial order from $\overrightarrow{7}^{n}$.
More general PV-programs:

- Replace \vec{I}^{n} by a product $\Gamma_{1} \times \cdots \times \Gamma_{n}$ of digraphs.
- Holes have then the form $p_{1}^{i}((0,1)) \times \cdots \times p_{n}^{i}((0,1))$ with $p_{j}^{i}: \vec{l} \rightarrow \Gamma_{j}$ a directed injective (d-)path.
- Pre-cubical complexes: like pre-simplicial complexes, with (partially ordered) hypercubes instead of simplices as building blocks.

Main interest: Spaces of d-paths/traces - up to dihomotopy

- X a d-space, $a, b \in X$.
$p: \vec{l} \rightarrow X$ a d-path in X (continuous and
"order-preserving")
- $\vec{P}(X)(a, b)=\{p: \vec{l} \rightarrow X \mid p(0)=a, p(b)=1, p$ a d-path $\}$. Trace space $\vec{T}(X)(a, b)=\vec{P}(X)(a, b)$ modulo increasing reparametrizations.
In most cases: $\vec{P}(X)(a, b) \simeq \vec{T}(X)(a, b)$.
- A dihomotopy on $\vec{P}(X)(a, b)$ is a map $H: \vec{l} \times I \rightarrow X$ such that $H_{t} \in \vec{P}(X)(a, b), t \in I$; a path in $\vec{P}(X)(a, b)$.
Aim: Description of the homotopy type of $\vec{P}(X)(a, b)$; in particular of its path components, ie the dihomotopy classes of d-paths.

Covers of X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

by contractible or empty subspaces

$$
X=\vec{l}^{n} \backslash F, F=\bigcup_{i=1}^{\prime} R^{i} ; R^{i}=\left[\mathbf{a}^{i}, \mathbf{b}^{i}\right] ; \mathbf{0}, \mathbf{1} \text { the two corners in } I^{n} .
$$

Definition

$$
\begin{aligned}
X_{j_{1}, \ldots, j_{i}}= & \left\{x \in X \mid \forall i: x_{j_{i}} \leq a_{j i}^{i} \vee \exists k: x_{k} \geq b_{k}^{i}\right\} \\
& =\left\{x \in X \mid \forall i: x \leq \mathbf{b}^{i} \Rightarrow x_{j_{i}} \leq a_{j i}^{i}\right\}, \quad 1 \leq j_{i} \leq n .
\end{aligned}
$$

Examples:

$$
\vec{P}(X)(\mathbf{0}, \mathbf{1})=\bigcup_{1 \leq j_{1}, \ldots, j_{j} \leq n} \vec{P}\left(X_{j_{1}, \ldots, j_{j}}\right)(\mathbf{0}, \mathbf{1}) .
$$

More intricate subspaces as intersections

either empty or contractible

Definition

$\varnothing \neq \mathcal{J}_{1}, \ldots, J_{l} \subseteq[1: n]:$

$$
\begin{aligned}
x_{J_{1}, \ldots, J_{l}} & =\bigcap_{j_{i} \in J_{i}} X_{j_{1}, \ldots, j_{i}} \\
& =\left\{x \in X \mid \forall i, j_{i} \in J_{i}: x \leq \mathbf{b}^{i} \Rightarrow x_{j_{i}} \leq a_{j_{i}}^{i}\right\}
\end{aligned}
$$

Theorem

$\vec{P}\left(X_{J_{1}, \ldots, J_{l}}\right)(\mathbf{0}, \mathbf{1})$ is either empty or contractible.

Proof.

relies on: Subspaces $X_{J_{1}, \ldots, J_{l}}$ are closed under $\vee=$ I.u.b.
Question: For which $J_{1}, \ldots, J_{1} \subseteq[1: n]$ is

$$
\vec{P}\left(X_{山_{1}, \ldots, J_{l}}\right)(\mathbf{0}, \mathbf{1}) \neq \varnothing ?
$$

Combinatorics: Bookkeeping with binary matrices

$M_{I, n}$ poset (\leq) of binary $I \times n$-matrices
$M_{l, n}^{R}$ no row vector is the zero vector
$M_{l, n}^{C}$ every column vector is a unit vector

Restriction to Index sets \leftrightarrow Matrix sets

$$
\begin{aligned}
(\mathcal{P}([1: n]))^{\prime} & \leftrightarrow M_{l, n} \\
J=\left(J_{1}, \ldots, J_{l}\right) & \mapsto M^{J}=\left(m_{i j}\right), m_{i j}=1 \Leftrightarrow j \in J_{i} \\
J^{M} & \leftarrow M \quad J_{i}^{M}=\left\{j \mid m_{i j}=1\right\}
\end{aligned}
$$

I-tuples of subsets $\neq \varnothing \quad \leftrightarrow \quad M_{l, n}^{R}$

$$
\left\{\left(K_{1}, \ldots, K_{l}\right) \mid[1: n]=\bigsqcup K_{i}\right\} \quad \leftrightarrow \quad M_{l, n}^{C}
$$

$$
X_{M}:=X_{J_{M}}, \quad \vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1})=\vec{P}\left(X_{J_{M}}\right)(\mathbf{0}, \mathbf{1}) \neq \varnothing ?
$$

A combinatorial model and its geometric realization

First examples

$$
\begin{array}{ll}
\text { Poset category - Combinatorics } & \text { Prodsimplicial complex - Topology } \\
\mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \subseteq M_{l, n}^{R} \subseteq M_{l, n} & \mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \subseteq\left(\Delta^{n-1}\right)^{\prime} \\
J \leftrightarrow M \in \mathcal{C}(X)(\mathbf{0}, \mathbf{1}) & \Delta_{山_{1}}^{\left|J_{1}\right|-1} \times \cdots \times \Delta_{J_{l}}^{\left|J_{l}\right|-1} \subseteq \\
& \mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \\
\Leftrightarrow \vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1}) \neq \varnothing
\end{array}
$$

Examples:

$$
\begin{aligned}
& \text { - } \mathbf{T}\left(X_{1}\right)(\mathbf{0}, \mathbf{1})=\left(\partial \Delta^{1}\right)^{2} \\
& =4 *
\end{aligned}
$$

- $\mathbf{T}\left(X_{2}\right)(\mathbf{0}, \mathbf{1})=3 *$

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \quad \subset \mathcal{C}(X)(\mathbf{0}, \mathbf{1})
$$

Further examples

- $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})=$
(1) $X=\vec{l}^{n} \backslash \vec{J}^{n}$ $M_{1, n}^{R} \backslash\{[1, \ldots 1]\}$.
- $\mathcal{T}(X)(\mathbf{0}, \mathbf{1})=\partial \Delta^{n-1} \simeq S^{n-2}$.
- $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})=$ $\left\{\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]\right\}$.
- $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})=3$ diagonal squares $\subset\left(\partial \Delta^{2}\right)^{2}=T^{2}$ $\simeq S^{1}$.

Homotopy equivalence between trace space $\vec{T}(X)(\mathbf{0}, \mathbf{1})$ and the prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$

Theorem

$$
\vec{P}(X)(\mathbf{0}, \mathbf{1}) \simeq \mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \simeq \Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1}) .
$$

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T}: \mathcal{C}(X)\left(\mathbf{0}, \mathbf{1}{ }^{(0 \mathrm{OP})} \rightarrow\right.$ Top:
$\mathcal{D}\left(J_{1}, \ldots, J_{l}\right)=\vec{P}\left(X_{\left.J_{1}, \ldots, J_{l}\right)}\right)(\mathbf{0}, \mathbf{1})$,
$\mathcal{E}\left(J_{1}, \ldots, J_{l}\right)=\Delta_{J_{1}}^{\left|\mathcal{J}_{1}\right|-1} \times \cdots \times \Delta_{J_{l}}^{\left|J_{l}\right|-1}$,
$\mathcal{T}\left(J_{1}, \ldots, J_{l}\right)=*$
- colim $\mathcal{D}=\vec{P}(X)(\mathbf{0}, \mathbf{1})$, colim $\mathcal{E}=\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$, hocolim $\mathcal{T}=\Delta \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
- The trivial natural transformations $\mathcal{D} \Rightarrow \mathcal{T}, \mathcal{E} \Rightarrow \mathcal{T}$ yield: hocolim $\mathcal{D} \cong$ hocolim $\mathcal{T}^{*} \cong$ hocolim $\mathcal{T} \cong$ hocolim \mathcal{E}.
- Projection lemma:
hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

From $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})$ to properties of path space

Questions answered by homology calculations using $\mathbf{T}(X)(\mathbf{0}, 1)$

- Is $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ path-connected, i.e., are all (execution) d-paths dihomotopic (lead to the same result)?
- Determination of path-components?
- Are components simply connected? Other topological properties?
The prodsimplicial structure on $\mathcal{C}(X)(\mathbf{0}, \mathbf{1}) \leftrightarrow \mathbf{T}(X)(\mathbf{0}, \mathbf{1})$ leads to an associated chain complex of vector spaces.
There are fast algorithms to calculate the homology groups of these chain complexes even for very big complexes.
Number of path-components: $r k H_{0}(\mathbf{T}(X)(\mathbf{0}, \mathbf{1}))$.
For path-components, there might be faster "discrete" methods.
Even if "exponential explosion" prevents precise calculations, inductive determination (round by round) of general properties ((simple) connectivity) may be possible.
Implementation in ALCOOL: progress at CEA/LIX-lab.

Deadlocks and unsafe regions determine $\mathcal{C}(X)(\mathbf{0}, \mathbf{1})$

A dual view: extended hyperrectangles R_{j}^{i}
$:=\left[0, b_{1}^{i}\left[\times \cdots \times\left[0, b_{j-1}^{i}[\times] a_{j}^{i}, b_{j}^{i}\left[\times\left[0, b_{j+1}^{i}\left[\times \cdots \times\left[0, b_{n}^{i}\left[\supset R^{i}\right.\right.\right.\right.\right.\right.\right.\right.$.

$$
X_{M}=X \backslash \bigcup_{m_{i j}=1} R_{j}^{i} .
$$

Theorem

The following are equivalent:
(1) $\vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1})=\varnothing \Leftrightarrow M \notin \mathcal{C}(X)(\mathbf{0}, \mathbf{1})$.
(2) There is a map $i:[1: n] \rightarrow[1: I]$ such that $m_{i(j), j}=1$ and such that $\bigcap_{1 \leq j \leq n} R_{j}^{i(j)} \neq \varnothing$ - giving rise to a deadlock unavoidable from 0 .
(3) Mere combinatorics: Checking a bunch of inequalities: There is a map $i:[1: n] \rightarrow[1: I]$ such that $a_{j}^{i(j)}<b_{j}^{i(k)}$ for all $1 \leq j, k \leq n$.

OBS: $\chi(\operatorname{graph}(i))=M(i) \in M_{l, n}^{C}$!

Which of the I^{n} matrices in $M_{l, n}^{C}$ belong to $D(X)(\mathbf{0}, \mathbf{1})$?

A matrix $M \in M_{l, n}^{C}$ is described by a (choice) map

$$
i:[1: n] \rightarrow[1: I], m_{i(j), j}=1
$$

Deadlocks \rightsquigarrow inequalities:

$$
M \in D(X)(\mathbf{0}, \mathbf{1}) \subseteq M_{l, n}^{C} \Leftrightarrow a_{j}^{i(j)}<b_{j}^{i(k)} \text { for all } 1 \leq j, k \leq n
$$

Algorithmic organisation: Choice maps with the same image give rise to the same upper bounds b_{j}^{*}.

Partial orders and order ideals on matrix spaces

 and an order preserving map ΨConsider $\Psi: M_{l, n} \rightarrow \mathbf{Z} / 2, \Psi(M)=1 \Leftrightarrow \vec{P}\left(X_{M}\right)(\mathbf{0}, \mathbf{1})=\varnothing$.

- Ψ is order preserving, in particular:
$\Psi^{-1}(0), \Psi^{-1}(1)$ are closed in opposite senses:
$M \leq N: \Psi(N)=0 \Rightarrow \Psi(M)=0 ; \Psi(M)=1 \Rightarrow \Psi(N)=1$ (thus $\mathbf{T}(X)(\mathbf{0}, \mathbf{1})$ prodsimplicial).
- $\Psi(M)=1 \Leftrightarrow \exists N \in M_{l, n}^{C}$ such that $N \leq M, \Psi(N)=1$

$$
\begin{aligned}
& D(X)(\mathbf{0}, \mathbf{1})=\left\{N \in M_{l, n}^{C} \mid \Psi(N)=1\right\}-\text { dead } \\
& \mathcal{C}(X)(\mathbf{0}, \mathbf{1})=\left\{M \in M_{l, n}^{R} \mid \Psi(M)=0\right\} \text { - alive }
\end{aligned}
$$

$\mathcal{C}_{\text {max }}(X)(\mathbf{0}, \mathbf{1})$ maximal such matrices
characterized by: $m_{i j}=1$ apart from:

$$
\forall N \in D(X)(\mathbf{0}, \mathbf{1}) \exists!(i, j): 0=m_{i j}<n_{i j}=1
$$

Matrices in $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})$ correspond to maximal simplex products in $\mathrm{T}(X)(\mathbf{0}, \mathbf{1})$.
Example: $X=\vec{l}^{n} \subset \vec{J}^{n}, D(X)(\mathbf{0}, \mathbf{1})=$ $\{[1, \ldots, 1]\}, \mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})=M_{l, n}^{R} \backslash\{[1, \ldots, 1]\}$.

From $D(X)$ to $\mathcal{C}_{\max }(X)$

Minimal transversals in hypergraphs (simplicial complexes)
Algorithmics: Construct $\mathcal{C}_{\max }(X)(\mathbf{0}, \mathbf{1})$ incrementally (checking for one matrix $N \in D(X)(\mathbf{0}, \mathbf{1})$ at a time), starting with matrix 1:
(1) $N_{i+1} \not \leq M \in \mathcal{C}^{i}(X) \Rightarrow M \in \mathcal{C}^{i+1}(X)$;
(2) $N_{i+1} \leq M \Rightarrow M$ is replaced by n matrices M^{j} with one additional 0 . Example: $X=\vec{l}^{n} \backslash \vec{\jmath}^{n}$.
A matrix in $D(X)(\mathbf{0}, \mathbf{1})$ describes a hyperedge on the vertex set $[1: I] \times[1: n] ; D(X)(\mathbf{0}, \mathbf{1})$ describes a hypergraph.
A transversal in a hypergraph is a vertex set that has non-empty intersection with each hyperedge
\leftrightarrow a matrix L such that $\forall N \in D(X)(\mathbf{0}, \mathbf{1}) \exists(i, j): l_{i j}=n_{i j}=1$. $M=1-L: \forall N \in D(X)(\mathbf{0}, \mathbf{1}) \exists(i, j): 0=m_{i j}<n_{i j}=1$.
Conclusion: Search for matrices in $A_{\max }(\mathbf{0}, \mathbf{1})$ corresponds to search for minmal transversals in $D(X)(\mathbf{0}, \mathbf{1})$.
In our case: All hyperedges have same cardinality n, include one element per column.

Extensions

1. Obstructions intersecting the boundary of I^{n} - Components

- More general semaphores (intersection with the boundary of I^{n} allowed)
- Different end points: $\vec{P}(X)(\mathbf{c}, \mathbf{d})$ and iterative calculations
- End complexes rather than end points (allowing processes not to respond..., Herlihy \& Cie)

Same technique, modification of definition and calculation of $\mathcal{C}(X)(-,-), D(X)(-,-)$ etc.

- New light on definition and determination of components of model space X.

Extensions

2a. Semaphores corresponding to non-linear programs:

Products of digraphs instead of $\overrightarrow{I_{n}}$:
$\Gamma=\prod_{j=1}^{n} \Gamma_{j}$, state space $X=\Gamma \backslash F$,
F a product of generalized hyperrectangles R^{i}.

- $\vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})=\Pi \vec{P}\left(\Gamma_{j}\right)\left(x_{j}, y_{j}\right)$ - homotopy discrete!

Represent a path component $C \in \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$ by (regular) d-paths $p_{j} \in \vec{P}\left(\Gamma_{j}\right)\left(x_{j}, y_{j}\right)$ - an interleaving.
The map $c: \vec{I}^{n} \rightarrow \Gamma, c\left(t_{1}, \ldots, t_{n}\right)=\left(c_{1}\left(t_{1}\right), \ldots, c_{n}\left(t_{n}\right)\right)$ induces
a homeomorphism $\circ c: \vec{P}\left(\vec{I}^{n}\right)(\mathbf{0}, \mathbf{1}) \rightarrow C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.

Extensions

2b. Semaphores: Topology of components of interleavings

Pull back F via c :
$\bar{X}=\vec{\jmath}^{n} \backslash \bar{F}, \bar{F}=\bigcup \bar{R}^{i}, \bar{R}^{i}=c^{-1}\left(R^{i}\right)$ - honest hyperrectangles!

$i_{x}: \vec{P}(X) \hookrightarrow \vec{P}(\Gamma)$.
Given a component $C \subset \vec{P}(\Gamma)(\mathbf{x}, \mathbf{y})$.
The d-map $c: \bar{X} \rightarrow X$ induces a homeomorphism
$c \circ: \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \rightarrow i_{X}^{-1}(C) \subset \vec{P}(X)(\mathbf{x}, \mathbf{y})$.

- C "lifts to X " $\Leftrightarrow \vec{P}(\bar{X})(\mathbf{0}, \mathbf{1}) \neq \varnothing$; if so:
- Analyse $i_{X}^{-1}(C)$ via $\vec{P}(\bar{X})(\mathbf{0}, \mathbf{1})$.
- Exploit relations between various components.

Extensions

3. D-paths in pre-cubical complexes

- Higher Dimensional Automaton: Pre-cubical complex with preferred diretions. Geometric realization X with d-space structure.
- $P(X)(\mathbf{x}, \mathbf{y})$ is ELCX (equi locally convex). D-paths within a specified "cube path" form a contractible subspace.
- $P(X)(\mathbf{x}, \mathbf{y})$ has the homotopy type of a simplicial complex: the nerve of an explicit category of cube paths (with inclusions as morphisms).

Want to know more?

Thank you!

- Rick Jardine, Path categories and resolutions
- forthcoming AGT-paper Simplicial models of trace spaces Thank you for your attention!

