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Motivation: Concurrency
Mutual exclusion

Mutual exclusion occurs, when n processes Pi compete for m
resources Rj .

P P
1 2

R
1

P
3

R
2

Only k processes can be served at any given time.
Semaphores!
Semantics: A processor has to lock a resource and relinquish
the lock later on!
Description/abstraction Pi : . . .PRj . . .VRj . . . (Dijkstra)
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Schedules in ”progress graphs”
The Swiss flag example
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P1 : PaPbVbVa P2 : PbPaVaVb

Executions are directed paths avoiding a forbidden region
(shaded).
Dipaths that are dihomotopic (homotopy through dipaths)
correspond to equivalent executions.
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Higher dimensional automata
seen as (geometric realizations of) cubical sets

Vaughan Pratt, Rob van Glabbeek, Eric Goubault...

a b

ab

2 processes, 1 processor

cubical complex

bicomplex

2 processes, 3 processors 3 processes, 3 processors

with preferred directions!
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Higher dimensional automata
Dining philosophers

A B

C
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A=Pa.Pb.Va.Vb
B=Pb.Pc.Vb.Vc
C=Pc.Pa.Vc.Va

Higher di-
mensional
complex with
a forbidden
region consist-
ing of isothetic
hypercubes
and an unsafe
region.
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Framework: d-spaces, M. Grandis (03)

X a topological space. ~P(X ) ⊆ X I a set of d-paths (”directed”
paths↔ executions) satisfying

◮ { constant paths } ⊆ ~P(X )

◮ ϕ ∈ ~P(X )(x , y), ψ ∈ ~P(X )(y , z)⇒ ϕ ∗ ψ ∈ ~P(X )(x , z)

◮ ϕ ∈ ~P(X ), α ∈ I I nondecreasing⇒ ϕ ◦ α ∈ ~P(X )

(X , ~P(X )) is called a d-space.
Example: HDA with directed execution paths. Light cones
(relativity)
A d-space is called saturated if furthermore

◮ ϕ ∈ X I , α ∈ I I nondecreasing and surjective (homeo),
ϕ ◦ α ∈ ~P(X )⇒ ϕ ∈ ~P(X )

i.e., if ~P(X ) is closed under reparametrization equivalence.
~P(X ) is in general not closed under reversal – α(t) = 1− t .
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Dihomotopy, d-homotopy

Morphisms: d-maps f : X → Y satisfying
◮ f (~P(X )) ⊆ ~P(Y )

in particular: ~P(I) = {σ ∈ I I |σ nondecreasing}
~I = (I, ~P(I))⇒ ~P(X ) =d-maps from~I to X .

◮ Dihomotopy H : X × I → Y , every Ht a d-map
◮ elementary d-homotopy = d-map H : X ×~I → Y –

H0 = f H
−→g = H1

◮ d-homotopy: symmetric and transitive closure (”zig-zag”)

L. Fajstrup, 05: In cubical models (for concurrency, e.g., HDAs),
the two notions agree for d-paths (X =~I). In general, they do
not.

Martin Raussen Invariants of directed spaces and persistence



Dihomotopy is finer than homotopy with fixed
endpoints
Example: Two wedges in the forbidden region

All dipaths from minimum to maximum are homotopic.
A dipath through the “hole” is not dihomotopic to a dipath on the
boundary.
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The fundamental category: favourite gadget so far

~π1(X ) of a d-space X [Grandis:03, FGHR:04]:
◮ objects points in X
◮ morphisms d- or dihomotopy classes of d-paths in X
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Property: van Kampen theorem (M. Grandis)
Drawbacks: Infinitely many objects. Calculations?
Question: How much does ~π1(X )(x , y) depend on (x , y)?
Remedy: Localization, component category. [FGHR:04, GH:06]
Problem: “Compression” only for loopfree categories
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Outline

◮ Better bookkeeping: A zoo of categories and functors
associated to a directed space – with a lot more animals
than just the fundamental category

◮ Directed homotopy equivalences – more than just the
obvious generalization of the classical notion
Definition? Automorphic homotopy flows! Properties?

◮ Localization of categories with respect to invariant functors
– ”components”, compressing information, making
calculations feasible

◮ More general: “Bisimulation”(?) equivalence of categories
with respect to a functor (over a fixed category)
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Technique: Traces – and trace categories

X a saturated d-space.
ϕ, ψ ∈ ~P(X )(x , y) are called reparametrization equivalent if
there are α, β ∈ ~P(I) such that ϕ ◦ α = ψ ◦ β.
(Fahrenberg-R., 06): Reparametrization equivalence is an
equivalence relation (transitivity).
~T (X )(x , y) = ~P(X )(x , y)/≃ makes ~T (X ) into the (topologically
enriched) trace category – composition associative.
A d-map f : X → Y induces a functor ~T (f ) : ~T (X )→ ~T (Y ).
Variant: ~R(X )(x , y) consists of regular d-paths (not constant on
any non-trivial interval J ⊂ I). The contractible group
Homeo+(I) of increasing homeomorphisms acts on these –
freely if x 6= y .

Theorem (FR:06)
~R(X )(x , y)/≃ → ~P(X )(x , y)/≃ is a homeomorphism.
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Sensitivity with respect to variations of end points
A persistence point of view

Questions: How much does (the homotopy type of) ~T X (x , y)
depend on (small) changes of x , y?
Which concatenation maps
~T X (σx , σy ) : ~T X (x , y)→ ~T X (x ′, y ′), [σ] 7→ [σx ∗ σ ∗ σy ]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?
The persistence point of view: Homology classes etc. are born
(at certain branchings/mergings) and may die (analogous to the
framework of G. Carlsson etal.)
Are there components with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls”) at which changes occur?
 need a lot of bookkeeping!
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Birth and death of dihomotopy
by example
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Preorder categories
Getting organised with indexing categories

A d-structure on X induces the preorder �:

x � y ⇔ ~T (X )(x , y) 6= ∅

and an indexing preorder category ~D(X ) with
◮ objects: pairs (x , y), x � y
◮ morphisms:
~D(X )((x , y), (x ′, y ′)) := ~T (X )(x ′, x)× ~T (X )(y , y ′):

x ′
))
55 x

� // y ))
55 y ′

◮ composition: by pairwise contra-, resp. covariant
concatenation.

A d-map f : X → Y induces a functor ~D(f ) : ~D(X )→ ~D(Y ).
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The trace space functor
Preorder categories organise the trace spaces

The preorder category organises X via the
trace space functor ~T X : ~D(X )→ Top

◮ ~T X (x , y) := ~T (X )(x , y)

◮ ~T X (σx , σy ) : ~T (X )(x , y) // ~T (X )(x ′, y ′)

[σ] � / [σx ∗ σ ∗ σy ]

Homotopical variant ~Dπ(X ) with morphisms
~Dπ(X )((x , y), (x ′, y ′)) := ~π1(X )(x ′, x)× ~π1(X )(y , y ′)

and trace space functor ~T X
π : ~Dπ(X )→ Ho − Top.
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Dihomology ~H∗

For every d-space X , there are homology functors

~H∗+1(X ) = H∗ ◦ ~T X
π : ~Dπ(X )→ Ab, (x , y) 7→ H∗(~T (X )(x , y))

capturing homology of all relevant d-path spaces in X
and the effects of the concatenation structure maps.
A d-map f : X → Y induces a natural transformation ~H∗+1(f )
from ~H∗+1(X ) to ~H∗+1(Y ).
Properties? Calculations? Not much known in general.
A master’s student has studied this topic for X a cubical
complex (its geometric realization) by constructing a cubical
model for d-path spaces.
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Factorization categories and higher homotopy

Indexing category = Factorization category F ~T (X ) [Baues] with

◮ objects: σxy ∈ ~T (X )(x , y)

◮ morphisms: F ~T (X )(σxy , σ
′
x ′y ′) := {(ϕx ′x , ϕyy ′) ∈

~T (X )(x ′, x)× ~T (X )(y , y ′) | σ′x ′y ′ = ϕyy ′ ◦ σxy ◦ ϕx ′x}.

and functor F ~T X : F ~T (X )→ Top∗, σxy 7→ (~T (X )(x , y), σxy ) –
and induced pointed maps.
Compose with homotopy functors to get
~πn+1(X ) : F ~T (X )→ Grps, resp. Ab,
~πn+1(X )(σxy ) = πn(~T (X )(x , y);σxy )
and maps induced by concatenation on the homotopy groups.
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Dihomotopy equivalence – a naive definition

Definition
A d-map f : X → Y is a dihomotopy equivalence if there exists
a d-map g : Y → X such that g ◦ f ≃ idX and f ◦ g ≃ idY .

But this does not imply an obvious property wanted for:
A dihomotopy equivalence f : X → Y should induce (ordinary)
homotopy equivalences

~T (f ) : ~T (X )(x , y)→ ~T (Y )(fx , fy)!
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A map d-homotopic to the identity does not preserve homotopy
types of trace spaces? Need to be more restrictive!
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Homotopy flows

A d-map H : X ×~I → X is called a homotopy flow if

future H0 = idX
H
−→f = H1

past H0 = g H
−→idX = H1

Ht is not a homeomorphism, in general; the flow is irreversible.
H and f are called

automorphic if ~T (Ht) : ~T (X )(x , y)→ ~T (X )(Htx ,Hty) is a
homotopy equivalence for all x � y , t ∈ I.

Automorphisms are closed under composition – concatenation
of homotopy flows!
Aut+(X ),Aut−(X ) monoids of automorphisms.
Variations: ~T (Ht) induces isomorphisms on homology groups,
homotopy groups....
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Dihomotopy equivalences again

Definition
A d-map f : X → Y is called a future dihomotopy equivalence if
there are maps f+ : X → Y , g+ : Y → X with f → f+ and
automorphic homotopy flows idX → g+ ◦ f+, idY → f+ ◦ g+.
Property of dihomotopy class!
likewise: past dihomotopy equivalence f− → f , g− → g
dihomotopy equivalence = both future and past dhe
(g−, g+ are then d-homotopic).

Theorem
A (future/past) dihomotopy equivalence f : X → Y induces
homotopy equivalences

~T (f )(x , y) : ~T (X )(x , y)→ ~T (Y )(fx , fy) for all x � y .

Moreover: (All sorts of) Dihomotopy equivalences are closed
under composition.
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Compression: Generalized congruences and quotient
categories
Bednarczyk, Borzyszkowski, Pawlowski, TAC 1999

How to identify morphisms in a category between different
objects in an organised manner?
Start with an equivalence relation ≃ on the objects.
A generalized congruence is an equivalence relation on
non-empty sequences ϕ = (f1 . . . fn) of morphisms with
cod(fi) ≃ dom(fi+1) (≃-paths) satisfying

1. ϕ ≃ ψ ⇒ dom(ϕ) ≃ dom(ψ), codom(ϕ) ≃ codom(ψ)

2. a ≃ b ⇒ ida ≃ idb

3. ϕ1 ≃ ψ1, ϕ2 ≃ ψ2, cod(ϕ1) ≃ dom(ϕ2)⇒ ϕ2ϕ1 ≃ ψ2ψ1

4. cod(f ) = dom(g)⇒ f ◦ g ≃ (fg)

Quotient category C/≃: Equivalence classes of objects and of
≃-paths; composition: [ϕ] ◦ [ψ] = [ϕψ].
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Automorphic homotopy flows give rise to generalized
congruences

Let X be a d-space and Aut±(X ) the monoid of all (future/past)
automorphisms.
“Flow lines” are used to identify objects (pairs of points) and
morphisms (classes of dipaths) in an organized manner.
Aut±(X ) gives rise to a generalized congruence on the
(homotopy) preorder category ~Dπ(X ) as the symmetric and
transitive congruence closure of:
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Congruences and component categories

◮ (x , y)≃(x ′, y ′), f+ : (x , y)↔ (x ′, y ′) : f−, f± ∈ Aut±(X )

◮

(x , y)
(σ1,σ2)
−→ (u, v) ≃ (x ′, y ′)

(τ1,τ2)
−→ (u′, v ′),

f+ : (x , y , u, v)↔ (x ′, y ′, u′, v ′) : f−, f± ∈ Aut±(X ), and

~T (X )(x ′, y ′)
(τ1,τ2)//

~T (f−)




~T (X )(u′, v ′)

~T (f−)




~T (X )(x , y)
(σ1,σ2) //

~T (f+)

JJ

~T (X )(u, v)

~T (f+)

JJ
commutes (up to ...).

◮ (x , y)
(cx ,Hy )
−→ (x , fy)≃(fx , fy)

(Hx ,cfy )
−→ (x , fy), H : idX → f .

Likewise for H : g → idX .

The component category ~Dπ(X )/≃ identifies pairs of points on
the same “homotopy flow line” and (chains of) morphisms.
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Examples of component categories
Standard example
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Figure: Standard
example
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Examples of component categories
Oriented circle

6

C : ∆
a

**
∆̄

b
ll

∆ the diagonal, ∆̄ its complement.
C is the free category generated by
a, b.

It is essential to use an indexing category taking care of pairs
(source, target).
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A categorical generalization
Bisimulation(?) for categories over a category

Framework: Small categories over a fixed category D.
Let F : C → D denote a functor (e.g., homology of trace
spaces). Consider

◮ an equivalence relation ≡ on the objects of C such that
◮ for every x ≡ x ′, there is a subset
∅ 6=I(F (x),F (x ′)) ⊂ Iso(F (x),F (x ′)) such that
I(F (x),F (x ′)) = ϕ ◦ I(F (x),F (x)) for every
ϕ ∈ I(F (x),F (x ′));

◮ for every x ≡ x ′, ϕ ∈ I(F (x),F (x ′)), σ ∈ MorC(x , y), there
exists y ≡ y ′, ϕ′ ∈ I(F (y),F (y ′)) and σ′ ∈ MorC(x ′, y ′) s.t.

F (x)
F (σ) //

ϕ

��

F (y)

ϕ′

���
�
�

F (x ′)
F (σ′) //___ F (y ′)

commutes. Likewise F (x)
F (τ ′) //___

ψ′

���
�
�

F (y)

ψ

��
F (x ′)

F (τ) // F (y ′)
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F - bisimulation equivalent categories

This relation generates a generalized congruence on C and a
quotient functor T : C → C/≡. C and C/≡ are considered as
equivalent categories over F : C → D. Consider the transitive
symmetric closure of this relation coming from zig-zags

C1 → C1/≡1 ≃ C2/≡2 ← C2 → · · ·

Gives rise to F : C → D-(bisimulation) equivalent categories.
In the (previous) examples, the equivalence relation on the
objects was generated by the automorphic past and future
homotopy flows. These do not always identify ”enough” objects.
Example: X =~I2 \ ~J2. Then ~H2(X ) = H1 of trace spaces is
trivial between arbitrary pairs of points, but automorphic flows
cannot identify all points with each other.
This is instead achieved by the bisimulation construction above
– trivial component category with respect to ~H2!
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