Graphical Models and Bayesian Networks

Tutorial at useR! 2014 - Los Angeles

Søren Højsgaard

Department of Mathematical Sciences
Aalborg University, Denmark

July 1, 2014

Printed: July 1, 2014 File: bayesnet-sLides.tex

Contents

1 Outline of tutorial 5
1.1 Package versions 6
1.2 A bit of history 7
1.3 Book: Graphical Models with R 8
2 The chest clinic narrative 10
2.1 DAG-based models 12
2.2 DAG-based models (II) 15
3 Conditional probability tables (CPTs) 16
4 An introduction to the gRain package 18
5 Querying the network 22
6 Setting evidence 23
7 The curse of dimensionality 27
7.1 So what is the problem? 33
7.2 So what is the solution 34
8 Message passing - a small example 35
8.1 Collect Evidence 41
8.2 Distribute Evidence 44
8.3 Setting evidence 49
9 Message passing - the bigger picture 53
10 Conditional independence 58
11 Towards data 63
11.1 Extracting CPTs 64
11.2 Extracting clique marginals 69
12 Learning the model structure 72
12.1 Contingency tables 73
12.2 Log-Linear models 77
12.3 Hierarchical Log-Linear models 81
12.4 Dependence graphs 82
12.5 The Global Markov property 83
12.6 Estimation - Likelihood equations 84
12.7 Fitting log-Linear models 85
12.8 Graphical models and decomposable models 89
12.9 ML estimation in decomposable models 92
13 Decomposable models and Bayesian networks 95
14 Testing for conditional independence 97
14.1 What is a CI-test - stratification 98
14.2 Example: University admissions 100
15 Log-linear models - the gRim package 104
15.1 Model specification shortcuts 108
15.2 Altering graphical models 109
15.3 Model comparison 111
15.4 Decomposable models - deleting edges 113
15.5 Decomposable models - adding edges 115
15.6 Test for adding and deleting edges 117
15.7 Model search in log-linear models using gRim 119
16 From graph and data to network 126
17 Prediction 129
18 Other packages 132
19 Winding up 133

1 Outline of tutorial

- Bayesian networks and the gRain package
- Probability propagation; conditional independence restrictions and dependency graphs
- Learning structure with Log-Linear, graphical and decomposable models for contingency tables
- Using the gRim package for structural learning.
- Convert decomposable model to Bayesian network.
- Other packages for structure learning.

1.1 Package versions

We shall in this tutorial use the R -packages gRbase, gRain and gRim.

Tutorial based on these development versions:
> packageVersion("gRbase")
[1] '1.7.0.2'
> packageVersion("gRain")
[1] '1.2.3.1'
> packageVersion("gRim")
[1] '0.1.17.1'
available at: http://people.math.aau.dk/~sorenh/software/gR
Before installing the packages above, packages from bioconductor must be installed with:
> source("http://bioconductor.org/biocLite.R");
> biocLite(c("graph","RBGL","Rgraphviz"))

1.2 A bit of history

In September 2002 a small group of people gathered in Vienna for the brainstorming workshop "gR 2002" with the purpose of initiating the development of facilities in R for graphical modelling.
This was made in response to the facts that:

- graphical models have now been around for a long time and have shown to have a wide range of potential applications,
- software for graphical models is currently only available in a large number of specialised packages, such as BUGS, CoCo, DIGRAM, MIM, TETRAD and others.

See also: http://www.ci.tuwien.ac.at/gR/gR.html and http://www.ci.tuwien.ac.at/Conferences/gR-2002/.

Todays workshop is one tangible result of this workshop.
1.3 Book: Graphical Models with R

The book, written by some of the people who laid the foundations of work in this area, would be ideal for researchers who had read up on the theory of graphical models and who wanted to apply them in practice. It would also make excellent supplementary material to accompany a course text on graphical modelling. I shall certainly be recommending it for use in that role...the book is neither a text on graphical models nor a manual for the various packages, but rather has the more modest aims of introducing the ideas of graphical modelling and the capabilities of some of the most important packages. It succeeds admirably in these aims. The simplicity of the commands of the packages it uses to illustrate is apparent, as is the power of the tools available.

International Statistical Review, Volume 31, Issue 2 review by David J. Hand

2
 The chest clinic narrative

Lauritzen and Spiegehalter (1988) present the following narrative:

- "Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or none of them, or more than one of them.
- A recent visit to Asia increases the chances of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis.
- The results of a single chest X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea."

The narrative can be pictured as a DAG (Directed Acyclic Graph)
2.1 DAG-based models

- Each node v represents a random variable Z_{v}
- The nodes
$V=$ \{Asia, Tub,Smoke,Lung,Either,Bronc, Xray,Dysp\}

$$
\equiv\{a, t, s, \iota, e, b, x, d\}
$$

correspond to 8-dim random vector $Z_{V}=\left(Z_{a}, \ldots, Z_{d}\right)$.

- We want to specify probability density

$$
p_{z_{V}}\left(z_{V}\right) \text { or shorter } p(V)
$$

- Each node v represents a random variable Z_{v} (here binary with levels "yes" and "no").
- For each combination of a node v and its parents $p a(v)$ there is a conditional distribution $p\left(z_{v} \mid z_{p a(v)}\right)$, for example

$$
p_{z_{e} \mid Z_{t}, Z_{l}}\left(z_{\text {either }} \mid z_{t u b}, z_{l u n g}\right) \text { or shorter } p(e \mid t, \iota)
$$

- Specified as a conditional probability table (a CPT), for example for $p(e \mid t, l)$ the CPT is a $2 \times 2 \times 2$-table

- Recall: Allow for informal notation: Write $p(V)$ instead of $p_{V}\left(z_{V}\right)$; write $p(v \mid p a(v))$ instead of $p\left(z_{v} \mid z_{p a(v)}\right)$.
- The DAG corresponds to a factorization of the joint probability function as

$$
p(V)=p(a) p(t \mid a) p(s) p(l \mid s) p(b \mid s) p(e \mid t, \iota) p(d \mid e, b) p(x \mid e) .
$$

2.2 DAG-based models (II)

- More generally, a DAG with nodes V allows us to construct a joint distribution by combining univariate conditional distributions, i.e.

$$
p(V)=\prod_{v} p(v \mid p a(v))
$$

short for $p\left(z_{V}\right)=\Pi_{v} p_{z_{v} \mid Z_{p a(v)}}\left(z_{v} \mid z_{p a(v)}\right)$.

- This is a powerful tool for constructing a multivariate distribution from univariate components.
- Example: $z_{1} \sim N\left(a_{1}, \sigma_{1}^{2}\right), z_{2} \mid z_{1} \sim N\left(a_{2}+b_{2} z_{1}, \sigma_{2}^{2}\right)$, $z_{3} \mid z_{2} \sim N\left(a_{3}+b_{3} z_{2}, \sigma_{3}^{2}\right)$. Then

$$
p\left(\left(z_{1}, z_{2}, z_{3}\right)\right)=p\left(z_{1}\right) p\left(z_{2} \mid z_{1}\right) p\left(z_{3} \mid z_{2}\right)
$$

is multivariate normal

3 Conditional probability tables (CPTs)

CPTs are just multiway arrays WITH dimnames attribute. For example $p(t \mid a)$:
> library(gRain)
> yn <- c("yes","no");
> x <- c $(5,95,1,99)$
> \# Vanilla R
> t.a <- array(x, dim=c $(2,2)$, dimnames=list(tub=yn,asia=yn))
$>\mathrm{t} . \mathrm{a}$
asia
tub yes no
yes $\quad 5 \quad 1$
no 9599
> \# Alternative specification: parray() from gRbase
> t.a <- parray(c("tub","asia"), levels=list(yn,yn), values=x)
$>\mathrm{t} . \mathrm{a}$
asia
$\begin{array}{llr}\text { tub } & \text { yes } & \text { no } \\ \text { yes } & 5 & 1 \\ \text { no } & 95 & 99\end{array}$

```
> # with a formula interface
> t.a <- parray(~tub:asia, levels=list(yn,yn), values=x)
> t.a
    asia
tub yes no
    yes 5 1
    no 95 99
> # Alternative (partial) specification
> t.a <- cptable(~tub | asia, values=c(5,95,1,99), levels=yn)
> t.a
{v,pa(v)} : chr [1:2] "tub" "asia"
<NA> <NA>
yes 5 1
no 95 99
```

Last case: Only names of v and $p a(v)$ and levels of v are definite; the rest is inferred in the context; see later.

4 An introduction to the gRain package

Specify chest clinic network. Can be done in many ways; one is from a list of CPTs:
> library(gRain)
> yn <- c("yes","no")
> a <- cptable(~asia, values=c(1,99), levels=yn)
> t.a <- cptable(~tub | asia, values=c(5,95,1,99), levels=yn)
> s <- cptable(~smoke, values=c $(5,5)$, levels=yn)
> l.s <- cptable(~lung | smoke, values=c(1,9,1,99), levels=yn)
> b.s <- cptable(\sim bronc | smoke, values=c (6,4,3,7), levels=yn)
> e.lt <- cptable(~either | lung:tub, values=c(1,0,1,0,1,0,0,1), levels=yn)
> x.e <- cptable(~xray | either, values=c(98,2,5,95), levels=yn)
> d.be <- cptable(~dysp | bronc:either, values=c(9,1,7,3,8,2,1,9), levels=yn)
> cpt.list <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> cpt.list
CPTspec with probabilities:
P(asia)
P(tub | asia)
P(smoke)
P(lung | smoke)
P(bronc | smoke)
P(either | lung tub)
P(xray | either)
P(dysp | bronc either)
> cpt.list\$asia
asia
yes no
0.010 .99
> cpt.list\$tub
asia
tub yes no
yes 0.050 .01
no 0.950 .99
> ftable(cpt.list\$either, row.vars=1) \# Notice: logical variable
lung yes no
tub yes no yes no

either				
yes	1	1	1	0
no	0	0	0	1

> \# Create network from CPT list:
> bnet <- grain(cpt.list)
> \# Compile network (details follow)
> bnet <- compile(bnet)
> bnet
Independence network: Compiled: TRUE Propagated: FALSE Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...

5 Querying the network

```
> # Query network to find marginal probabilities of diseases
> querygrain(bnet, nodes=c("tub","lung","bronc"))
$tub
tub
    yes no
0.0104 0.9896
$lung
lung
    yes no
0.055 0.945
$bronc
bronc
    yes no
0.45 0.55
```


6 Setting evidence

```
> # Set evidence and query network again
> bnet.ev<-setEvidence(bnet, nodes = c("asia","dysp"),
    states = c("yes","yes"))
> querygrain(bnet.ev, nodes=c("tub","lung","bronc"))
$tub
tub
    yes no
0.0878 0.9122
$lung
lung
    yes no
0.0995 0.9005
$bronc
bronc
    yes no
0.811 0.189
```

> \# Set additional evidence and query again
> bnet.ev<-setEvidence(bnet.ev, nodes = "xray", states = "yes")
> querygrain(bnet.ev, nodes=c("tub","lung","bronc"))
\$tub
tub
yes no
0.3920 .608
\$lung
lung
yes no
$0.444 \quad 0.556$
\$bronc
bronc
yes no
0.6290 .371
> \# Probability of observing the evidence (the normalizing constant)
> pEvidence(bnet.ev)
[1] 0.000988
> \# Get joint dist of tub, lung, bronc given evidence > x<-querygrain(bnet.ev, nodes=c("tub","lung","bronc"), type="joint")
> ftable(x, row.vars=1)

| lung | yes | no |
| :--- | :--- | :--- | :--- |
| bronc | yes | no yes |

tub
yes $\quad 0.014060 .008160 .186760 .18274$
no $\quad 0.267080 .154970 .160920 .02531$
> \# Get distribution of tub given lung, bronc and evidence
> x<-querygrain(bnet.ev, nodes=c("tub","lung","bronc"), type="conditional")
> ftable(x, row.vars=1)

lung	yes	no
bronc	yes no yes no	

tub
yes
0.0500 .0500 .5370 .878
no $\quad 0.950 \quad 0.950 \quad 0.463 \quad 0.122$
> \# Remove evidence
> bnet.ev<-retractEvidence(bnet.ev, nodes="asia")
> bnet.ev
Independence network: Compiled: TRUE Propagated: TRUE Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ... Findings: chr [1:2] "dysp" "xray"

7 The curse of dimensionality

In principle (and in practice in this small toy example) we can find e.g. $p\left(b \mid a^{+}, d^{+}\right)$by brute force calculations.

Recall: We have a collection of conditional probability tables (CPTs) of the form $p(v \mid p a(v))$:

$$
\{p(a), p(t \mid a), p(s), p(l \mid s), p(b \mid s), p(e \mid t, l), p(d \mid e, b), p(x \mid e)\}
$$

Brute force computations:

1) Form the joint distribution $p(V)$ by multiplying the CPTs

$$
p(V)=p(a) p(t \mid a) p(s) p(l \mid s) p(b \mid s) p(e \mid t, \iota) p(d \mid e, b) p(x \mid e) .
$$

This gives $p(V)$ represented by a table with giving a table with $2^{8}=256$ entries.
2) Find the marginal distribution $p(a, b, d)$ by marginalizing $p(V)=p(a, t, s, k, e, b, x, d)$

$$
p(a, b, d)=\sum_{t, s, k, e, b, x} p(t, s, k, e, b, x, d)
$$

This is table with $2^{3}=8$ entries.
3) Lastly notice that $p\left(b \mid a^{+}, d^{+}\right) \propto p\left(a^{+}, b, d^{+}\right)$.

Hence from $p(a, b, d)$ we must extract those entries consistent with $a=a^{+}$and $d=d^{+}$and normalize the result.

Alternatively (and easier): Set all entries not consistent with $a=a^{+}$and $d=d^{+}$in $p(a, b, d)$ equal to zero.

```
> ## collection of CPTs: p(v|pa(v))
> cpt.list
CPTspec with probabilities:
    P( asia )
    P( tub | asia )
    P( smoke )
    P( lung | smoke )
    P( bronc | smoke )
    P( either | lung tub )
    P( xray | either )
    P( dysp | bronc either )
> ## form joint p(V)= prod p(v|pa(v))
> joint <- cpt.list$asia
> for (i in 2:length(cpt.list)){
            joint <- tableMult( joint, cpt.list[[i]] )
        }
> dim(joint)
    dysp bronc either 
```

	dysp	bronc	ither	xray	lung	tub	smoke	asia	Freq
1	yes	$1.32 e-05$							
2	no	yes	$1.47 e-06$						
3	yes	no	yes	yes	yes	yes	yes	yes	6.86e-06
4	no	no	yes	yes	yes	yes	yes	yes	$2.94 e-06$
5	yes	yes	no	yes	yes	yes	yes	yes	$0.00 e+00$
6	no	yes	no	yes	yes	yes	yes	yes	$0.00 e+00$

> \#\# form marginal p(a,b,d) by marginalization
> marg <- tableMargin(joint, ~asia+bronc+dysp)
$>\operatorname{dim}($ marg)

asia bronc	dysp	
2	2	2

> ftable(marg)
dysp yes no
asia bronc

yes	yes	0.003652	0.000848
	no	0.000849	0.004651
no	yes	0.359933	0.085567
	no	0.071536	0.472964

> \#\# Set entries not consistent with asia=yes and dysp=yes
> \#\# equal to zero
> marg <- tableSetSliceValue(marg, c("asia","dysp"), c("yes","yes"), complement=T)
> ftable(marg)
dysp yes no
asia bronc

yes	yes	0.003652	0.000000
	no	0.000849	0.000000
no	yes	0.000000	0.000000
	no	0.000000	0.000000

> result <- tableMargin(marg, ~bronc);
> result <- result / sum(result); result bronc
yes no
0.8110 .189

7.1 So what is the problem?

In chest clinic example the joint state space is $2^{8}=256$.
If there are 80 variables each with 10 levels, the joint state space is 10^{80} which is one of the estimates of the number of atoms in the universe!

Still, gRain has been succesfully used in a genetics network with 80.000 nodes... How can this happen?

7.2 So what is the solution

The trick is NOT to calculate the joint distribution

$$
p(V)=p(a) p(t \mid a) p(s) p(l \mid s) p(b \mid s) p(e \mid t, \iota) p(d \mid e, b) p(x \mid e) .
$$

explicitly because that leads to working with high dimensional tables.

Instead we work on Low dimensional tables and "send messages" between them.

With such a message passing scheme, all computations can be made Locally.

The challenge is to organize these local computations.

8 Message passing - a small example

```
> require(gRbase); require(Rgraphviz)
> d<-dag( ~smoke + bronc|smoke + dysplbronc ); plot(d)
```


> library(gRain)
> yn <- c("yes","no")
> s <- parray("smoke", list(yn), c(.5, .5))
> b.s <- parray(c("bronc","smoke"), list(yn,yn), c(6,4, 3,7))
> d.b <- parray(c("dysp","bronc"), list(yn, yn), c(9,1, 2,8))
> s; b.s; d.b
smoke
yes no
0.50 .5
smoke
bronc yes no
yes 63
no 47
bronc
dysp yes no
yes $\quad 9 \quad 2$
no 18

Recall that the joint distribution is

$$
p(s, b, d)=p(s) p(b \mid s) p(d \mid b)
$$

i.e.
> joint <- tableMult(tableMult(s, b.s), d.b) ; ftable(joint) smoke yes no
dysp bronc

yes	yes	27.0	13.5
	no	4.0	7.0
no	yes	3.0	1.5
	no	16.0	28.0

but we really do not want to calculate this in general; here we just do it as "proof of concept".

From now on we no longer need the DAG. Instead we use an undirected graph to dictate the message passing:

The "moral graph" is obtained by 1) marrying parents and 2) dropping directions. The moral graph is (in this case) triangulated which means that the cliques can be organized in a tree called a junction tree.

```
> dm <-moralize(d);
> jtree<-ug(~smoke.bronc:bronc.dysp);
> par(mfrow=c(1,3)); plot(d); plot(dm); plot(jtree)
```


> par(mfrow=c(1,3)); plot(d); plot(dm); plot(jtree)

Define $q_{1}(s, b)=p(s) p(b \mid s)$ and $q_{2}(b, d)=p(d \mid b)$ and we have

$$
p(s, b, d)=p(s) p(b \mid s) p(d \mid b)=q_{1}(s, b) q_{2}(b, d)
$$

We see that the q-functions are defined on the cliques of the moral graph or - equivalently - on the nodes of the junction tree.

The q-functions are called potentials; they are non-negative functions but they are typically not probabilities and they are hence difficult to interpret.
We can think of the q-functions as interactions.

```
> q1.sb <- tableMult(s, b.s); q1.sb
    smoke
bronc yes no
    yes 31.5
    no 2 3.5
> q2.bd <- d.b; q2.bd
        bronc
dysp yes no
    yes }90
    no 1 8
```

The factorization

$$
p(s, b, d)=q_{1}(s, b) q_{2}(b, d)
$$

is called a clique potential representation.
Goal: We shall operate on q-functions such that at the end they will contain the marginal distributions, i.e.

$$
q_{1}(s, b)=p(s, b), \quad q_{2}(b, d)=p(b, d)
$$

8.1 Collect Evidence

> plot(jtree)

We pick any node, say (b, d) as root in the junction tree, and work inwards towards the root as follows.

First, define $q_{1}(b) \leftarrow \sum_{s} q_{1}(s, b)$.
> q1.b <- tableMargin(q1.sb, "bronc"); q1.b
bronc
yes no
4.55 .5

We have

$$
p(s, b, d)=q_{1}(s, b) q_{2}(b, d)=\left[\frac{q_{1}(s, b)}{q_{1}(b)}\right]\left[q_{2}(b, d) q_{1}(b)\right]
$$

Therefore, if we update potentials as

$$
q_{1}(s, b) \leftarrow q_{1}(s, b) / q_{1}(b), \quad q_{2}(b, d) \leftarrow q_{2}(b, d) q_{1}(b)
$$

and we obtain new potentials defined on the cliques of the junction tree. We still have

$$
p(s, b, d)=q_{1}(s, b) q_{2}(b, d)
$$

Updating of potentials

$$
q_{1}(s, b) \leftarrow q_{1}(s, b) / q_{1}(b), \quad q_{2}(b, d) \leftarrow q_{2}(b, d) q_{1}(b)
$$

is done as follows:
> q2.bd <- tableMult(q2.bd, q1.b); q2.bd dysp
bronc yes no
yes 40.54 .5
no 11.044 .0
> q1.sb <- tableDiv(q1.sb, q1.b); q1.sb smoke
bronc yes no
yes 0.6670 .333
no 0.3640 .636

8.2 Distribute Evidence

Next work outwards from the root.
Set $q_{2}(b) \leftarrow \sum_{d} q_{2}(b, d)$. We have

$$
p(s, b, d)=q_{1}(s, b) q_{2}(b, d)=\frac{\left[q_{1}(s, b) q_{2}(b)\right] q_{2}(b, d)}{q_{2}(b)}
$$

We set $q_{1}(s, b) \leftarrow q_{1}(s, b) q_{2}(b)$ and have

$$
p(s, b, d)=q_{1}(s, b) q_{2}(b, d)=\frac{q_{1}(s, b) q_{2}(b, d)}{q_{2}(b)}
$$

> q2.b <- tableMargin(q2.bd, "bronc"); q2.b
bronc
$\begin{array}{rr}\text { yes } & \text { no } \\ 45 & 55\end{array}$
> q1.sb <- tableMult(q1.sb, q2.b); q1.sb
smoke
bronc yes no
yes 3015
no 2035

The form

$$
p(s, b, d)=q_{1}(s, b) q_{2}(b, d)=\frac{q_{1}(s, b) q_{2}(b, d)}{q_{2}(b)}
$$

is called the clique marginal representation and the main point is now that

$$
q_{1}(s, b)=p(s, b), \quad q_{2}(b, d)=p(b, d)
$$

and q_{1} and q_{2} "fit on their marginals", i.e. $q_{1}(b)=q_{2}(b)$

Recall that the joint distribution is

> joint
, , smoke = yes

bronc		
dysp	yes	no
yes	27	4
no	3	16

, , smoke = no

bronc	
dysp $\begin{array}{l}\text { yes no }\end{array}, ~$	

yes $13.5 \quad 7$
no 1.528

Claim: After these steps $q_{1}(s, b)=p(s, b)$ and $q_{2}(b, d)=p(b, d)$. Proof:
> q1.sb
smoke
bronc yes no
yes 3015
no 2035
> tableMargin(joint, c("smoke","bronc"))
bronc
smoke yes no
yes 3020
no $15 \quad 35$
> q2.bd
dysp
bronc yes no
yes 40.54 .5
no 11.044 .0
> tableMargin(joint, c("bronc","dysp")) dysp
bronc yes no
yes 40.54 .5
no 11.044 .0

Now we can obtain, e.g. $p(b)$ as
> tableMargin(q1.sb, "bronc") \# or
bronc
yes no
4555
> tableMargin(q2.bd, "bronc")
bronc
yes no
4555
And we NEVER calculated the full joint distribution!

8.3 Setting evidence

Next consider the case where we have the evidence that dysp=yes.
> q1.sb <- tableMult(s, b.s)
> q2.bd <- d.b
> q2.bd <- tableSetSliceValue(q2.bd, "dysp", "yes", complement=T); q2. bronc
dysp yes no
yes 92
no $0 \quad 0$
> \# Repeat all the same steps as before
> q1.b <- tableMargin(q1.sb, "bronc"); q1.b
bronc
yes no
4.55 .5
> q2.bd <- tableMult(q2.bd, q1.b); q2.bd dysp
bronc yes no
yes 40.50
no 11.00
> q1.sb <- tableDiv(q1.sb, q1.b); q1.sb smoke
bronc yes no

```
    yes 0.667 0.333
    no 0.364 0.636
> q2.b <- tableMargin(q2.bd, "bronc"); q2.b
bronc
    yes no
40.5 11.0
> q1.sb <- tableMult(q1.sb, q2.b); q1.sb
    smoke
bronc yes no
    yes 27 13.5
    no 4 7.0
```

Claim: After these steps $q_{1}(s, b)=p\left(s, b \mid d^{+}\right)$and $q_{2}(b, d)=p\left(b, d \mid d^{+}\right)$.
> joint <- tableSetSliceValue(joint, "dysp", "yes", complement=T);
> ftable(joint)

```
smoke yes no
```

dysp bronc

yes	yes	27.0	13.5
	no	4.0	7.0
no	yes	0.0	0.0
	no	0.0	0.0

Proof:
> q1.sb
smoke
bronc yes no
yes $27 \quad 13.5$
no 47.0
> tableMargin(joint, c("smoke","bronc"))
bronc
smoke yes no
yes $27.0 \quad 4$
no 13.57
> q2.bd
dysp
bronc yes no
yes 40.50
no $11.0 \quad 0$
> tableMargin(joint, c("bronc","dysp"))
dysp
bronc yes no
yes 40.50
no 11.00
And we NEVER calculated the full joint distribution!

9 Message passing - the bigger picture

The DAG is only used in connection with specifying the network; afterwards all computations are based on properties of a derived undirected graph.

Recall goal: Avoid working with high dimensional tables.
Think of the CPTs as potentials/interactions (q-functions):

$$
\begin{aligned}
p(V) & =p(a) p(t \mid a) p(s) p(l \mid s) p(b \mid s) p(e \mid t, l) p(d \mid e, b) p(x \mid e) \\
& =q(a) q(t, a) q(s) q(l, s) q(b, s) q(e, t, l) q(d, e, b) q(x, e)
\end{aligned}
$$

Notice: q-functions that are "contained" in other q-functions can be absorbed into these; we set $q(t, a) \leftarrow q(t, a) q(a)$ and $q(l, s) \leftarrow q(l, s) q(s):$

$$
p(V)=q(t, a) q(l, s) q(b, s) q(e, t, l) q(d, e, b) q(x, e) .
$$

Moral graph: marry parents and drop directions:
> par(mfrow=c(1,2)); plot(bnet\$dag); plot(moralize(bnet\$dag))

Notice: $p(V)$ has interactions only among neighbours of the undirected moral graph.

Efficient computations hinges on the undirected graph being chordal. We make moral graph chordal by adding fill-ins.
> par(mfrow=c(1,2)); plot(moralize(bnet\$dag));
> plot(triangulate(moralize(bnet\$dag)))

We have $p(V)$ factoring according to this chordal graph as

$$
p(V)=q(t, a) q(l, s, b) q(e, t, l) q(d, e, b) q(x, e) q(l, b, e)
$$

where $q(l, s, b)=q(l, s) q(b, s)$ and $q(l, b, e) \equiv 1$.

We have $p(V)=\Pi_{c: c l i q u e s} q(C)$.
We want to manipulate the q-functions such that $p(C)=q(C)$ without creating high-dimensional tables.

The manipulations are of the form (where $S \subset C$)

$$
q(S)=\sum_{C \backslash S} q(C), \quad q(C) \leftarrow q(C) \widetilde{q}(S), \quad q(C) \leftarrow q(C) / \widetilde{q}(S)
$$

Cliques of chordal graph can be ordered such that

$$
B_{k}=\left(C_{1} \cup, \ldots, \cup C_{k-1}\right), \quad S_{k}=B_{k} \cap C_{k} \subset C_{j} \text { for some } j<k
$$

so after computing $q\left(S_{k}\right)=\sum_{c_{k} \backslash S_{k}} q\left(C_{k}\right)$ we can absorb $q\left(S_{k}\right)$ into a C_{j} by $q\left(C_{j}\right) q\left(S_{k}\right)$ which will still be a function of C_{j} only.
> par(mfrow=c(1,2)); plot(bnet\$ug); plot(jTree(bnet\$ug))
> str jTree(bnet\$ug)\$cliques)
List of 6
\$: chr [1:2] "asia" "tub"
\$: chr [1:3] "either" "lung" "tub"
\$: chr [1:3] "either" "lung" "bronc"
\$: chr [1:3] "smoke" "lung" "bronc"
\$: chr [1:3] "either" "dysp" "bronc"
\$: chr [1:2] "either" "xray"

10 Conditional independence

Consider again the toy example:
> plot(dag(~smoke+bronc|smoke+dysp|bronc))

with

$$
p(s, b, d)=p(s) p(b \mid s) p(d \mid b)
$$

The factorization implies a conditional independence restriction:

$$
p(s \mid b, d)=p(s \mid b)
$$

Consider $p(s \mid b, d)$:

$$
p(s \mid b, d)=\frac{p(s) p(b \mid s) p(d \mid b)}{\sum_{s} p(s) p(b \mid s) p(d \mid b)}=\frac{p(s) p(b \mid s)}{\sum_{s} p(s) p(b \mid s)}
$$

On the other hand:

$$
p(s \mid b)=\frac{p(s, b)}{p(b)}=\frac{\sum_{d} p(s) p(b \mid s) p(d \mid b)}{\sum_{d s} p(s) p(b \mid s) p(d \mid b)}=\frac{p(s) p(b \mid s)}{\sum_{s} p(s) p(b \mid s)}
$$

We say that " s is independent of d given b " or that " s and d are conditionally independent given b " and write $s \Perp d \mid b$.

If we know b then getting to know also b provides no additional information about s.

Conditional independence can often be deduced easier as follows: Suppose that for non-negative functions $q_{1}()$ and $q_{2}()$,

$$
p(s, b, d)=q_{1}(s, b) q_{2}(b, d)
$$

Then

$$
p(s \mid b, d)=\frac{q_{1}(s, b) q_{2}(b, d)}{\sum_{s} q_{1}(s, b) q_{2}(b, d)}=\frac{q_{1}(s, b)}{\sum_{s} q_{1}(s, b)}
$$

which is a function of s and b but not of d. So $s \Perp d \mid b$. This is called the "factorisation criterion"

Clear that $s \Perp d \mid b$ under all these models:
> par (mfrow = c(1,4))
> plot(dag(~smoke+bronc|smoke+dysp|bronc))
> plot(dag (~bronc+smoke|bronc+dysp|bronc))
> plot(dag(~dysp+smoke|bronc+bronc|dysp))
> plot(ug(~smoke:bronc+bronc:dysp))

The general "rule" is therefore that separation in a graph corresponds to conditional independence - but there is an exception
> plot(dag(~smoke + dysp + bronc|smoke:dysp))

corresponding to

$$
p(s, b, d)=p(s) p(d) p(b \mid s, d)
$$

No factorization - and no conditional independence.

11 Towards data

Building CPTs from data:
> \#\# Example: Simulated data from chest network
> data(chestSim1000, package="gRbase")
> head (chestSim1000)

	asia tub	smoke lung	bronc	either	xray	dysp		
1	no	no	no	no	yes	no	no	yes
2	no	no	yes	no	yes	no	no	yes
3	no	no	yes	no	no	no	no	no
4	no							
5	no	no	yes	no	yes	no	no	yes
6	no	no	yes yes	yes	yes	yes	yes	

11.1 Extracting CPTs

> \#\# Extract empirical distributions
$>$ s <- xtabs(~smoke, chestSim1000); s
smoke
yes no
465535
> b.s <- xtabs(~bronc+smoke, chestSim1000); b.s smoke
bronc yes no
yes 276160
no 189375
$>\mathrm{d} . \mathrm{b}<-\mathrm{xtabs}(\sim$ dysp+bronc, chestSim1000) ; d.b bronc
dysp yes no
yes 36068
no 76496
> \#\# Normalize to CPTs if desired (not necessary because
> \#\# we can always normalize at the end)
> s <- as.parray(s, normalize="first"); s
smoke
yes no
0.4650 .535
> b.s <- as.parray(b.s, normalize="first"); b.s smoke
bronc yes no
yes 0.5940 .299
no 0.4060 .701
> d.b <- as.parray(d.b, normalize="first"); d.b bronc

dysp	yes	no
yes	0.826	0.121
no	0.174	0.879

> cpt.list <- compileCPT(list(s, b.s, d.b)); cpt.list
CPTspec with probabilities:
P(smoke)
P(bronc | smoke)
P(dysp | bronc)
> net <- grain(cpt.list); net
Independence network: Compiled: FALSE Propagated: FALSE Nodes: chr [1:3] "smoke" "bronc" "dysp"

But we could just as well extract CPTs for this model, > plot(dag(~bronc + smokelbronc + dysplbronc))

in the sense that the joint distribution will become the same:
> \#\# Extract empirical distributions
> b <- xtabs(~bronc, chestSim1000);
> s.b <- xtabs(~smoke+bronc, chestSim1000);
> d.b <- xtabs(~dysp+bronc, chestSim1000);

Notice, that in this case
> plot(dag(~smoke + dysp + bronclsmoke:dysp))

the joint distribution will be different:
> \#\# Extract empirical distributions
$>$ s <- xtabs(~smoke, chestSim1000);
$>\mathrm{d} \quad<-\mathrm{xtabs}(\sim \mathrm{dysp}$, chestSim1000);
> b.sd <- xtabs(~bronc+smoke+dysp, chestSim1000);

11.2 Extracting clique marginals

Alternatively, we consider the undirected graph > plot(ug(~smoke:bronc+bronc:dysp))

corresponding to the model

$$
p(s, b, d)=q_{1}(s, b) q_{2}(s, b)
$$

We might as well extract clique marginals directly:
$>$ q1.sb <- xtabs(~smoke+bronc, data=chestSim1000); q1.sb bronc

```
smoke yes no
    yes 276 189
    no 160 375
```

$>$ q2.db <- xtabs(~bronc+dysp, data=chestSim1000); q2.db
dysp
bronc yes no
yes 36076
no 68496

These are clique marginals in the sense that $p(s, b)=q_{1}(s, b)$ and $p(b, d)=q_{2}(b, d)$. Hence $p(s, b, d) \neq q_{1}(s, b) q_{2}(b, d)$. But it is true that $p(b)=\sum_{s} q_{1}(s, b)=\sum_{d} q_{2}(b, d)$.

To obtain equality we must condition:

$$
p(s, b, d)=p(s \mid b) p(b, d)=\frac{q_{1}(s, b)}{q_{1}(b)} q_{2}(b, d)
$$

so we set $q_{1}(s, b) \leftarrow q_{1}(s, b) / q_{1}(s)$:
> q1.sb <- tableDiv(q1.sb, tableMargin(q1.sb, ~smoke)); q1.sb bronc

```
smoke yes no
    yes 0.594 0.406
    no 0.299 0.701
```

Now

$$
p(s, b, d) \neq q_{1}(s, b) q_{2}(b, d)
$$

and the machinery for setting evidence etc. works as before.

12 Learning the model structure

The next step is to "learn" the structure of association between the variables.

By this we mean learn the conditional independencies among the variables from data.

Once we have this structure, we have seen how to turn this structure and data into a Bayesian network.

12.1 Contingency tables

Characteristics of 409 lizards were recorded, namely species (S), perch diameter (D) and perch height (H).

```
> dim(lizardRAW)
[1] 409 3
> head(lizardRAW, 4)
\begin{tabular}{rrrr}
\multicolumn{4}{c}{ diam } \\
height & species \\
1 & \(>4\) & \(>4.75\) & dist \\
2 & \(>4\) & \(>4.75\) & dist \\
3 & \(<=4\) & \(<=4.75\) & anoli \\
4 & \(>4\) & \(<=4.75\) & anoli
\end{tabular}
```

> data(lizardRAW, package="gRbase")

Let $V=\{D, H, S\}$. We have 409 observations of discrete random vectors $Z=Z_{V}=\left(Z_{D}, Z_{H}, Z_{S} S\right)$ where each component is binary.

A configuration of Z is denoted by $z=\left(z_{D}=d, z_{H}=h, z_{S}=s\right)$ (which we shall also write as (d, h, s)).

It is common to organize such data in a contingency table

```
> lizard<-xtabs(~., data=lizardRAW)
```

> dim(lizard)
[1] 222
> ftable(lizard)

```
    species anoli dist
```

diam height			
$<=4$	$<=4.75$	86	73
	>4.75	32	61
>4	$<=4.75$	35	70
	>4.75	11	41

A configuration z is also a cell in a contingency table. The counts in cell z is denoted by $n(z)$ or by $n(d, h, s)$.

The probability of a configuration $z=(d, h, s)$ is denoted $p(z)$ and this is also the probability of a lizard falling in the (α, h, s) cell.

One estimate of the probabilities is by the relative frquencies:
> lizardProb <- lizard/sum(lizard); ftable(lizardProb)
species anoli dist
diam height
$<=4 \quad 0=4.75 \quad 0.21030 .1785$
$>4.75 \quad 0.0782 \quad 0.1491$
$>4<=4.75 \quad 0.0856 \quad 0.1711$
$>4.75 \quad 0.0269 \quad 0.1002$

For $A \subset V$ we have a marginal table with counts $n\left(z_{A}\right)$, for example
> tableMargin(lizard, ~height+species)
species
height anoli dist
$<=4.75 \quad 121 \quad 143$
$>4.75 \quad 43 \quad 102$
The probability of an observation in a marginal cell z_{A} is $p\left(z_{A}\right)=\sum_{z^{\prime}: z_{A}^{\prime}=z_{A}} p\left(z^{\prime}\right)$. For example
> tableMargin(lizardProb, ~height+species)
species
$\begin{array}{crr}\text { height } & \text { anoli } & \text { dist } \\ <=4.75 & 0.296 & 0.350 \\ >4.75 & 0.105 & 0.249\end{array}$

12.2 Log-Linear models

We are interested in modelling the cell probabilities $p_{\text {dhs }}$.
Commonly done by a hierarchical expansion of $\log p_{d h s}$ into interaction terms

$$
\log p_{d h s}=\alpha^{0}+\alpha_{d}^{D}+\alpha_{h}^{H}+\alpha_{s}^{S}+\beta_{d h}^{D H}+\beta_{d s}^{D S}+\beta_{h s}^{H S}+\gamma_{d h s}^{D H S}
$$

Structure on the model is obtained by setting terms to zero.
If no terms are set to zero we have the saturated model:

$$
\log p_{d h s}=\alpha^{0}+\alpha_{d}^{D}+\alpha_{h}^{H}+\alpha_{s}^{S}+\beta_{d h}^{D H}+\beta_{d s}^{D S}+\beta_{h s}^{H S}+\gamma_{d h s}^{D H S}
$$

If all interaction terms are set to zero we have the independence model:

$$
\log p_{d h s}=\alpha^{0}+\alpha_{d}^{D}+\alpha_{h}^{H}+\alpha_{s}^{S}
$$

If an interaction term is set to zero then all higher order terms containing that interaction terms must also be set to zero.
For example, if we set $\beta_{d h}^{D H}=0$ then we must also set $\gamma_{d h s}^{D H S}=0$.

$$
\log p_{d n s}=\alpha^{0}+\alpha_{d}^{D}+\alpha_{h}^{H}+\alpha_{s}^{S}+\beta_{d s}^{D S}+\beta_{h s}^{H S}+
$$

The non-zero interaction terms are the generators of the model. Setting $\beta_{d h}^{D H}=\gamma_{d h s}^{D H S}=0$ the generators are

$$
\{D, H, S, D S, H S\}
$$

Generators contained in higher order generators can be omitted so the generators become

$$
\{D S, H S\}
$$

corresponding to

$$
\log p_{d h s}=\alpha_{d s}^{D S}+\alpha_{h s}^{H S}
$$

Because of this log-linear expansions, the models are called log-linear models.

Instead of taking logs we may write $p_{h d s}$ in product form

$$
p_{d n s}=q^{D S}(d, s) q^{H S}(h, s)
$$

and this is in some connections useful.
For example, the factorization criterion gives directly that $D \Perp H \mid S$.

In the context of these data, $D \Perp H \mid S$ means there there is independence between D and H in each slice defined by species S. Just looking at data, this Looks reasonable.
> lizard
, , species = anoli

```
    height
diam <=4.75 >4.75
    <=4 86 32
    >4 35 11
```

, , species = dist

height		
diam	$<=4.75$	>4.75
$<=4$	73	61
>4	70	41

12.3 Hierarchical Log-Linear models

More generally the generating class of a log-linear model is a set $\mathcal{A}=\left\{A_{1}, \ldots, A_{Q}\right\}$ where $A_{q} \subset V$.

This corresponds to

$$
p(z)=\prod_{A \in \mathcal{A}} q_{A}\left(z_{A}\right)
$$

where q_{A} is a potential, a function that depends on z only through z_{A}.

12.4 Dependence graphs

The dependence graph for the model has nodes V and undirected edges E given as follows: $\left\{v_{1}, v_{2}\right\}$ is in E iff $\left\{v_{1}, v_{2}\right\} \subset A_{a}$ for some $A_{q} \in \mathcal{A}$.

Example: \{DS, HS\}, \{DS,HS,DH\}, \{DHS\}, \{D,HS\} have these dependence graphs:

```
> par(mfrow=c(1,4))
> plot( ug(~D:S + H:S ))
> plot( ug(~D:S + H:S + D:H ))
> plot( ug(~D:H:S ))
> plot( ug(~D + H:S ))
```


12.5 The Global Markov property

There is a general rule reading conditional independencies from a graph: If two sets of nodes U and V are separated by a third set W then $U \Perp V \mid W$.

Example: $\{E, F\} \Perp A \mid\{B, C\}$.
> plot(ug(~A:B:C+B:C:D+D:E+E:F))

12.6 Estimation - Likelihood equations

Under multinomial sampling the likelihood is

$$
L=\prod_{\text {all states } z} p(z)^{n(z)}=\prod_{A \in \mathcal{A}} \prod_{z_{A}} q_{A}\left(z_{A}\right)^{n\left(z_{A}\right)}
$$

The MLE $\hat{p}(z)$ for $p(z)$ is the (unique) solution to the likelihood equations

$$
\widehat{p}\left(z_{A}\right)=n\left(z_{A}\right) / n, \quad A \in \mathcal{A}
$$

Typically MLE must be found by iterative methods, e.g. iterative proportional scaling (IPS).

However, for some log-linear models (called decomposable models) the MLE can be found in closed form. In this case IPS converges in 2 iterations.

12.7 Fitting Log-Linear models

Iterative proportional scaling is implemented in loglin():
> 111 <- loglin(lizard, list(c("species","diam"), c("species","height")))
2 iterations: deviation 0
> str (ll1)
List of 4
\$ lrt : num 2.03
\$ pearson: num 2.02
\$ df : num 2
\$ margin :List of 2
.. $\$$: chr [1:2] "species" "diam"
.. $\$$: chr [1:2] "species" "height"

A formula based interface to $\underline{\log l i n()}$ is provided by $\underline{\log \operatorname{lm}()}$:
> library(MASS)
> ll2 <- loglm(~species:diam + species:height, data=lizard); ll2
Call:
loglm(formula $=\sim$ species:diam + species:height, data $=$ lizard)
Statistics:

$$
X^{\wedge} 2 \text { df } P\left(>X^{\wedge} 2\right)
$$

Likelihood Ratio 2.0320 .363
Pearson 2.0220 .365
> coef(ll2)
\$` (Intercept)
[1] 3.79
\$diam

$$
\begin{array}{rr}
<=4 & >4 \\
0.283 & -0.283
\end{array}
$$

\$height
<=4.75 >4.75
$0.343-0.343$
\$species
anoli dist
-0.309 0.309
\$diam.species species
diam anoli dist

$$
<=4 \quad 0.188-0.188
$$

$$
\begin{array}{lll}
>4 & -0.188 & 0.188
\end{array}
$$

\$height.species
species
height anoli dist

$$
<=4.75 \quad 0.174-0.174
$$

$$
\begin{array}{lll}
>4.75 & -0.174 & 0.174
\end{array}
$$

The $\underline{d m o d}()$ function also provides an interface to loglin(), and dmod() offers much more; see later.

```
> library(gRim)
> ll3 <- dmod(~species:diam + species:height, data=lizard); ll3
Model: A dModel with 3 variables
    graphical : TRUE decomposable : TRUE
    -2logL : 1604.43 mdim : 5 aic : 1614.43
    ideviance : 23.01 idf : 2 bic : 1634.49
    deviance : 2.03 df : 2
```

12.8 Graphical models and decomposable models

Let $Z=\left(Z_{v}, v \in V\right)$ be a random vector and let $\mathcal{A}=\left\{A_{1}, \ldots, A_{Q}\right\}$ where $A_{q} \subset V$ be a generating class for a log linear model corresponding to

$$
p(z)=\prod_{A \in \mathcal{A}} q_{A}\left(z_{A}\right)
$$

Definition 1 A hierarchical log-linear model with generating class $\mathcal{A}=\left\{a_{1}, \ldots a_{Q}\right\}$ is graphical if \mathcal{A} are the cliques of the dependence graph.
> par(mfrow=c (1,4))
> plot(ug(~D:S + H:S)) \#\# graphical
> plot (ug(~D:S + H:S + D:H)) \#\# not graphical
> plot(ug(~D:H:S)) \#\# graphical
> plot(ug(~D + H:S)) \#\# graphical

Definition 2 A graphical log-Linear model is decomposable if its dependence graph is triangulated (has no $\geq 4-c y c l e s)$. Only graphical models can be decomposable.
> par(mfrow=c $(1,3))$
> plot(ug(~A:B:C + B:C:D)) \#\# graphical, decomposable
> plot(ug($\sim A: B+A: C+B: C: D)) \quad \# \#$ not graphical, not decomposable
> plot(ug($\sim A: B+A: C+B: D+C: D))$ \#\# graphical, not decomposable

12.9 ML estimation in decomposable models

Major point: ML estimates in decomposable models can be found in closed form (no iterations). Consider Lizard data:

The saturated model $\{D H S\}$ (i.e. no restrictions on $p_{\text {dhs }}$) is decomposable, and the MLE is

$$
\hat{p}_{d h s}=n(d, h, s) / n
$$

Next consider the decomposable model \{DS, HS . The term interaction $D S$ can also be seen as the saturated model for the marginal table

```
> n.ds <- tableMargin(lizard, ~diam+species); n.ds
    species
diam anoli dist
    <=4 118 134
    >4 46 111
```

i.e. there is no restriction on $p_{d s}$, and the MLE is $\widehat{p}_{d s}=n(d, s) / n$.

Generally, for a decomposable model, the MLE can be found in closed form as

$$
\hat{p}(z)=\frac{\prod_{C: \text { cliques }} \hat{p}_{C}\left(z_{C}\right)}{\prod_{S: \text { separators }} \hat{p}_{S}\left(z_{S}\right)}
$$

where $\hat{p}_{E}\left(z_{E}\right)=n\left(z_{E}\right) / n$ for any clique or separator E.
So for $\{D S, H S\}$ we have

$$
\widehat{p}_{d h s}=\frac{\widehat{p}_{d s} \widehat{p}_{h s}}{\widehat{p}_{s}}=\frac{[n(d, s) / n][n(h, s) / n]}{n(s) / n}
$$

It is easy to see that we have the MLE: The MLE $\widehat{p}_{d h s}$ is the solution to the equation

$$
\hat{p}_{d s}=n(d, s) / n, \quad \hat{p}_{h s}=n(h, s) / n
$$

```
> n.ds <- tableMargin(lizard, c("diam", "species"))
> n.hs <- tableMargin(lizard, c("height", "species"))
> n.s <- tableMargin(lizard, c("species"))
> ec <- tableDiv( tableMult(n.ds, n.hs), n.s) ## expected counts
> ftable( ec )
                diam <=4 >4
species height
\begin{tabular}{llll} 
anoli & \(<=4.75\) & 87.1 & 33.9 \\
& \(>4.75\) & 30.9 & 12.1 \\
dist & \(<=4.75\) & 78.2 & 64.8 \\
& \(>4.75\) & 55.8 & 46.2
\end{tabular}
> ftable( fitted(ll2) )
Re-fitting to get fitted values
                        species anoli dist
diam height
\(<=4 \quad<=4.75\)
        >4.75
>4<=4.75
        >4.75
        87.1 78.2
        30.9 55.8
    33.9 64.8
    12.146.2
```


13 Decomposable models and Bayesian networks

Now is the time to establish connections between decomposable graphical models and Bayesian networks.

- For a decomposable model, the MLE is given as

$$
\hat{p}(z)=\frac{\prod_{C: \text { cliques }} \hat{p}_{C}\left(z_{C}\right)}{\prod_{S: \text { separators }} \hat{p}_{S}\left(z_{S}\right)}=\frac{\prod_{C: \text { cliques }} n\left(z_{C}\right) / n}{\prod_{S: \text { separators }} n\left(z_{S}\right) / n}
$$

- Major point: The above is IMPORTANT in connection with Bayesian networks, it is a clique potential representation of p.
- Hence if we find a decomposable graphical model then we can convert this to a Bayesian network.
- We need not specify conditional probability tables (they are only used for specifying the model anyway, the real computations takes place in the junction tree).
- There are $2^{K_{n, 2}}$ graphical models with n variables, so model search is a challenge. The number of decomposable models is smaller and these models can be fitted without iterations so model search among decomposable models is faster.

14 Testing for conditional independence

Tests of general conditional independence hypotheses of the form $u \Perp v \mid W$ can be performed with ciTest() (a wrapper for calling ciTest_table()).
> library(gRim)
> args(ciTest_table)
function (x, set = NULL, statistic = "dev", method = "chisq", adjust.df = TRUE, slice.info = TRUE, L = 20, B = 200, ...)
NULL
The general syntax of the set argument is of the form (u, v, W) where u and v are variables and W is a set of variables.
> ciTest(lizard, set=c("diam","height","species"))
Testing diam _l_ height | species
Statistic (DEV): $2.026 \mathrm{df}: 2 \mathrm{p}$-value: 0.3632 method: CHISQ

14.1 What is a CI-test - stratification

Conditional independence of u and v given W means independence of u and v for each configuration w^{*} of W.

In model terms, the test performed by ciTest() corresponds to the test for removing the edge $\{u, v\}$ from the saturated model with variables $\{u, v\} \cup W$.
Conceptually form a factor S by crossing the factors in W. The test can then be formulated as a test of the conditional independence $u \Perp v \mid S$ in a three way table.

The deviance decomposes into independent contributions from each stratum:

$$
D=2 \sum_{i j s} n_{i j s} \log \frac{n_{i j s}}{\hat{m}_{i j s}}=\sum_{s} 2 \sum_{i j} n_{i j s} \log \frac{n_{i j s}}{\hat{m}_{i j s}}=\sum_{s} D_{s}
$$

where the contribution D_{s} from the s th slice is the deviance for the independence model of u and v in that slice.

```
> cit <- ciTest(lizard, set=~diam+height+species, slice.info=T)
> cit
Testing diam _l_ height | species
Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ
> names(cit)
[1] "statistic" "p.value" "df" "statname" "method"
[6] "adjust.df" "varNames" "slice"
> cit\$slice
    statistic p.value df species
1 0.178 0.673 1 anoli
2 1.848 0.174 1 dist
```

The s th slice is a $|u| \times|v|$-table $\left\{n_{i j s}\right\}_{i=1 \ldots|u|, j=1 \ldots|v|}$. The degrees of freedom corresponding to the test for independence in this slice is

$$
d f_{s}=\left(\#\left\{i: n_{i \cdot s}>0\right\}-1\right)\left(\#\left\{j: n_{\cdot j s}>0\right\}-1\right)
$$

where $n_{i \cdot s}$ and $n_{\text {.js }}$ are the marginal totals.

14.2 Example: University admissions

Example: Admission to graduate school at UC at Berkley in 1973 for the six largest departments classified by sex and gender.
> ftable(UCBAdmissions)

		Dept	A	B	C	D	E
Admit	Fender						
Admitted	Male	512	353	120	138	53	22
	Female	89	17	202	131	94	24
Rejected	Male	313	207	205	279	138	351
	Female	19	8	391	244	299	317

Is there evidence of sexual discrimination?
> ag <- tableMargin(UCBAdmissions, ~Admit+Gender); ag Gender

```
Admit Male Female
```

 Admitted 1198557
 Rejected 14931278
 > as.parray(ag, normalize="first")
Gender
Admit Male Female
Admitted 0.4450 .304
Rejected 0.5550 .696

```
> s<-ciTest(UCBAdmissions, ~Admit+Gender+Dept, slice.info=T);

Hence, admit and gender are not independent within each Dept. However, most contribution to the deviance comes from department A:
> s\$slice
statistic p.value df Dept
\(1 \quad 19.0541 .27 \mathrm{e}-051\) A
\(20.2596 .11 \mathrm{e}-01 \quad 1 \quad \mathrm{~B}\)
\(3 \quad 0.7513 .86 \mathrm{e}-01 \quad 1 \quad \mathrm{C}\)
\(40.2985 .85 \mathrm{e}-01 \quad 1 \quad \mathrm{D}\)
\(5 \quad 0.9903 .20 \mathrm{e}-01 \quad 1 \quad \mathrm{E}\)
\(6 \quad 0.3845 .36 \mathrm{e}-01 \quad 1 \quad \mathrm{~F}\)

So what happens in department A?
> x <- tableSlice(UCBAdmissions, margin="Dept", level="A"); x Gender
Admit Male Female
Admitted 51289
Rejected 31319
> as.parray(x, normalize="first")
Gender
Admit Male Female
Admitted 0.621 0.824
Rejected 0.379 0.176
The discrimination is against men!

Why were we mislead at the beginning?
\(>x<-\) tableMargin(UCBAdmissions, \(\sim A d m i t+D e p t) ;\)
\(>\mathrm{X}\)


\section*{15 Log-Linear models - the gRim package}

Coronary artery disease data:
> data(cad1, package="gRbase")
\(>\) use <- c \((1,2,3,9: 14)\)
> cad1 <- cad1[,use]
> head ( cad1, 4 )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Sex & AngPec & AMI & Hypertrophi & Hyperchol & Smoker & Inherit \\
\hline 1 & Male & None & NotCertain & No & No & No & No \\
\hline 2 & Male & Atypical & NotCertain & No & No & No & No \\
\hline 3 & Female & None & Definite & No & No & No & No \\
\hline 4 & Male & None & NotCertain & No & No & No & No \\
\hline \multicolumn{8}{|c|}{Heartfail CAD} \\
\hline 1 & & No No & & & & & \\
\hline 2 & & No No & & & & & \\
\hline 3 & & No No & & & & & \\
\hline 4 & & No No & & & & & \\
\hline
\end{tabular}

CAD is the diseae; the other variables are risk factors and disease manifestations/symptoms.

Some (random) model:
> m1 <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cad1); m1 Model: A dModel with 5 variables
\begin{tabular}{llllll} 
graphical : & TRUE & decomposable \(:\) & TRUE & \\
-2logL & 1293.88 mdim & 13 aic \(:\) & 1319.88 \\
ideviance \(:\) & 112.54 idf & \(:\) & 8 bic \(:\) & 1364.91 \\
deviance & & 16.38 df & \(:\) & 18 &
\end{tabular}

- Data must be a table or a dataframe (which will be converted to a table).
- Variable names may be abbreviated.
- Instead of a formula, a list can be given.
- The generating class as a list is retrieved with terms() and as a formula with formula():
```

> str(terms(m1))

```
List of 2
```

\$: chr [1:3] "Sex" "Smoker" "CAD"
\$: chr [1:3] "CAD" "Hyperchol" "AMI"
> formula(m1)
~Sex * Smoker * CAD + CAD * Hyperchol * AMI

```

Notice: No dependence graph in model object; must be generated on the fly using ugList():
> \# Default: a graphNEL object
> DG <- ugList (terms (m1) ) ; DG
A graphNEL graph with undirected edges
Number of Nodes \(=5\)
Number of Edges \(=6\)
> \# Alternative: an adjacency matrix
> \(\mathrm{a}<-\) ugList ( terms ( m1 ), result="matrix" ) ; a
Sex Smoker CAD Hyperchol AMI
\begin{tabular}{llllll} 
Sex & 0 & 1 & 1 & 0 & 0 \\
Smoker & 1 & 0 & 1 & 0 & 0 \\
CAD & 1 & 1 & 0 & 1 & 1 \\
Hyperchol & 0 & 0 & 1 & 0 & 1 \\
AMI & 0 & 0 & 1 & 1 & 0
\end{tabular}
> A <- ugList( terms( m1 ), result="dgCMatrix" )

\subsection*{15.1 Model specification shortcuts}

Shortcuts for specifying some models
```

> mar <- c("Sex","AngPec","AMI","CAD")
> str(terms(dmod(~.^., data=cad1, margin=mar))) \#\# Saturated model
List of 1
\$: chr [1:4] "Sex" "AngPec" "AMI" "CAD"
> str(terms(dmod(~.^1, data=cad1, margin=mar))) \#\# Independence model
List of 4
\$: chr "Sex"
\$: chr "AngPec"
\$: chr "AMI"
\$: chr "CAD"

```
> str (terms(dmod(~.^3, data=cad1, margin=mar))) \#\# All 3-factor model
List of 4
    \$ : chr [1:3] "Sex" "AngPec" "AMI"
    \$ : chr [1:3] "Sex" "AngPec" "CAD"
    \$ : chr [1:3] "Sex" "AMI" "CAD"
    \$ : chr [1:3] "AngPec" "AMI" "CAD"

\subsection*{15.2 Altering graphical models}

Natural operations on graphical models: add and delete edges
> m1 <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cad1); m1 Model: A dModel with 5 variables
graphical : TRUE decomposable : TRUE
\begin{tabular}{llrlll}
-2logL & \(:\) & \(1293.88 \mathrm{mdim}:\) & 13 aic \(:\) & 1319.88 \\
ideviance & & \(112.54 \mathrm{idf}:\) & 8 bic \(:\) & 1364.91
\end{tabular}
deviance : \(\quad 16.38 \mathrm{df}: 18\)
> m 2 <- update(m1,items =
list (dedge=~Hyperchol:CAD, \# drop edge aedge=~Smoker:AMI)) \# add edge
> par(mfrow=c(1,2)); plot( m1 ); plot( m2 )


\subsection*{15.3 Model comparison}

Models are compared with compareModels().
> m1 <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cad1); m1 Model: A dModel with 5 variables
graphical : TRUE decomposable : TRUE
-2logL : 1293.88 mdim : 13 aic : 1319.88
ideviance : 112.54 idf : 8 bic : 1364.91 deviance : \(16.38 \mathrm{df}: 18\)
> m3 <- update(m1, items=list(dedge=~Sex:Smoker+Hyperchol:AMI))
> compareModels( m1, m3 )
Large:
:"Sex" "Smoker" "CAD"
:"CAD" "Hyperchol" "AMI"
Small:
:"Sex" "CAD"
:"Smoker" "CAD"
:"CAD" "Hyperchol"
:"CAD" "AMI"
-2logL: \(8.93 \mathrm{df}: 4\) AIC( \(k=2.0): 0.93\) p.value: 0.346446
> par(mfrow=c(1,2)); plot( m1 ); plot( m3 )


\subsection*{15.4 Decomposable models - deleting edges}

Result: If \(\mathcal{A}_{1}\) is a decompsable model and we remove an edge \(e=\{u, v\}\) which is contained in one clique \(C\) only, then the new model \(\mathcal{A}_{2}\) will also be decomposable.
> \(\operatorname{par}(\) mfrow=c \((1,3)\) )
> plot(ug(~A:B:C+B:C:D))
\(>\) plot (ug (~A:C+B:C+B:C:D))
\(>\operatorname{plot}(\operatorname{ug}(\sim A: B+A: C+B: D+C: D))\)


Left: \(\mathcal{A}_{1}\) - decomposable; Center: dropping \(\{A, B\}\) gives decomposable model; Right: dropping \(\{B, C\}\) gives non-decomposable model.

Result: The test for removal of \(e=\{u, v\}\) which is contained in one clique \(C\) only can be made as a test for \(u \Perp v \mid C \backslash\{u, v\}\) in the \(C\)-marginal table.

This is done by ciTest(). Hence, no model fitting is necessary.

\subsection*{15.5 Decomposable models - adding edges}

More tricky when adding edge to a decomposable model > plot(ug(~A:B+B:C+C:D), "circo")


Adding \(\{A, D\}\) gives non-decomposable model; adding \(\{A, C\}\) gives decomposable model.

One solution: Try adding edge to graph and test if new graph is decomposable. Can be tested with maximum cardinality search as implemented in mcs(). Runs in O(|edges|+|vertices \(\mid)\).
> UG <- ug( \(\sim A: B+B: C+C: D)\)
> mcs(UG)
[1] "A" "B" "C" "D"
> UG1 <- addEdge("A","D",UG)
> mcs(UG1)
character(0)
> UG2 <- addEdge("A","C",UG)
> mcs(UG2)
[1] "A" "B" "C" "D"

\subsection*{15.6 Test for adding and deleting edges}

Done with testdelete() and testadd()
\(>m 1<-d m o d(\sim\) Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cad1)
\(>\) plot ( m1 )
> testdelete( m1, edge=c("Hyperchol", "AMI") )
dev: 4.981 df: 2 p. value: \(0.08288 \mathrm{AIC}(\mathrm{k}=2.0): \quad 1.0\) edge: Hyperch
host: CAD Hyperchol AMI
Notice: Test performed in saturated marginal model

> m1 <- dmod(~Sex:Smoker:CAD + CAD:Hyperchol:AMI, data=cad1)
\(>\) plot ( m1 )
> testadd ( m1, edge=c("Smoker", "Hyperchol"))
dev: 1.658 df: 2 p.value: 0.43654 AIC(k=2.0): 2.3 edge: Smoker: host: CAD Smoker Hyperchol
Notice: Test performed in saturated marginal model


\subsection*{15.7 Model search in Log-Linear models using gRim}

Model selection implemented in stepwise() function.
- Backward / forward search (Default: backward)
- Select models based on \(p\)-values or AIC \((\mathrm{k}=2)\) (Default: AIC(k=2))
- Model types can be "unsrestricted" or "decomposable". (Default is decomposable if initial model is decompsable)
- Search method can be "all" or "headlong". (Default is all)
> args(stepwise.iModel)
function (object, criterion = "aic", alpha = NULL, type = "decomposabl search = "all", steps = 1000, k = 2, direction = "backward", fixinMAT = NULL, fixoutMAT = NULL, details = 0, trace = 2, ...)
NULL
\(>\operatorname{msat}<-\operatorname{dmod}\left(\sim .{ }^{-}\right.\). data=cad1 )
> mnew1 <- stepwise( msat, details=1, k=2 ) \# use aic
STEPWISE:
criterion: aic ( \(k=2\) )
direction: backward
type : decomposable
search : all
steps : 1000
. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0
. Initial model: is graphical=TRUE is decomposable=TRUE
change.AIC -10.1543 Edge deleted: Sex CAD
change.AIC -10.8104 Edge deleted: Sex AngPec
change.AIC -18.3658 Edge deleted: AngPec Smoker
change.AIC -13.6019 Edge deleted: Hyperchol AngPec
change.AIC -10.1275 Edge deleted: Sex Heartfail
change.AIC -10.3829 Edge deleted: Hyperchol Heartfail
change.AIC -7.1000 Edge deleted: AMI Sex
change. AIC
-9.2019 Edge deleted: Hyperchol Sex
change.AIC -9.0764 Edge deleted: Inherit Hyperchol
change.AIC -5.1589 Edge deleted: Heartfail Smoker
change.AIC -4.6758 Edge deleted: Inherit Heartfail
change.AIC -1.7378 Edge deleted: Sex Smoker
change.AIC -6.3261 Edge deleted: Smoker Inherit
change.AIC -6.2579 Edge deleted: CAD Inherit
> plot( mnew1 )

\(>\operatorname{msat}<-\operatorname{dmod}\left(\sim .{ }^{-}\right.\), data=cad1 )
> mnew2 <- stepwise( msat, details=1, k=log(nrow(cad1)) ) \# use bic
STEPWISE:
criterion: aic ( \(k=5.46\) )
direction: backward
type : decomposable
search : all
steps : 1000
. BACKWARD: type=decomposable search=all, criterion=aic(5.46), alpha=0
. Initial model: is graphical=TRUE is decomposable=TRUE
change.AIC -100.0382 Edge deleted: Sex AngPec
change.AIC -103.1520 Edge deleted: Hyperchol AngPec
change.AIC -74.2967 Edge deleted: Smoker AngPec
change.AIC -67.8590 Edge deleted: Sex Hyperchol
change.AIC -60.3907 Edge deleted: AngPec Hypertrophi
change.AIC -51.9489 Edge deleted: Heartfail Hyperchol
change.AIC -50.8580 Edge deleted: Sex CAD
change.AIC -43.8873 Edge deleted: AngPec Heartfail
change.AIC -41.3702 Edge deleted: AMI Sex
change.AIC -43.6158 Edge deleted: AMI Heartfail
change.AIC -40.2509 Edge deleted: Hyperchol Inherit
change.AIC -26.3511 Edge deleted: AngPec AMI
change.AIC -31.4947 Edge deleted: Inherit AMI
\begin{tabular}{ll} 
change.AIC & -25.5315 Edge deleted: Heartfail CAD \\
change.AIC & -31.2732 Edge deleted: Inherit Heartfail \\
change.AIC & -22.9457 Edge deleted: AMI Hypertrophi \\
change.AIC & -17.9850 Edge deleted: Smoker AMI \\
change.AIC & -15.7814 Edge deleted: Sex Heartfail \\
change.AIC & -15.5931 Edge deleted: Smoker Sex \\
change.AIC & -18.5186 Edge deleted: Inherit Smoker \\
change.AIC & -13.8092 Edge deleted: Hyperchol Smoker \\
change.AIC & -12.4648 Edge deleted: AngPec Inherit \\
change.AIC & -6.5068 Edge deleted: Smoker Heartfail \\
change.AIC & -9.2031 Edge deleted: Hypertrophi Smoker \\
change.AIC & -5.9470 Edge deleted: AMI Hyperchol \\
change.AIC & -5.0227 Edge deleted: Hypertrophi Hyperchol \\
change.AIC & -4.0234 Edge deleted: Sex Inherit \\
change.AIC & -6.8882 Edge deleted: Hypertrophi Inherit \\
change.AIC & -3.1347 Edge deleted: Hypertrophi Sex
\end{tabular}

\section*{> plot( mnew2 )}


\section*{16 From graph and data to network}

Create graphs from models:
> ug1 <- ugList( terms( mnew1 ) )
> ug2 <- ugList( terms ( mnew2 ) )
> par(mfrow=c(1,2)); plot( ug1 ); plot( ug2 )


Create Bayesian networks from (graph, data):
> bn1 <- compile( grain( ug1, data=cad1, smooth=0.1 )); bn1 Independence network: Compiled: TRUE Propagated: FALSE Nodes: chr [1:9] "Hypertrophi" "AMI" "CAD" "Smoker" ... > bn2 <- compile( grain( ug2, data=cad1, smooth=0.1 )); bn2 Independence network: Compiled: TRUE Propagated: FALSE Nodes: chr [1:9] "CAD" "AngPec" "Hypertrophi" "Heartfail" ...
```

> querygrain(bn1, "CAD")
\$CAD
CAD
No Yes
0.546 0.454
> z<-setEvidence(bn1, nodes=c("AngPec", "Hypertrophi"),
c("Typical","Yes"))
> \# alternative form
> z<-setEvidence(bn1,
nslist=list(AngPec="Typical", Hypertrophi="Yes"))
> querygrain(z, "CAD")
\$CAD
CAD
No Yes
0.599 0.401

```

\section*{17 Prediction}

Dataset with missing values
> data(cad2, package="gRbase")
> dim( cad2 )
[1] 6714
> head ( cad2, 4 )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Sex & AngPec & AMI & QWave & QWavecode & STcode & STchange \\
\hline 1 & Male & None & NotCertain & No & Usable & Usable & Yes \\
\hline 2 & Female & None & NotCertain & No & Usable & Usable & Yes \\
\hline 3 & Female & None & NotCertain & No & Nonusable & Nonusable & Oo \\
\hline 4 & Male & Atypical & Definite & No & Usable & Usable & No \\
\hline \multicolumn{5}{|r|}{SuffHeartF Hypertrophi Hyperchol} & \multicolumn{3}{|l|}{Smoker Inherit Heartfail CAD} \\
\hline 1 & & Yes & No & No & <NA> & No & No \\
\hline 2 & & Yes & No & No & <NA> & No & No \\
\hline 3 & & No & No & Yes & <NA> & No & No \\
\hline 4 & & Yes & No & Yes & <NA> & No & No No \\
\hline
\end{tabular}
```

> args(predict.grain)
function (object, response, predictors = setdiff(names(newdata),
response), newdata, type = "class", ...)
NULL
> p1 <- predict(bn1, newdata=cad2, response="CAD")
> head(p1$pred$CAD)
[1] "No" "No" "No" "No" "No" "Yes"
> z <- data.frame(CAD.obs=cad2$CAD, CAD.pred=p1$pred\$CAD)
> head(z) \# class assigned by highest probability
CAD.obs CAD.pred
1 No No
2 No No
3 No No
4 No No
5 No No
6 No Yes
> xtabs(~., data=z)
CAD.pred
CAD.obs No Yes
No 32 9
Yes 9 17

```

Can be more informative to look at conditional probabilities:
> q1 <- predict(bn1, newdata=cad2, response="CAD",
type="distribution")
> head( q1\$pred\$CAD )
\begin{tabular}{lrr} 
& No & Yes \\
{\([1]\),} & 0.974 & 0.0258 \\
{\([2]\),} & 0.974 & 0.0258 \\
{\([3]\),} & 0.898 & 0.1017 \\
{\([4]\),} & 0.535 & 0.4651 \\
{\([5]\),} & 0.787 & 0.2134 \\
{\([6]\),} & 0.451 & 0.5490 \\
\(>\) & head ( p1\$pred\$CAD )
\end{tabular}
[1] "No" "No" "No" "No" "No" "Yes"
> head( cad2\$CAD)
[1] No No No No No No Levels: No Yes

\section*{18 Other packages}

Model search facilities in gRim are limited but the bnlearn package contains useful stuff, see http://www.bnlearn.com/.
> require( bnlearn )
> a = bn.fit(hc( cad1 ), cad1)
> bn = as.grain(a)
> plot(bn)


\section*{19 Winding up}

\section*{Brief summary:}
- We have gone through aspects of the gRain package and seen some of the mechanics of probability propagation.
- Propagation is based on factorization of a pmf according to a decomposable graph.
- We have gone through aspects of the gRim package and seen how to search for decomposable graphical models.
- We have seen how to create a Bayesian network from the dependency graph of a decomposable graphical model.
- The model search facilities in gRim do not scale to Large problems; instead it is more useful to consider other packages for structural learning, e.g. bntearn.```

